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1 The Drude theory of metals

1.1 Basic assumptions

In this script we follow closely the excellent textbook “Solid State Physics” by
Neil W. Ashcroft and N. David Mermin. The current script will give you all the
information you need for following this introductory course. Please consult the
book if you want to delve deeper into the subject.

Paul Drude constructed in 1900 a theory to explain the electrical and ther-
mal conductivity of metals. Just 3 years after the discovery of the electron by
Sir Joseph John “J. J.” Thompson he attributed these properties to a gas of
electrons. In more modern terms the idea is that when atoms of a metallic ele-
ment (with an electron shell composed of core electrons and more loosely bound
valence electrons, see Figure 1) come together to form a metal, the valence
electrons become detached and can wander freely through the metal, forming
so-called conduction electrons.

(a) (b) 

nucleus 
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Figure 1: (a) Single atom with electron shell. The more loosely bound electrons
typically determine the chemical properties of an atom. (b) When atoms of a
metallic element come together only the core electrons stay unaffected whereas
the valence electrons form an electron gas.

The density of the conduction electrons (number of electrons per volume,
n = N/V ) is given by

n = N
A

Z⇢
m

A
(1)

with N
A

= 6⇥10

23, the Avogadro number, Z the number of conduction electrons
per atom, ⇢

m

the mass density in gram per cm

3 and A the atomic mass of the
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element. Therefore ⇢
m

/A is the number of moles per cm

3. Typical densities are
10

22 electrons per cm

3.
Note that these densities are about 1000 times larger than the ones of a typ-

ical gas under normal temperature and pressure. Despite this and despite the
huge electrostatic interactions between the conduction electrons and between
conduction electrons and ions, Drude assumed that he could describe the elec-
trons as a classical gas of particles. He made the following four assumptions
that he borrowed from the kinetic theory of gases:

1. Between collisions the interaction of a given electron, both with the oth-
ers and with the ions is neglected. Thus in the absence of an external
electromagnetic field the electrons move in straight lines.

2. Collisions are instantaneous events abruptly changing the velocity of an
electron.

3. Electrons experience collisions with probability 1/⌧ per unit time.

4. Electrons emerge from a collision with a velocity distribution reflecting
the temperature at the place where the collision occurred.

Some remarks: The neglect of electron-electron interactions in assumption 1 is
called independent electron approximation, that of the neglect of ion-electron in-
teractions is called the free electron approximation. The collisions in assumption
2 are thought to result through the scattering from ions, see Figure 2 but do not
take this picture too seriously. The quantity ⌧ in assumption 3 carries various
names: relaxation time, collision time or mean free time. Here we assume it to
be independent of the electron’s position or velocity.

Figure 2: Trajectory of an conduction electron. In the Drude picture the electron
is scattered at metal ions.

1.2 Electrical conductivity of a metal

According to Ohm’s law the electric current I flowing through a wire is given
by V = IR with V denoting the potential drop and R the resistance of the
wire. Instead of R which depends on the shape of the wire, we use a material
property. The resistivity ⇢ relates the electrical field E in a metal to the current
density j that the field induces

E = ⇢ j. (2)
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The current density is a vector whose magnitude is the amount of charge per unit
time that crosses a unit area perpendicular to the flow. For instance, consider
a uniform current I that flows through a wire of length L and cross-sectional
area A. The current density is then j = I/A and the potential drop V = EL.
From Eq. 2 one finds V = I⇢L/A and thus R = ⇢L/A. In general, if n electrons
per unit volume move with velocity v, then the number of electrons passing the
area A in the time dt is n (vdt) A. This leads to the current density

j = �nev. (3)

The minus sign reflects the fact that the electrons carry negative charges. Note
that in Drude’s electron gas picture the electrons move in various directions and
v has to be taken to be the average velocity. In the absence of a field, v averages
out to zero and there is no current.

We calculate now the current in the presence of a field E. Consider an
electron a time t after its last collision. Its velocity is the sum of the velocity v0

directly after the last collision plus the additional velocity �eEt/m (m: electron
mass) that it has subsequently acquired. We now take the average over many
collisions. Since the electron emerges from collisions in a random directions, v0

does not contribute to the average velocity. That average is entirely given by
the average of �eEt/m. Since the average of t is the relaxation time ⌧ we find
for the average velocity and the current density:

vavg = �eE⌧

m
; j = �nevavg =

ne2⌧

m
E. (4)

This result can be stated in terms of the conductivity � = 1/⇢:

j = �E; � =

ne2⌧

m
. (5)

Unfortunately we do not know ⌧ and so we cannot predict �. However, we
can use this relation to estimate the value of ⌧ since we can measure � or ⇢.
One finds

⌧ =

m

⇢ne2
. (6)

Room temperature resistivities are typically of the order of microohm centime-
ters leading to relaxation times on the order of 10

�14 to 10

�15 sec. Is this a rea-
sonable number? A more useful quantity to look at is the mean free path l = v0⌧
where v0 denotes the average electronic speed. l is the distance travelled between
collisions. The average speed of our electrons can be found from a well-known
relation in thermodynamics, the equipartition theorem, mv2

0/2 = (3/2) k
B

T . It
follows v0 ⇡ 10

7
cm/s and thus a mean free path of 0.1 to 1 nm which corre-

sponds indeed to typical interatomic distances. This would suggest that Figure
2 is appropriate.

However, the classical theory has its problems. As we shall discuss in the
next chapter, the real v0 is about 100 times larger due to the fermionic nature
of the electrons. Also it is noteworthy that at sufficiently low temperatures the
mean free path can be on the order of centimeters.
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1.3 Thermal conductivity of a metal

Since we do not understand the cause for collisions in the Drude model, it
is wise to look at quantities that do not depend on ⌧ . Such quantities exist.
One example, the Hall effect, will be studied in the exercise class. Here we
discuss another example, the thermal conductivity of a metal. Its explanation
was considered to be the most successful prediction of the Drude model at its
time. Even though the thermal conductivity depends on ⌧ according to the
Drude model, the ratio /� of the thermal to the electrical conductivity does
not depend on it. More precisely the model seemed to explain the Wiedemann-
Franz law (1853) which states that the ratio /� for a large number of metals
is directly proportional to the temperature T with a proportionality constant
that is fairly independent of the metal. The ratio / (�T ) is called the Lorenz
number and its value is typically between 2.2 to 2.7 ⇥ 10

�8
watt ohm/K

2.
Drude assumed that the bulk of the thermal current is carried by the free

electrons and not by the ions. Analogous to Ohm’s law for electrical currents
the thermal current follows from Fourier’s law :

jq = �rT. (7)

Here jq gives the thermal flow per unit time crossing a unit area perpendicular
to the flow, and  is the thermal conductivity.

low T
high T

Figure 3: Schematic view of the origin of the thermal current. Electrons to the
left emerge from their collision with a higher energy, then electrons to the right.

Let us calculate  in the framework of the Drude model. Assume that
the temperature drop is uniform in the positive x-direction, leading to jq

=

�dT/dx. We use now assumption 4 of the Drude model, namely that elec-
trons emerge from collisions with velocity distributions that reflect the temper-
ature at the place of the collision, Figure 3. For simplicity we consider a one-
dimensional model first where electrons can only move along the x-direction.
Call E (T ) the thermal energy per electron in a metal in equilibrium at tem-
perature T . Electrons arriving at x from the high temperature side will, on
average, have had their last collision at x � v⌧ and thus carry a thermal energy
E (T (x � v⌧)). Their contribution to the thermal current will be the number of
such electrons per unit volume, n/2, times their velocity, v, times this energy,
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i.e. (n/2) vE (T (x � v⌧)). The electrons from the colder side will contribute
(n/2) (�v) E (T (x + v⌧)). Altogether this amounts to

jq

=

1

2

nv [E (T (x � v⌧)) � E (T (x + v⌧))] (8)

If T does not vary much over the mean free path l = v⌧ we can expand around
x leading to

jq

= nv2⌧
dE
dT

✓
�dT

dx

◆
. (9)

To go the full 3D case we need to replace v by v
x

using
⌦
v2

x

↵
=

⌦
v2

y

↵
=

⌦
v2

z

↵
=

v2/3. Furthermore we use ndE/dT = (N/V ) dE/dT = (dE/dT ) /V = c
v

(the
electronic specific heat). Hence

jq =

1

3

v2⌧c
v

(�rT ) (10)

or
 =

1

3

v2⌧c
v

=

1

3

lvc
v

. (11)

To get rid of the mysterious ⌧ we look at the ratio



�
=

1
3c

v

mv2

ne2
(12)

where we used Eq. 5. To obtain c
v

and v2 Drude assumed the electrons to
form an ideal gas, i.e. c

v

= (3/2) nk
B

and (1/2) mv2
= (3/2) k

B

T with k
B

=

1.38 ⇥ 10

�23
J/K, the Boltzmann constant. This leads to



�
=

3

2

✓
k

B

e

◆2

T. (13)

The right side is proportional to T and the proportionality constant depends
only on universal constants, in agreement with the Wiedemann-Franz law. The
Lorenz number is predicted to be



�T
=

3

2

✓
k

B

e

◆2

= 1.11 ⇥ 10

�8
watt ohm/K

2

which is about half the experimental value. Drude made a mistake in his cal-
culation which gave him a factor 2 in his final result, suggesting extraordinary
agreement with experiment. Beside this the good agreement turns out to be
accidental since we will learn in the next chapter that the classical ideal gas
laws cannot be applied to electrons in a metal. In fact two huge errors cancelled
in Drude’s calculation: at room temperature the electronic contribution to the
specific heat is about 100 times smaller and the mean square electronic speed
is about 100 times larger.
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2 The Sommerfeld theory of metals

Drude’s theory treated the electrons as an ordinary classical gas. Despite the
success with respect to the Wiedemann-Franz law, the contribution to the spe-
cific heat (3/2) k

B

per electron was not observed. This paradox was only re-
moved after the advent of quantum theory. Shortly after the discovery that the
Pauli exclusion principle was needed to account for the bound electron states in
atoms, Sommerfeld applied the same principle to the free electron gas of metals.
As we shall see, this removes many thermal anomalies of the Drude model.

2.1 Ground-state properties of the electron gas

We calculate the ground-state properties of N electrons confined to a volume
V . We use again the independent electron approximation (the electrons do not
interact with one another). Thus to find the ground state of N electrons we
first find the energy levels of a single electron in the volume V and then fill all
the levels up consistent with the Pauli exclusion principle (no two electrons may
occupy the same quantum state simultaneously).

As you should know, a single electron can be described by a wave func-
tion  (r) and a specification of its spin state. The one electron wave function
associated with the energy level E satisfies the time-independent Schrödinger
equation ˆH (r) = E (r) with ˆH denoting the Hamiltonian operator. It is
given by ˆH =

ˆT +

ˆV , the sum of operators corresponding to the kinetic and
potential energy. If the electron has no interactions, one has ˆV ⌘ 0 and thus
ˆH =

ˆT and the Schrödinger equation becomes

� ~2

2m

✓
@2

@2x
+

@2

@2y
+

@2

@2z

◆
 (r) = � ~2

2m
r2 (r) = E (r) . (14)

with ~ denoting Planck’s constant divided by 2⇡.
Solutions to Eq. 14 (neglecting for now boundary conditions) are of the form

 k (r) =

1p
V

eik·r (15)

with energy

E (k) =

~2k2

2m
(16)

where k is any position independent vector. The electron is confined to a volume
V by the attraction to the ions (V is the volume occupied by the solid); we choose
the normalization in 15 such that

Z

V

| (r)|2 dr = 1. (17)

The wave function  k (r) constitutes a plane wave with wave vector k and
wave length � = 2⇡/k. It is an eigenstate of the momentum operator p =

(~/i) (@/@r) = (~/i) r with eigenvalue

p = ~k, (18)
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the momentum of an electron in the state  k (r). The velocity v = p/m is given
by

v =

~k
m

. (19)

Here we assume for simplicity the volume to be a cube of side L = V 1/3.
Since we are interested in bulk properties, the choice of the surface is usually
not important. The most convenient choice is to remove the surface altogether
by setting

 (x + L, y, z) =  (x, y, z) ,

 (x, y + L, z) =  (x, y, z) , (20)

 (x, y, z + L) =  (x, y, z) ,

the so-called Born-van Karmann (or periodic) boundary condition. The bound-
ary condition 20 only permits certain discrete values of k such that

eik
x

L

= eik
y

L

= eik
z

L

= 1. (21)

The components of the wave vector must thus be of the form

k
x

=

2⇡n
x

L
, k

y

=

2⇡n
y

L
, k

z

=

2⇡n
z

L
(22)

with n
x

, n
y

and n
z

integers. In k-space (a 3D space with coordinates k
x

, k
y

and
k

z

) the allowed wave vectors are those whose coordinates along the three axes
are given by multiples of 2⇡/L. A 2D version of this space is shown in Figure 4.

k
x

k
y

2⇡/L

Figure 4: Points in (two-dimensional) k-space of the form k
x

= 2⇡n
x

/L, k
y

=

2⇡n
y

/L. Note the area per point is just (2⇡/L)

2.

Consider some arbitrary volume ⌦ in k-space with ⌦ � (2⇡/L)

3. (2⇡/L)

3

is the volume per point. Then we know that this volume contains

⌦

(2⇡/L)

3 =

⌦V

8⇡3
(23)
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allowed values of k, or, equivalently, the k-space density of levels is just

V

8⇡3
. (24)

We are now in the position to build the ground state for the N electrons.
Each one-electron level is specified by a wave vector k and the projection of
the electron’s spin along an arbitrary axis (which can take either one of the two
values ~/2 or �~/2), i.e. each allowed k-vector has two electronic levels. Since
the energy of a one-electron level is proportional to k2, Eq. 16, for N � 1 the
occupied region in k-space will be indistinguishable from a sphere, the so-called
Fermi sphere, of radius k

F

, the Fermi wave vector. The number of allowed
k-values within the Fermi sphere follows with Eq. 23 to be

✓
4⇡k3

F

3

◆✓
V

8⇡3

◆
=

k3
F

6⇡2
V. (25)

With 2 electrons per allowed k-value in order to accommodate N electrons we
must have

N = 2

k3
F

6⇡2
V =

k3
F

3⇡2
V. (26)

In terms of the electron density n = N/V this can be rewritten as

n =

k3
F

3⇡2
. (27)

Thus in the ground state all k less than k
F

are filled with electrons, leaving all
k greater than k

F

unoccupied.
The surface of the Fermi sphere that separates the occupied from the unoc-

cupied levels is called the Fermi surface. The electrons occupying the highest
levels have a momentum ~k

F

= p
F

, the Fermi momentum, and energy

E
F

=

~2k2
F

2m
, (28)

the Fermi energy, and a velocity v
F

= p
F

/m, the Fermi velocity. This velocity
is substantial (about 10

4
km/s), even though we are at the T = 0 ground state

where classical particles have zero velocity. Even at room temperature classical
particles with electronic mass are about 10 times slower.

To calculate the ground state energy of N electrons in a volume V we must
add up the energies of all one-electron levels within the Fermi sphere:

E = 2

X

k<k

F

E (k) = 2

X

k<k

F

~2k2

2m
. (29)

We can replace the summation by an integration as follows. The volume of
k-space per allowed k-value is �k = 8⇡3/V (see Eq. 24). It is then convenient
to write

E =

V

8⇡3

X

k<k

F

2E (k) �k (30)
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Finally we can write to an excellent approximation

E

V
=

1

8⇡3

Z

k<k

F

2E (k) dk =

1

4⇡3

Z

k<k

F

~2k2

2m
dk =

1

⇡2

~2k5
F

10m
. (31)

The energy per electron, E/N , in the ground state follows through division by
N/V which gives (see Eq. 27):

E

N
=

3

10

~2k2
F

m
=

3

5

E
F

=

3

5

k
B

T
F

(32)

where we introduced the Fermi temperature T
F

.

2.2 Thermal properties of the free electron gas: the Fermi-

Dirac distribution

We next study the N -electron state at a finite temperature T . In that case we
need to assign to each stationary state of energy E a weight P

N

(E) proportional
to e�E/k

B

T :

P
N

(E) =

e�E/k

B

T

P
↵

e�E

N

↵

/k

B

T

. (33)

Here EN

↵

is the energy of the ↵th stationary state of the N -electron system
and the sum is over all such states. The denomiator of Eq. 33 is the partition
function and is related to the free energy F = U � TS (U : internal energy, S:
entropy) by X

↵

e�E

N

↵

/k

B

T

= e�F

N

/k

B

T (34)

This allows to rewrite Eq. 33 more compact:

P
N

(E) = e�(E�F

N

)/k

B

T . (35)

We introduce now fN

i

, the probability of there being an electron in the par-
ticular one-electron level i when the N -electron system is in thermal equilibrium.
This probability is found by summing over all N -electron state ↵0 in which there
is an electron in level i:

fN

i

=

X

↵

0

P
N

�
EN

↵

0
�
. (36)

In Quantummechanics 2 you learned this year that fN

i

is given by the Fermi-
Dirac distribution:

fN

i

=

1

e(E
i

�µ)/k

B

T

+ 1

, (37)

where µ denotes the chemical potential:

µ = F
N+1 � F

N

. (38)
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In the following we will drop the explicit reference to the N dependence of
f

i

. N can always be computed from the f
i

via

N =

X

i

f
i

=

X

i

1

e(E
i

�µ)/k

B

T

+ 1

, (39)

which determines N as a function of T and µ.
Let us first check whether we recover from Eq. 37 the ground state properties

derived above. In the ground state only those levels are occupied with E (k) 
E

F

. Hence we need fks

= 1 for E (k)  E
F

and fks

= 0 for E (k) > E
F

(k is the
wave vector, s the spin quantum number and E (k) is given by Eq. 16). On the
other hand, as T ! 0, the limiting form of the Fermi-Dirac distribution, Eq.
37, is lim

T!0 fks

= 1 for E (k)  µ and lim

T!0 fks

= 0 for E (k) > µ. Hence

lim

T!0
µ = E

F

. (40)

We shall see shortly that µ remains equal to E
F

to a high degree of precision all
the way up to room temperature.

The most important application of Fermi-Dirac statistics is the calculation
of the electronic contribution to the constant volume specific heat of a metal:

c
v

=

✓
@u

@T

◆

V

(41)

with u = U/V . Here
U = 2

X

k

E (k) f (E (k)) . (42)

We introduced the Fermi function f (E) to emphasize that fk depends on k
only through E (k):

f (E) =

1

e(E�µ)/k

B

T

+ 1

. (43)

Divide both sides of Eq. 42 by V and replacing summation by integration (as
in Eq. 31) gives

u =

Z
dk

4⇡3
E (k) f (E (k)) . (44)

Similarily from Eq. 39 we find a relation for n = N/V :

n =

Z
dk

4⇡3
f (E (k)) (45)

which can be used to eliminate the chemical potential.
Both integrals, Eqs. 44 and 45, are of the form

Z
dk

4⇡3
F (E (k)) . (46)
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Since the integrands depend on k only through E = ~2k2/2m we can go to
spherical coordinates and change variables from k to E :

Z
dk

4⇡3
F (E (k)) =

1Z

0

k2dk

⇡2
F (E (k)) =

1Z

�1

dED (E) F (E) . (47)

Here

D (E) =

m

~2⇡2

r
2mE
~2

(48)

for E > 0 and zero otherwise. Since the integral 46 is an evaluation of the sum
(1/V )

P
ks

F (E (k)) we know that V D (E) dE gives the number of one-electron
levels in the energy range E to E + dE . D (E) is thus the density of levels per
unit volume.

Using Eqs. 27 and 28 we can write D (E) in a more transparent way:

D (E) =

3

2

n

E
F

✓
E
E

F

◆1/2

(49)

for E > 0 and zero otherwise. Of importance will be the density of levels at the
Fermi energy which follows from Eqs. 48 or 49 to be

D (E
F

) =

mk
F

~2⇡2
=

3

2

n

E
F

. (50)

With this notation we can rewrite Eqs. 44 and 45:

u =

1Z

�1

dED (E) Ef (E) (51)

and

n =

1Z

�1

dED (E) f (E) . (52)

Note that these expressions are quite general as the free electron approximation
enters only through D (E). The expressions can thus also be used for more
sophisticated models of independent electrons in metals.
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E

f

µ

�E ⇡ k
B

T

f

µ E

T = 0

T = 0.01µ/k
B

Figure 5: Fermi function f (E) = 1/
�
e�(E�µ)

+ 1

�
vs. E for a given value of µ at

zero temperature (top) and at room temperature for a typical metal (bottom).

The integrals 51 and 52 are rather complex. One can, however, exploit
the fact that in metals one has typically electron densities such that k

B

T/µ ⇡
0.01. This means that the Fermi-Dirac distribution looks similar to the zero
temperature distribution, see Fig. 5. f differs from zero temperature only in a
small regio of width k

B

T around E = µ. Thus the way in which integrals of the
form

R1
�1 H (E) f (E) dE differs from zero temperature values

R E
F

�1 H (E) dE will
entirely be determined by the form of H (E) near E = µ. If H does not vary too
much around µ one can calculate the integral through a Taylor expansion of H
around that value. Without giving the rather lengthy derivation, the first two
terms of this so-called Sommerfeld expansion are as follows:

1Z

�1

H (E) f (E) dE =

µZ

�1

H (E) dE +

⇡2

6

(k
B

T )

2 H 0
(µ) + O

✓
k

B

T

µ

◆4

. (53)

To evaluate the specific heat of a metal for T ⌧ T
F

we apply now the
Sommerfeld expansion to Eqs. 51 and 52:

u =

µZ

0

ED (E) dE +

⇡2

6

(k
B

T )

2
[µD0

(µ) + D (µ)] + O
�
T 4
�

(54)

and

n =

µZ

0

D (E) dE +

⇡2

6

(k
B

T )

2 D0
(µ) + O

�
T 4
�
. (55)

We will see soon that the latter equation implies that µ differs from E
F

only by
a term of order T 2. This allows to write correctly to order T 2:

µZ

0

H (E) dE =

E
FZ

0

H (E) dE + (µ � E
F

) H (E
F

) . (56)
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Using this expansion for the integrals 54 and 55 and replacing µ by E
F

in those
terms that are already of order T 2 we find

u =

E
FZ

0

ED (E) dE + E
F

✓
(µ � E

F

) D (E
F

) +

⇡2

6

(k
B

T )

2 D0
(E

F

)

◆

+

⇡2

6

(k
B

T )

2 D (E
F

) + O
�
T 4
�

(57)

and

n =

E
FZ

0

D (E) dE + (µ � E
F

) D (E
F

) +

⇡2

6

(k
B

T )

2 D0
(E

F

) + O
�
T 4
�
. (58)

The first terms on the right sides of Eqs. 57 and 58 are the values of u and n
in the ground state. Since we calculate the specific heat at constant V , n must
be constant and is given by the first term on the rhs of Eq. 58. Subtracting n
from from both sides, leads to:

0 = (µ � E
F

) D (E
F

) +

⇡2

6

(k
B

T )

2 D0
(E

F

) . (59)

This determines the deviation of µ from E
F

:

µ = E
F

� ⇡2

6

(k
B

T )

2 D0
(E

F

)

D (E
F

)

. (60)

Using Eq. 49 this gives

µ = E
F

 
1 � 1

3

✓
⇡k

B

T

2E
F

◆2
!

(61)

which is indeed, as assumed above, a shift of the order T 2 (typically about 0.01

percent at room temperature).
Equation 59 sets the term in brackets in Eq. 57 to zero. Hence

u = u0 +

⇡2

6

(k
B

T )

2 D (E
F

) (62)

with u0 being the energy density in the ground state. The specific heat of the
electron gas is thus

c
v

=

⇡2

3

k2
B

TD (E
F

) . (63)

For the free electron gas we use Eq. 50 and find:

c
v

=

⇡2

2

✓
k

B

T

E
F

◆
nk

B

(64)
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Compare this to the classical result for an ideal electron gas: c
v

= (3/2) nk
B

.
The Fermi-Dirac statistics depresses the specific heat by a factor

�
⇡2/3

�
(k

B

T/E
F

)

which is proportional to T and even at room temperature only of the order 10

�2.
This explains the absence of any observable contribution of the electronic de-
grees of freedom to the specific heat of a metal at room temperature.

The functional dependence of the specific heat, Eq. 63, can be easily un-
derstood (up to numerical coefficients) to result from the shape of the Fermi
function, Figure 5. If one goes from T = 0 to some finite temperature T about
D (E

F

) k
B

T electrons are excited by about k
B

T increasing the total thermal
energy density by D (E

F

) (k
B

T )

2.
The linear dependence of the specific heat can be tested provided that other

degrees of freedom are negligible. The ionic degrees of freedom dominate the
specific heat at high temperatures but well below room temperatures their con-
tribution falls off as T 3, faster than the electronic contribution proportional to
T . The latter can thus be seen at a few degrees Kelvin.

2.3 The Sommerfeld theory of conduction in metals

We next apply the Sommerfeld theory to predict the conduction in metals.
Following Sommerfeld we will replace in the Drude model the classical velocity
distribution by the Fermi-Dirac distribution (we will here not try to justify
why a quantummechanical distribution can be used in an otherwise classical
theory but there are good reasons for such a procedure). Consider a small
volume element of k-space about a point k of volume dk. According to Eq. 24
(allowing for two-fold spin degeneracy) the number of one-electron levels in this
volume element are ✓

V

4⇡3

◆
dk. (65)

With the probability f (k) of each level to be occupied we find the total number
of electrons in that k-space volume element:

V

4⇡3
f (E (k)) dk (66)

with E (k) = ~2k2/2m.
Since v = ~k/m the number of electrons in a volume element dv about v is

the same as the number in a volume element dk = (m/~)3 dv about k = mv/~.
Thus the number of electrons per unit volume of real space in a velocity space
element of volume dv around v is

ef (v) dv (67)

with
ef (v) =

(m/~)3

4⇡3

1

exp

⇥�
1
2mv2 � µ

�
/k

B

T
⇤
+ 1

(68)
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This is dramatically different from the velocity distribution of a classical electron
gas, the one assumed in the Drude model, namely

efMB (v) = n

✓
m

2⇡k
B

T

◆3/2

e�mv

2
/2k

B

T . (69)

Think e.g. about the difference in the limit T ! 0 between the classical case
(all electrons come to rest) and the fermionic case (electrons keep moving to
obey the Pauli exclusion principle).

Sommerfeld essentially used the classical treatment of Drude but with the
velocity distribution 68. We shall not discuss why such an approach can be
useful but simply mention some predictions that follow. The mean free path
can be estimated, if we use v

F

= ~k
F

/m as the typical electronic speed, to be
l = v

F

⌧ which predicts with Eq. 6 a mean free path of order 10 nm, even at
room temperature. We next estimate the thermal conductivity, Eq. 11:

 =

1

3

v2⌧c
v

. (70)

The correct specific heat, Eq. 64, is smaller than Drude’s guess by a factor
k

B

T/E
F

. A correct estimate for v2 is not the classical value of order k
B

T/m
but v2

F

= 2E
F

/m which is larger to the classical value by a factor of order
E

F

/m. Inserting this in 70 and eliminating the relaxation time ⌧ in favor of the
conductivity through Eq. 5 (the electric conductivity does not depend on the
electronic velocity distribution), we find for the Lorenz number



�T
=

⇡2

3

✓
k

B

e

◆2

= 2.44 ⇥ 10

�8
watt ohm/K

2. (71)

This is remarkably close to Drude’s result, Eq. 13, due to two compensating
corrections of order k

B

T/E
F

.
To conclude these two chapters we mention some of the failures and problems

of the free electron model. The Wiedemann-Franz law, the great triumph of the
free electron theory at high (room) temperature and at very low temperature,
fails at intermediate temperatures. Often one finds a temperature dependence
of the DC conductivity which can be only accounted for as an ad hoc dependence
of ⌧ on temperature (see Eq. 5). Some fundamental questions remain unsolved:
what determines the number of conduction electrons? Why are some elements
non-metals?

It turns out that the assumption that the ions have no significant effect on
the motion of the electrons between collisions is responsible for most of the
deficiencies of the Drude and Sommerfeld models. We shall see that a theory
that takes properly into account the detailed field produced by a static array of
ions produce much more reasonable results. As a first step, in the next chapter
we study the arrangement of ions in regular periodic arrays or lattices.
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3 Crystal lattices and reciprocal lattices

3.1 Crystal lattices

The ions in a metal are arranged in a periodic array. Here we survey some of the
most important geometrical properties of periodic arrays in three-dimensional
space. A fundamental concept to describe any crystalline solid is that of the
Bravais lattice. It specifies the periodic array in which the repeated units (sin-
gle atoms, groups of atoms, molecules, ions etc) are arranged. We give two
equivalent definitions:

1. A Bravais lattice is an infinite array of discrete points with an arrangement
and orientation that appears exactly the same, from whichever of the
points the array is viewed.

2. A (three-dimensional) Bravais lattice consists of all points with position
vectors R of the form

R = n1a1 + n2a2 + n3a3, (72)

where a1, a2 and a3 are any three vectors not all in the same plane and
n1, n2 and n3 range through all the integers.

The a
i

are called primitive vectors and are said to generate or span the lattice.
An example of a two-dimensional Bravais lattice is given in Figure 6. Clearly
the definition 1 is satisfied and the primitive vectors required for definition 2
are indicated in the figure. We note that the choice of the set of primitive
vectors for a given Bravais lattice is not unique but that there are infinitely
many non-equivalent choices.

a1

a2

P

Q

Figure 6: Example of a two-dimensional Bravais lattice with primitive vectors
a1 and a2. All points in the net can be reached via linear combinations of these
vectors with integer coefficients, e.g. P = a1 + 2a2 and Q = �a1 + a2.

We discuss now three cubic lattices. The most simple one is the simple cubic
lattice, Fig. 7(a). This geometry is rare among crystalline solids (polonium is
the only know example of an element that shows the cubic form under normal
conditions). Common are the body-centered cubic (bcc) lattice, Fig. 7(b), and
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the face-centered cubic (fcc) lattice, Fig. 7(c) (e.g. bbc: Ar, Ag, Al, Au, Ca,
Ce, Co, Cu; fcc: Ba, Cr, Cs, Fe, K). The bcc lattice can be obtained by placing
an additional point in the cube center or by two simple cubic lattices displaced
with respect to each other. The fcc lattice can be formed from the cubic lattice
by adding an additional point at the center of each square face.

(a) (b) (c) 

a1

a2

a3a1

a2

a3

a1 a2

a3

Figure 7: (a) The simple cubic three-dimensional Bravais lattice. (b) The body-
centered cubic (bcc) Bravais lattice. (c) The face-centered cubic (fcc) Bravais
lattice. For all three cases primitive vectors are indicated.

The points in a Bravais lattice that are closest to a given point are called its
nearest neighbors. Since all points are equal, each point has the same number of
nearest neighbors. This number is thus a property of the lattice and is called the
coordination number of the lattice. The simple cubic lattice has coordination
number 6, the bcc lattice 8 and the fcc lattice 12.

A volume of space that, when translated through all vectors in a Bravais
lattice, fills all of space without either overlapping or leaving voids is called a
primitive cell of the lattice. There is no unique way of choosing a primitive cell
for a given Bravais lattice, see Figure 8 for several possible choices of primitive
cells for a two-dimensional Bravais lattice. A primitive cell contains precisely
one point (unless it is positioned such that there are points on the surface). The
volume of a primitive cell is independent of the choice of the cell.

Figure 8: Three possible choices of the primitive cell for a single two-dimensional
Bravais lattice. The choice to the right is the Wigner-Seitz cell (see main text).
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The obvious choice for the primitive cell for a given set of primitive vectors,
a1, a2, and a3, is the set of all points r of the form

r = x1a1 + x2a2 + x3a3 (73)

with 0  x
i

< 1. This leads to a parallelepiped. This has often (e.g. bbc lattice,
Figure 7(b)) not the full (e.g. cubic) symmetry of the lattice. It is, however,
often important to work with cells that have the full symetry of their Bravais
lattice. There are two solutions to the problem. The first one is to fill space
with nonprimitive cells, so-called unit cells, that fill space without any overlap
when translated through some subset of the vectors of a Bravais lattice. Such
a unit cell is then bigger than a primitive cell. An example is the full cube
depicted in Figure 7(b) that has two times the volume of a primitive cell in a
bcc lattice.

The second solution to the problem is to choose a primitve cell with the full
symmetry of the Bravais lattice which is always possible. The most common
choice is the Wigner-Seitz cell. The Wigner-Seitz cell about a lattice point is
defined as the region of space that is closer to that point than to any other lattice
point. The Wigner-Seitz cell for a two-dimensional Bravais-lattice is shown on
the right of Figure 8 and for the bcc and fcc lattice in Figure 9.

bcc fcc 

Figure 9: The Wigner-Seitz cells for the bcc and fcc Bravais lattice. In the bcc
case one has a truncated octahedron, in the fcc case a rhombic dodecahedron.

A physical crystal can be described by giving its underlying Bravais lattice,
together with a description of the arrangement of its atoms within a particular
primitive cell. A crystal structure consists of identical copies of the same physical
unit, called the basis, located at all the points of the Bravais lattice. This is
also called lattice with a basis. To give a two-dimensional example: The vertices
of a honeycomb are not a Bravais lattice since the lattice has to be rotated
when going from one point to the neighbor to look exactly the same. However,
the honeycomb can be represented by a two-dimensional Bravais lattice with a
two-point basis, see Figure 10.
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Figure 10: The honeycomb net drawn so as to emphasize that it is a Bravais
lattice with a two-point basis.

We mention here two additional important crystal structures. The diamond
lattice (formed by C atoms in diamond crystals) can be considered as a fcc
lattice with the two point bases 0 and (a/4) (e

x

+ e
y

+ e
z

). About 30 elements
crystallize in the hexagonal closed-packed (hcp) structure. It can be obtained
by stacking two-dimensional triangular nets.

3.2 The reciprocal lattice

We come to the definition of the reciprocal lattice which plays a fundamental role
in most analytical studies. Consider a set of points R constituting a Bravais
lattice and a plane wave eik·r. For general k such a plane will not have the
periodicity of the Bravais lattice but for certain choices of k it will. The set
of all vectors K that yield plane waves with the periodicity of a given Bravais
lattice is know as its reciprocal lattice. K belongs to the reciprocal lattice of a
Bravais lattice of points R, provided that the relation

eiK·(r+R)
= eiK·r (74)

holds for any r, and for all R of the Bravais lattice. Dividing Eq. 74 by eik·r,
we can characterize the reciprocal lattice as the set of wave vectors K satisfying

eik·R
= 1 (75)

for all R of the Bravais lattice. The Bravais lattice that determines a given
reciprocal lattice is often referred to as the direct lattice.

We prove now that the reciprocal lattice is itself a Bravais lattice. Let a1,
a2 and a3 be a set of primitive vectors of the direct lattice. Then the reciprocal
lattice can be generated by the three primitive vectors

b1 = 2⇡
a2 ⇥ a3

a1 · (a2 ⇥ a3)
,

b2 = 2⇡
a3 ⇥ a1

a1 · (a2 ⇥ a3)
, (76)

b3 = 2⇡
a1 ⇥ a2

a1 · (a2 ⇥ a3)
.
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To verify that Eq. 76 gives a set of primitive vectors of the reciprocal lattice,
note first that the b

i

satisfy

b
i

· a
j

= 2⇡�
ij

. (77)

Now any k can be written as a linear combination of the b
i

:

k = k1b1 + k2b2 + k3b3 (78)

If R is any direct lattice vector, then

R = n1a1 + n2a2 + n3a3 (79)

where the n
i

are integers. Using 77 we find

k · R = 2⇡ (k1n1 + k2n2 + k3n3) . (80)

For eik·R to be unity for all R, Eq. 75, k · R must be 2⇡ times an integer for
any choices of the integers n

i

which requires the k
i

to be integers as well. Thus
condition 75 is fulfilled by just those vectors K that are linear combinations 78
of the b

i

with integral coefficients. By comparing with Eq. 72 one can see that
the reciprocal lattice is a Bravais lattice with the b

i

being a set of primitive
vectors. q.e.d.

We note here that one can show along similar lines that the reciprocal of a
reciprocal lattice is the original direct lattice again.

We mention now three important examples of reciprocal lattices that can be
verified using the above explicit construction. The reciprocal of a simple cubic
Bravais lattice (with a cubic primitive cell of side a) is a simple cubic lattice
(with a cubic primitive cell of side 2⇡/a). The reciprocal lattice of the fcc lattice
turns out to be the bcc lattice. And the reciprocal of the bcc lattice is the fcc
lattice.

If v is the volume of a primitive cell in the direct lattice, then (2⇡)

3 /v is the
volume of the primitive cell of the reciprocal lattice. The Wigner-Seitz primitve
cell of the reciprocal lattice is know as the first Brillouin zone. When reference
is made to the first Brilliouin zone of a particular r-space Bravais lattice, what is
meant is the Wigner-Seitz cell of the associated reciprocal lattice. For example,
because the reciprocal of the bcc lattice is an fcc lattice, the first Brillouin zone
of the bcc lattice, Figure 11(a), is just the fcc Wigner Seitz cell. Conversly the
first Brillioun zone of the fcc lattice, Figure 11(b), is just the bcc Wigner-Seitz
cell.

(a) (b) 

Figure 11: The first Brillouin zone of (a) the bcc lattice and (b) the fcc lattice.
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There is an intimate relation between vectors in the reciprocal lattice and
planes of points in the direct lattice. Given a particular Bravais lattice a lattice
plane is defined by any plane that contains at least three non-collinear Bravais
lattice points. In fact, it will then be itself a two-dimensional Bravais lattice
containing infinitely many lattice points. By a family of lattice planes we mean
an infinite set of parallel, equally spaced lattice planes, which together contain
all the points of the three-dimensional Bravais lattice. This is not a unique
construction, see the two examples for the simple cubic Bravais lattice in Figure
12. The reciprocal lattice allows to classify all possible families of lattice planes:
For any family of lattice planes separated by distance d, there are reciprocal
lattice vectors perpendicular to the planes, the shortest of which has a length
2⇡/d (and vice versa).

(a) (b) 

Figure 12: Two different ways of representing a simple cubic Bravais lattices as
a family of lattice planes.

Reciprocal lattices and lattice planes play a role in the determination of
crystal structures by X-ray diffraction. William Henry and William Laurence
Bragg (father and son, Nobelprice 1915) found that cystalline substances show
for certain sharply defined wavelength and incident directions intense peaks of
scattered X-ray radiation. They accounted for this by regarding a crystal as
made by parallel planes of ions, spaced a distance d apart (i.e. lattice planes).
This led them to formulate the Bragg condition

n� = 2d sin ✓ (81)

where � is the wave length, ✓ the angle of incidence and n is an integer. This con-
dition means that reflected rays from successive planes interfere constructively,
see Figure 13.
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✓

d sin ✓
d

✓

Figure 13: A Bragg reflection from a particular family of lattice planes. The
path difference between the two depicted rays is 2d sin ✓.

Max van Laue came up with another yet equivalent formulation. He regarded
the crystal as composed of identical microscopic objects placed at the sites R of
a Bravais lattice, each of which reradiates the incident radiation in all directions.
Sharp peaks will be observed only in directions and at wave lengths for which the
rays scattered from all lattice points scatter constructively. To find the condition
consider first two scatterers separated by a displacement d, see Figure 14. The
incident ray comes in along a direction ˆn with wave length � and wave vector
k = 2⇡ˆn/�. A scattered wave will be observed in direction ˆn0 with wave vector
k0

= 2⇡ˆn0/�, provided that the path difference between the two rays scattered
by the two ions is an integral number of the wave length:

d cos ✓ + d cos ✓0
= d · (n̂ � n̂0

) = m�. (82)

Multiplying both sites by 2⇡/� one finds

d · (k � k0
) = 2⇡m. (83)

d cos ✓

d cos ✓0

k k

k0

k0
✓ ✓0

n̂

n̂0

d

Figure 14: Two rays are scattered at two points separated by d.
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Now consider an array of scatterers at the sites of an Bravais lattice. The
condition that all scattered rays interfere constructively is that Eq. 83 holds
simultaneously for all values of R that are Bravais lattice vectors, R · (k � k0

) =

2⇡m which can be rewritten as

ei
(

k0�k
)

·R
= 1. (84)

Comparison with Eq. 75 tells us that the Laue condition for constructive in-
terference will occur provided that the change in wave vector, K = k0 � k, is a
vector of the reciprocal lattice.

We give an alternative formulation of the Laue condition, stated entirely in
terms of k. We learned above that k0 � k is a reciprocal lattice vector and thus
also k � k0 which we call now K. The length of k is denoted by |k| = k. The
condition |k| = |k0| can be written as

k = |k � K| . (85)

Squaring both sides of Eq. 85 yields k2
= k2 � 2k · K + K2 and thus

k · ˆK =

1

2

K (86)

with ˆK = K/K. In geometrical terms, the incident wave vector k will satisfy
the Laue condition if and only if the tip of the vector lies in a plane that is
the perpendicular bisector of a line joining the origin of k-space to a reciprocal
lattice point K, see Figure 15. Such k-space planes are called Bragg planes. One
can show that the k-space Bragg plane associated with a particular diffraction
peak in the Laue formalism is parallel to the family of direct lattice planes in
the Bragg formulation.

k

k0

1

2

K

1

2

K

K

0

Figure 15: Geometrical interpretation of the Laue condition (see text).

4 Electron levels in a periodic potential

Ions in a metal are arranged in a periodic fashion as discussed in the previous
chapter. This leds us to consider the problem of an electron in a periodic
potential U (r) with the periodicity of the underlying Bravais lattice, i.e.

U (r + R) = U (r) (87)
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for all Bravais lattice vectors R. We will still assume independent electrons
but they are not free anymore. U (r) can be thought of as an effective potential
that contain both the interaction with the ions and the contributions from other
electrons. Qualitatively a typical crystalline potential might be expected to have
the form shown in Figure 16, resembling the individual atomic potentials as the
ions are approached closely and flattening off in the region between ions.

U(r)

r

Figure 16: A typical periodic crystalline potential, plotted along a line of ions
(red curve) and along a line between planes of ions (purple curve).

4.1 Bloch’s theorem

We are thus led to examine the general properties of the Schrödinger equation
for a single electron,

H (r) =

✓
� ~2

2m
r2

+ U (r)

◆
 (r) = E (r) (88)

that follow from the fact that the potential U has the periodicity 87.
The stationary states of these so-called Bloch electrons have the following

important property stated in the so-called Bloch’s theorem: The eigenstates  of
the one-electron Hamiltonian H = �~2r2/2m+U (r), where U (r + R) = U (r)
for all R in a Bravais lattice, can be chosen to have the form of a plane wave
times a function with the periodicity of the Bravais lattice:

 
nk (r) = eik·ru

nk (r) , (89)

where
u

nk (r + R) = u
nk (r) (90)

for all R in the Bravais lattice.
Note that Eqs. 89 and 90 imply

 
nk (r + R) = eik·R 

nk (r) . (91)

Alternatively Bloch’s theorem can be stated as follows: eigenstates of H can be
chosen so that associated with each  is a wave vector k such that

 (r + R) = eik·R (r) (92)
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for every R in the Bravais lattice.
We will prove this theorem in a moment. But first let us ask: Which Bloch

wave vectors k are allowed? We impose again the Born-van Karmann boundary
condition, this time for a volume commensurate with a primitive cell of the
underlying Bravais lattice:

 (r + N
i

a
i

) =  (r) (93)

where the a
i

are three primitve vectors and the N
i

are all integers of the order
N1/3 where N = N1N2N3 is the total number of primitive cells in the crystal.
From Bloch’s theorem 91 follows then

 
nk (r + N

i

a
i

) = eiN
i

k·a
i 

nk (r) (94)

for i = 1, 2, 3. Write k = x1b1 +x2b2 +x3b3 with the b
i

being primitive vectors
of the reciprocal lattice, obeying Eq. 77. Hence

e2⇡iN
i

x

i

= 1. (95)

Consequently we must have
x

i

=

m
i

N
i

(96)

with m
i

being an integer leading to the general form of the allowed Bloch wave
vectors:

k =

m1

N1
b1 +

m2

N2
b2 +

m3

N3
b3. (97)

The volume �k of k-space per allowed value of k is thus

�k =

b1

N1
·
✓

b2

N2
⇥ b3

N3

◆
=

1

N
b1 · (b2 ⇥ b3) =

(2⇡)

3

V
(98)

where we used in the last step that 2⇡/v is the volume of a reciprocal lattice
primitive cell (v = V/N). This is precisely the result 24 that we found in the
free electron case.

We come to the proof of Bloch’s theorem. We do this by constructing ex-
plicite solutions and showing that these have the form 89. Any function obeying
the Born-van Karman boundary condition 93 can be expanded in the set of all
plane waves that satisfy that boundary condition and therefore have wave vec-
tors q of the form 97:

 (r) =

X

q

cqeiq·r. (99)

On the other hand, U (r) has the periodicity of the direct lattice and it can be
expanded in plane waves with the periodicity of the lattice:

U (r) =

X

K

UKeiK·r (100)
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where the K’s are vectors in the reciprocal lattice. The Fourier coefficients UK

are related to U (r) by

UK =

1

v

Z

cell
U (r) e�iK·rdr. (101)

(Note: both equations are plane wave explansions, 3D analogues to Fourier
series. Eq. 100 has the periodicity of the Bravais lattice whereas Eq. 99 has the
whole crystal as one “repeat unit.” As a result the q’s are much more densely
spaced in k-space than the K’s.)

We now insert the expansions 99 and 100 into Schrödinger equation 88. The
kinetic term is given by

� ~2

2m
r2 (r) =

X

q

~2

2m
q2cqeiq·r (102)

and the potential energy by

U (r) (r) =

 
X

q

cqeiq·r

! 
X

K

UKeiK·r

!
=

X

K,q

UKcqei(K+q)·r.

Now introducing q0
= K + q this can be rewritten as

U (r) (r) =

X

K,q0

UKcq0�Keiq0·r
=

X

K0
,q

UK0cq�K0eiq·r (103)

where in the second step we renamed K as K0 and q0 as q. The Schrödinger
equation 88 becomes

X

q

eiq·r

(✓
~2

2m
q2 � E

◆
cq +

X

K0

UK0cq�K0

)
= 0. (104)

The plane waves form an orthogonal set, so the term in the curly brackets
vanishes for each q:

✓
~2

2m
q2 � E

◆
cq +

X

K0

UK0cq�K0
= 0. (105)

Choose each q in the form q = k � K where K is a reciprocal lattice vector so
that k lies in the first Brillouin zone:


~2

2m
(k � K)

2 � E
�

ck�K +

X

K0

UK0ck�K�K0
= 0. (106)

Now change variables K0 ! K0 � K. One finally arrives at

~2

2m
(k � K)

2 � E
�

ck�K +

X

K0

UK0�Kck�K0
= 0. (107)
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This is essentially the Schrödinger equation in momentum space.
For fixed k in the first Brillouin zone the set of equations 107 for all recipro-

cal lattice vectors K couples only those coefficients ck, ck�K, ck�K0 , ck�K00 ,...
whose wave vector differs from k by a reciprocal vector. This leads to N indepen-
dent problems with solutions that are superpositions of plane waves containing
only the wave vector k and wave vectors differing from k by a reciprocal lattice
vector:

 k (r) =

X

K

ck�Kei(k�K)·r (108)

This can be rewritten as

 k (r) = eik·r
X

K

ck�Ke�iK·r (109)

This is of the Bloch form 89 with the periodic function u (r) given by

u (r) =

X

K

ck�Ke�iK·r. (110)

This finishes the proof of the Bloch theorem.
There are 2 quantum numbers that characterize the eigenstates 89 of the

Bloch electrons, k and n. ~k is called crystal momentum of the electron but is
not really its momentum as  

nk is not an eigenstate of the momentum operator
(~/i) r. Why does there also occur another quantum number, n? The best way
to understand this is to insert solutions in the Bloch form  (r) = u (r) eik·r into
Schrödinger equation 88. This leads to

Hkuk (r) =

 
~2

2m

✓
1

i

r + k

◆2

+ U (r)

!
uk (r) = Ekuk (r) (111)

with
uk (r) = uk (r + R) . (112)

Because of the periodic boundary conditions one can regard Eq. 111 as an Her-
mitian eigenvalue problem restricted to a single cell of the crystal. We expect
on general grounds an infinite family of solutions with discretely spaced eigen-
values, which we label with the band index n. k occurs only as a parameter
in the Hamiltonian Hk. We thus expect that each energy level varies continu-
ously with k leading to the description of the levels of an electron in a periodic
potential in terms of a family of continuous functions E

nk or E
n

(k), each with
the periodicity of the reciprocal lattice, called the band structure of the solid.
For each n, the set of energy levels specified by E

n

(k) is called an energy band.
Because each E

n

(k) is periodic in k and continuous, it has an upper and a lower
bound so that all the levels lie in the band of energies lying between these limits.

The ground state of N Bloch electrons can be similarily constructed as we
did for free electrons, see below Eq. 24. But now the quantum levels are labelled
by the quantum numbers n and k, E

n

(k) does not have the simple explicit free
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electron form and k must be confined to a single primitive cell of the reciprocal
lattice to avoid double counting. When the lowest levels are filled by a specific
number of electrons, two quite distinct types of configuration can result:

1. A certain number of bands is completely filled, the rest is empty. One can
show (not in this lecture) that completely filled bands do not contribute to
the thermal or electrical conductivity. The difference between the heighest
occupied level (the top of the heighest occupied band) and the lowest
unoccupied level (the bottom of the lowest empty band) is known as band
gap. If the band gap is much larger than k

B

T (T : room temperature)
one has an insulator, if it is comparable to k

B

T one has an intrinsic
semiconductor.

2. A number of bands is partially filled. In that case the energy of the
highest occupied level, the Fermi energy E

F

, lies within the range of one
or more bands leading to a surface in k-space separating occupied from
unoccupied levels. The set of all such surfaces is called the Fermi surface,
a generalization of the Fermi sphere of free electrons. The parts of the
Fermi surface arising from individual partly filled bands are known as
branches of the Fermi surface. A solid has metallic properties provided
that a Fermi surface exists.

4.2 Electrons in a weak periodic potential

Metals in group I, II, II and IV in the periodic table are often referred to as
“nearly free electron metals” since it turns out that the conduction electrons
can be described as moving in what amounts to an almost constant potential.
The starting point of their description is thus the Sommerfeld free electron gas
from Chapter 2, modified by the presence of a weak periodic potential. This
suggests to go from plane waves, Eq. 15, to the expansion of the exact solution
in plane waves, Eq. 108, where the coefficients ck�K and the energy of level E
are determined by the set of Eqs. 107.

In the free electron case all the UK’s are zero and Eq. 107 becomes
⇥
E0
k�K � E

⇤
ck�K = 0 (113)

with
E0
q =

~2

2m
q2. (114)

Eq. 113 requires for each K either ck�K = 0 or E = E0
k�K. The latter can

occur for only a single K, unless it happens that some of the E0
k�K are equal to

several different choices of K. Without such a degeneracy one simply has

E = E0
k�K,  k s ei(k�K)·r. (115)

If on the other hand there are m reciprocal lattice vectors K1,..., K
m

satisfying

E0
k�K1

= ... = E0
k�K

m

, (116)
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then when E is equal to that common value there are m degenerate plane wave
solutions. Since any linear combination of degenerate solutions is also a solution,
one has complete freedom in choosing the coefficients ck�K for K = K1, ...,Km

.

kKK1

O(U)

Figure 17: For the range of k outside the indicated band, the free electron levels
E0
k�K1

and E0
k�K differ by an amount larger than O(U).

Now suppose the UK are not zero but very small. What happens? We have
two cases, corresponding to the nondegenerate and the degenerate case for free
electrons. Now the distinction is, however, not exact equality of several levels
but only whether they are equal aside from terms of order U .

Case 1 : Fix k and consider a particular reciprocal lattice vector K1 such
that the free electron energy E0

k�K1
is far from the values E0

k�K for all other K
compared with U (see Figure 17):

��E0
k�K1

� E0
k�K

��� U (117)

for fixed k and all K 6= K1 (U refers here and in the following to a typical
Fourier component of the potential). We wish to investigate the effect of the
weak potential on that free electron level. Using the set of equations given by
107 and retaining only terms of order U2 one finds after a few steps (not shown
here)

E = E0
k�K1

+

X

K

|UK�K1 |2

E0
k�K1

� E0
k�K

+ O
�
U3
�
. (118)

This shows that weakly perturbed nondegenerate bands repel each other: A
level E0

k�K with E0
k�K < E0

k�K1
contributes a term in Eq. 117 that raises the

value of E whereas the opposite is true for a level E0
k�K with E0

k�K > E0
k�K1

.
Most importantly, the shift is very small, of order U2.

Case 2 : Suppose the value of k is such that there are (without loss of
generality) two (and only two) reciprocal lattice vectors K1 and K2 with E0

k�K1

and E0
k�K2

within order U of each other. The set of equations 107 reduces then
to �

E � E0
k�K1

�
ck�K1 = UK2�K1ck�K2 ,

�
E � E0

k�K2

�
ck�K2 = UK1�K2ck�K1 . (119)
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With the new variables q = k � K1 and K = K2 � K1 this can be rewritten as
�
E � E0

q

�
cq = UKcq�K,

�
E � E0

q�K

�
cq�K = U�Kcq = U⇤

Kcq. (120)

Now E0
q = E0

q�K for some reciprocal lattice vector K only when |q| = |q � K|.
This means that q must lie on the plane bisecting the line joining the origin of
k-space to the reciprocal lattice vector K. In other words, the point q lies in
the Bragg plane determined by K (see Figure 15 with k = q and k0

= q � K).
In short, a weak periodic potential has a major effect (i.e. an effect of order U)
on only those free electron levels whose wave vectors are close to ones at which
Bragg reflection occurs.

E

q0
0

2 |UK|

1

2

K

Figure 18: Plot of the two energy bands given by Eq. 121 for q parallel to K
(the lower band corresponds to the minus sign and the upper band to the plus
sign). The free electron values are denoted by the red dotted lines

Equations 120 have a solution when
����

E � E0
q �UK

�U⇤
K E � E0

q�K

���� = 0

leading to the quadratic equation
�
E � E0

q

� �
E � E0

q�K

�
= |UK|2. The two roots

E =

1

2

�
E0
q + E0

q�K

�
±

vuut
 

E0
q � E0

q�K

2

!2

+ |UK|2 (121)

give the dominant effect of the weak periodic potential on the energies of the two
free electron levels E0

q and E0
q�K when q is close to the Bragg plane determined

by K, see Figure 18. If q lies on the Bragg plane, E0
q = E0

q�K, Eq. 121 simplifies
to

E = E0
q ± |UK| . (122)
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Thus at all points on the Bragg plane one level is uniformly raised by |UK| and
the other is uniformly lowered by the same amount.

We close this lecture by showing how in one dimension the electron bands
can be constructed. Start with the electronic levels of a free electron which
is a parabola in k (Figure 19(a)). The parabola is not (much) affected by a
weak periodic potential except near Bragg “planes” which are found by drawing
other free electron parabolas, e.g. centered around K (Fig 19(b)). Where they
cross they need to be modified as discussed above (Figure 19(c)) which modifies
the original free electron parabola as shown in Figure 19(d). Doing this for all
Bragg planes we end up with Figure 19(e), the so-called extended zone scheme.
Shifting all the pieces back into the first Brillouin zone through reciprocal lattice
vectors we find the so-called reduced-zone scheme representation (Figure 19(f)).
A highly redundant representation, the repeated-zone scheme (Figure 19(g),
periodically extends Figure 19(f) and is the most general representation of the
electronic levels.
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Figure 19: How to construct the energy bands for a 1D solid: from the free
electron parabola (a) to the repeated-zone representation (g), see text for details.
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