
PHYSICAL REVIEW E 68, 066106 ~2003!
Where the linearized Poisson-Boltzmann cell model fails: The planar case as a prototype study

M. N. Tamashiro* and H. Schiessel
Max-Planck-Institut fu¨r Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany

~Received 9 June 2003; published 17 December 2003!

The linearized Poisson-Boltzmann~PB! approximation is investigated for the classical problem of two
infinite, uniformly charged planes in electrochemical equilibrium with an infinite monovalent salt reservoir. At
the nonlinear level, we obtain an explicit expression of the associated electrostatic contribution to the semi-
grand-canonical potential. The linearized osmotic-pressure difference between the interplane region and the
salt reservoir becomes negative in the low-temperature, large-separation, or high-surface charge limits, in
disagreement with the exact~at mean-field level! nonlinear PB solution. We show that these artifacts—
although thermodynamically consistent with quadratic expansions of the nonlinear functional—can be traced
back to the nonfulfillment of the underlying assumptions of the linearization. Explicit comparison between the
analytical expressions of the exact nonlinear solution and the corresponding linearized equations allows us to
show that the linearized results are asymptotically exact in the weak-coupling and counterionic ideal-gas limits,
but always fail otherwise, predicting negative osmotic-pressure differences. By taking appropriate limits of the
full nonlinear PB solution, we provide asymptotic expressions for the semi-grand-canonical potential and the
osmotic-pressure difference that involve only elementary functions, which cover the complementary region
where the linearized theory breaks down.

DOI: 10.1103/PhysRevE.68.066106 PACS number~s!: 05.70.2a
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I. INTRODUCTION

The mean-field Poisson-Boltzmann~PB! approximation
@1–5#—commonly used to describe aqueous suspension
mesoscopic charged objects: membranes, clay plate
polyelectrolytes, colloids, etc.—is known to yield incorre
results at the strong electrostatic coupling limit of low te
peratures, high surfaces charges, or in the presence of m
valent counterions. We can fairly say that in the special
ometry of two parallel, infinite charged walls separated b
simple electrolyte, the failures of the PB approach are w
known from comparison to extensive Monte Carlo simu
tions @6# of the primitive model@7# ~PM!, where the molecu-
lar nature of the solvent is neglected and the short-ran
ion-ion interactions are taken as being of the hard-sph
type. These numerical studies show the existence of an
traction of purely electrostatic nature that is in apparent c
tradiction with the naive expectation based on the notion
two liked-charged macroscopic objects should repel e
other. In fact, the exact solution of the nonlinear mean-fi
PB equation in planar geometry predicts only repuls
forces between like-charged objects@1–3#, showing that it
becomes inadequate to describe the attractions observe
the numerical simulations. Any theoretical explanation
these electrostatic-induced attractions in the planar geom
requires the introduction of effects beyond the mean-fi
level @8#, as discussed later in the concluding remarks.

Related to the general question of effective attractive
teractions between like-charged mesoscopic objects, the
still some controversy about their existence in deioniz
aqueous suspensions of like-charged spherical collo
which would be mediated by monovalent counterions—
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Ref. @9#, and references therein. Even without the inclus
of effects beyond the mean-field level, several approac
based on approximations that involve some kind of lineari
tion claim to theoretically explain this puzzling physical ph
nomenon@10#. These linearized results have been criticiz
based on the indications that the observed instabilities
artifacts due to the linearization, these being drastically s
pressed when nonlinearities are reintroduced in the theor
the use of renormalized charges@11#. Furthermore, the lin-
earization of the mean-field PB density functional f
Wigner-Seitz cells yields artifacts@12,13# in the strong-
coupling ~low-temperature or high-surface charge! and
infinite-dilution ~of polyions! limits for the Donnan equilib-
rium problem @14–18#, which describes a suspension
charged objects in electrochemical equilibrium with an in
nite salt reservoir. In these limits the linearized osmot
pressure difference between the suspension and the sal
ervoir becomes negative, in disagreement with the
nonlinear PB result that always displays positive osmo
pressure differences. We have shown, for the case of sp
cal polyions @9#, that the instabilities observed in Ref
@12,13# are not related to thermodynamic inconsistencies,
are merely due to the application of the linearization sche
beyond its range of validity. In fact, the linearized equatio
agree asymptotically with the PB results in the wea
coupling ~high-temperature or low-surface charge! limits.
However, because the nonlinear PB equation is not ana
cally solvable in spherical geometry—even in the simpl
salt-free case, when only neutralizing counterions are pre
—one must rely on numerical calculations to establish co
parisons between the nonlinear and the linearized equati

This motivated us to consider as a prototype case
classical problem of two uniformly charged infinite planes
electrochemical equilibrium with an infinite salt reservo
where the exact analytical solution of the nonlinear probl
is possible. We should emphasize that our main goal is
ther to solve the nonlinear problem, nor to explain the attr
tion in the planar geometry using the linearized theory,

,
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M. N. TAMASHIRO AND H. SCHIESSEL PHYSICAL REVIEW E68, 066106 ~2003!
rather to test the range of validity of the linearization. T
explicit analytical comparison between the exact~at the
mean-field level! full nonlinear and the approximated linea
ized equations allows us to study in detail the breakdown
the linearization scheme. Since the linearized PB theor
extensively used—not only in the context of the controv
sial gas/liquid-type phase separation in colloidal suspens
considered in Ref.@9#—its detailed and careful analysis
worthwhile. This is especially instructive, because it
known a priori that the mechanisms of attraction in plan
geometry cannot be described at the mean-field PB le
hence allowing us to expose the limitations and pitfalls of
linearization. Additionally, the study of this exactly solvab
case clarifies the question of the proper definition of the
earized osmotic pressure that was previously considere
Ref. @13#. We will show that a linearized osmotic-pressu
difference that might become negative—in contradict
with the nonlinear theory—is an unavoidable drawback
the linearized theory and just reflects the violation of t
underlying physical assumptions of the linearization, nam
that the spatial variations of the electrostatic potential sho
be sufficiently small.

Moreover, to our knowledge, the explicit calculation
the semi-grand-canonical potential for two uniform
charged infinite planes at the nonlinear mean-field PB le
has only been reported in connection to the polyelectroly
brush problem@19#. In that work, however, the thermody
namical potential also included electrostatic and elastic c
tributions arising from the polyelectrolyte brushes, a
therefore, these need to be subtracted out. The knowledg
the PB nonlinear thermodynamic potential allows us to
rive all thermodynamic properties of the two charged infin
planes problem at the mean-field level. We note that it
also be extended to curved surfaces by using the Derja
approximation@1,20,21#. It is then possible to determine th
normal forces~per unit area! between these surfaces whe
their separation distance is much smaller than their curva
radius. In this work we will present the exact nonlinear sem
grand-canonical functional from which we derive appro
mate expressions. These involve only elementary functi
and provide excellent approximations to the full nonline
PB results within the whole range of parameters. We beli
that these expressions are useful when treating problems
der conditions where the effects of microionic correlatio
are unimportant, and additionally have planar geometr
e.g., charged membranes. In fact, the asymptotic expans
of the full nonlinear PB osmotic-pressure difference, p
sented in Sec. IV, provide higher-order terms and extend
vious calculations by Pincuset al. @3,22#.

The remainder of the paper is organized as follows.
Sec. II the model is introduced and the nonlinear equati
are presented in a gauge-invariant form, suitable for a l
comparison with the linearized ones. In Sec. III the line
ization of the appropriate semi-grand-canonical functiona
performed. In Sec. IV we present explicit analytic compa
sons between the exact nonlinear and the linearized e
tions of state. In Sec. V we give some concluding remar
Several technical points are relegated to Appendixes A to
06610
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II. NONLINEAR EQUATIONS

The system to be considered is comprised of two infin
planar surfaces a distance 2L apart, each with surface charg
density2sq, whereq.0 is the elementary charge, in ele
trochemical equilibrium with an infinite monovalent salt re
ervoir of bulk salt densitynb . The microions~positive coun-
terions and salt ions! are free to move in the region2L,x
,L between the two charged surfaces, wherex measures the
distance from the midplane located atx50. In the PM it is
implicitly assumed that the solvent dielectric constante re-
mains the same outside the region containing the salt s
tion (uxu.L), so image-charge effects due to dielectric co
trast are absent. At the mean-field level of approximation
ions are treated as inhomogeneous ideal gases describe
their average local number densitiesn6(x). We do not dis-
tinguish between~positive! counterions and positive ions de
rived from the salt dissociation. The total charge numb
density ~counterions, salt ions and the negative surfa
charge on the planes! of the system

r~x!5n1~x!2n2~x!2sd~x1L !2sd~x2L !, ~1!

whered is the one-dimensional Dirac delta function, is r
lated to the reduced electrostatic potentialc(x)[bqC(x),
which satisfies the~exact! Poisson equationd2c(x)/dx25
24p l Br(x), where l B[bq2/e is the Bjerrum length and
b215kBT is the thermal energy. The mean-field~nonlinear!
semi-grand-canonical functional~for one charged plane! per
unit area is given by@9#

bΩ@n6~x!#

A
5

1

8p l B
E

0

L

dxFdc~x!

dx G2

1 (
i 56

E
0

L

dx ni~x!

3H lnFni~x!

nb
G21J , ~2!

where the~mean-field! implicit microion chemical potentials
bm65 ln(nbz6

3 ) assume ideal gases of uniform densitynb for
both types of ions in the infinite salt reservoir andz6 are the
thermal de Broglie wavelengths of cations~including the
positive counterions! and anions.

The nonlinear equilibrium density profiles are obtained
minimizing the PB semi-grand-canonical functional~2! un-
der the constraint of overall electroneutrality of the syste

lim
dL→01

E
0

L1dL

dxr~x!50, ~3!

i.e., @d/dn6(x)#@Ω/A2mel*dxr(x)#50, where the
Lagrange multipliermel ensures Eq.~3!. This yields the
Boltzmann-weighted ionic profiles

n6~x!5nb exp@6bmel7c~x!#. ~4!

The Lagrange multipliermel is found by imposing the
charge-neutrality condition~3!. By inserting mel into the
Boltzmann-weighted ionic profiles, Eqs.~4!, it is now pos-
sible to writen6(x) in a gauge-invariant form@23#—i.e., in
a form that does not depend on a particular choice of the z
of the electrostatic potential, but instead depend only on
difference^c&2c(x),
6-2
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WHERE THE LINEARIZED POISSON-BOLTZMANN CELL . . . PHYSICAL REVIEW E 68, 066106 ~2003!
n6~x!5
Anc

21~2nb!2a1a26nc

2a6
e6^c&7c(x). ~5!

Here nc5s/L is the average density of counterions in t
interplane regionuxu,L, a6[^e6^c&7c(x)& and the brackets
denote unweighted averages over the volume available to
microions, ^X(x)&[(1/L)*0

LdxX(x). In particular, in the
salt-free (nb→0) limit, these gauge-invariant forms lead—
a direct and transparent way—to the vanishing coion pro
n2(x)[0 and to the salt-free equilibrium counterion profi
n1(x)5nce

^c&2c(x)/a1 .
The most commonly used gauge@1,3# is the one in which

the charge-neutrality Lagrange multiplier is zero,mel[0,
which does not correspond to the gauge in which the e
trostatic potential at the infinite salt reservoir vanishes@24#.
In Appendix A we use the standard gaugemel[0 to treat the
nonlinear problem, where we also give an explicit express
for the nonlinear semi-grand-canonical potentialV
[Ω@n6(x)#equil. We should keep in mind, however, that th
fixed-gauge electrostatic potentialw(x)[c(x)2bmel will
no longer be gauge invariant: its value at a particu
point—let us say, at the midplanew0[w(x50) or at the
charged surfaceswL[w(x5L)—will be determined by im-
posing the overall charge neutrality~3! in the whole system.
They can no longer be chosen arbitrarily, in contrast to th
gauge-invariant counterpartsc0[c(x50) or cL[c(x
5L). On the other hand, in the gauge-invariant formulatio
either c0 or cL may be chosen arbitrarily—but not bot
simultaneously—because the differencecL2c05wL2w0
must eventually be preserved.

Finally we remark that the nonlinear osmotic-pressure
ference between the interplane region and the salt rese
P[bDP/(2nb)5@n1(0)1n2(0)22nb#/(2nb)—given al-
ternatively by Eq.~A16!—may also be written in a gauge
invariant form by using Eqs.~5!,

P5FAS 2

l l D
2

1a1a21
2

l l G e^c&2c0

2a1

1FAS 2

l l D
2

1a1a22
2

l l G e2^c&1c0

2a2
21, ~6!

where the two dimensionless distancesl[kbL and l
[kbL are defined in terms of two length scales: the Deb
screening length associated with the bulk densitynb of the
infinite salt reservoir

kb
21[

1

A8p l Bnb

~7!

and the Gouy-Chapman@25,26# length

L[
1

2p l Bs
, ~8!

which gives the characteristic~algebraic! decay length of the
counterion distribution~for a salt-free system! around an in-
finite charged plane with bare surface charges. Although the
06610
he

e

c-

n

r

ir

,

-
oir

e

gauge-invariant form~6! of the nonlinear osmotic-pressur
difference seems to be cumbersome when compared to
simpler version given by Eq.~A16!, it will be useful later, at
the end of Sec. III, when establishing a connection betw
its quadratic expansion about the average potential^c& and
its linearized counterpart~22!.

III. LINEARIZED EQUATIONS

To obtain the linearized semi-grand-canonical functio
ΩDH@n6(x)# we truncate the expansion of the PB nonline
semi-grand-canonical functionalΩ@n6(x)#, Eq. ~2!, to sec-
ond order in the differencesn6(x)2^n6(x)&, where
^n6(x)&[(1/L)*0

Ldx n6(x) are the~a priori unknown! av-
erage densities. After minimization of the function
ΩDH@n6(x)# with respect to the profilesn6(x) under the
overall electroneutrality constraint~3!, @d/dn6(x)#@ΩDH /A
2mel*dx r(x)#50, we obtain the self-consistent linearize
averaged densities@9#

c6
(1)[^n6

(1)~x!&5
Anc

21~2nb!26nc

2
~9!

and the linearized equilibrium density profiles

n6
(1)~x!5c6

(1)@16^c~x!&7c~x!#, ~10!

where the superscript inn6
(1)(x) andc6

(1) emphasizes the fac
that the self-consistent averaged densities~9! were obtained
within a linearized approximation. Although similar qua
dratic expansions about the state-independent densitiesc6

(1)

were already proposed for the planar case by Trizac
Hansen@27#, they focused their study on finite-size effec
and did not investigate the consequences of the lineariza
in detail. Deserno and von Gru¨nberg@13# considered the gen
erald-dimensional problem in a fixed-gauge formulation, i
terpreting these self-consistent linearized averaged dens
in terms of an optimal linearization pointc6

(1)5nbe7c̄opt.
The linearized expansion densities~9!, which correspond

to the zeroth order Donnan densities, represent the infin
temperature (l B50) limit of the gauge-invariant forms of the
equilibrium density profiles~5! and do not coincide with the
exact nonlinear averages

c6[^n6~x!&5
Anc

21~2nb!2a1a26nc

2

5
Anc

21~2nb!2e^d2(x)&1O@^d3~x!&#6nc

2
, ~11!

because of the nonvanishing quadratic and higher-o
~n>2! contributions of the electrostatic-potential deviation

dn~x![@^c&2c~x!#n. ~12!

In Appendix B we compare the linearized averagesc6
(1) ,

Eqs. ~9!, with their exact nonlinear counterpartsc6 , Eqs.
~11!. We may anticipate that, as soon as the quadratic
ment is small,̂ d2(x)&!1, the full nonlinear equations wil
6-3
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M. N. TAMASHIRO AND H. SCHIESSEL PHYSICAL REVIEW E68, 066106 ~2003!
be very well described by the linearized ones. Moreover,
should remark that ensemble invariance will require the
clusion of quadratic contributions into the self-consistent
eraged densities, leading to the definition ofc6

(2)—see Ap-
pendix D.

Inserting the linearized equilibrium density profiles~10!
into the exact Poisson equationd2c(x)/dx2524p l Br(x),
yields the Debye-Hu¨ckel-like ~DH-like! equation@28–31#

d2c~x!

dx2
5k2@c~x!2^c~x!&2h#1

2

L
@d~x1L !1d~x2L !#,

~13!

where we introduced the parameter

h[
c1

(1)2c2
(1)

c1
(1)1c2

(1)
5

nc

Anc
21~2nb!2

. ~14!

The ~effective! Debye screening length in the interplane r
gion k21 satisfies

k254p l B@c1
(1)1c2

(1)#5
kb

2

A12h2
.kb

2 , ~15!

showing that screening in the interplane region is enhan
compared to the salt reservoir. The gauge-invariant linear
electrostatic potential satisfying the DH-like Eq.~13! subject
to the charge-neutrality constraint~3! reads

c~x!5^c~x!&1hS 12kL
coshkx

sinhkL D , ~16!

with the average electrostatic potential for an arbitrary el
trostatic surface potentialcL given by

^c~x!&5cL1hkLL~kL !, ~17!

in terms of the Langevin function

L~x![cothx2
1

x
. ~18!

The linearized semi-grand-canonical potentialVDH

[ΩDH@n6
(1)(x)#equil is obtained by inserting the equilibrium

density profiles~10! and the DH-like solution~16! into the
linearized semi-grand-canonical functionalΩDH@n6

(1)(x)#.
After performing the integrations, we may cast the dime
sionless excess linearized semi-grand-canonical potentia
unit area in the form

vDH~l,l ![
kb

2nb
FbVDH~L,L !

A
12nbLG

5
2

l Farctanhh2
1

h
1

1

2
hklL~kl !G1 l , ~19!
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written in terms of the dimensionless lengthk21[kbk21

and recalling thatl and l were defined after Eq.~6!. With
these definitions we obtain the linearized self-ene
vDH(l,l→`)52/l2 and

h5h~l,l !5
1

A11~l l /2!2
,

k25k2~l,l !5A11@2/~l l !#25
1

A12h2~l,l !
. ~20!

The dimensionless linearized osmotic-pressure differe
PDH[bDPDH/(2nb)52dvDH(l,l )/dl,

PDH5k2H 11h2S 12
3

4
h2D kl L~kl !1

1

2
h2S 12

1

2
h2D

3~kl !2@L 2~kl !21#J 21, ~21!

may be also obtained by performing a quadratic expansio
the gauge-invariant form of the nonlinear PB osmotic pr
sure~6!

PDH5k2F11hd1~0!1
1

2
d2~0!2

1

2
h2^d2~x!&G21,

~22!

where thenth order electrostatic-potential differences~12!
read

dn~x!5hnS kL
coshkx

sinhkL
21D n

. ~23!

In the next section we will investigate the properties of t
linearized osmotic-pressure difference defined by Eqs.~21!
or ~22! and compare it with its exact nonlinear counterpa
Eqs.~6! or ~A16!.

IV. COMPARISON OF THE EXACT NONLINEAR
AND THE LINEARIZED EQUATIONS OF STATE

As already pointed out in the literature@12,13#, the linear-
ized osmotic-pressure differencePDH defined by Eqs.~21! or
~22! yields artifacts in the low-temperature, large-separat
or high-surface charge limits. In contradiction to the exa
nonlinear result~A16!, which predicts that the osmotic
pressure difference is always positive,P.0, the linearized
versionPDH becomes negative in the above mentioned li
its. In an attempt to define the osmotic pressure in a line
ized framework, Deserno and von Gru¨nberg introduced an
additional ~alternative! definition P1, cf. Eq. ~43! of Ref.
@13#, that does not have the shortcoming of displaying a
instabilities in the presence of symmetric electrolytes. On
other hand, we will show later that the osmotic-pressure d
nition that is partially unstable, cf. Eq.~44! of Ref. @13#,
coincides with the linearized version~21! obtained in the
previous sectionP2[PDH . The general formulas of Ref
@13# need to be taken, for the planar case (d51), in the
6-4
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WHERE THE LINEARIZED POISSON-BOLTZMANN CELL . . . PHYSICAL REVIEW E 68, 066106 ~2003!
formal limit of vanishing volume fractionf[a/L→0—with
a.0 being some arbitrary length—which yields

P1[
bP1

2nb
215k2F11hd1~0!1

1

2
d2~0!G21

5
1

2k2
~k221!21

1

2 S hk2l

sinhkl D
2

>0, ~24!

P2[
bP2

2nb
215P12

1

2
k2h2^d2~x!&

5P12
1

4
k2h4S k2l 2

sinh2 kl
1kl cothkl22D . ~25!

The simpler formal forms of the two osmotic-pressure de
nitions are in accordance with Eqs.~23! and ~26! of Ref.
@13#. From them, one can see that the second osmo
pressure definition coincides with the linearized osmo
pressure difference~21! obtained in the last section,P2
[PDH , while the first oneP1 differs from Eq.~22! by an
omitted quadratic term. Analogously to the spherical c
@9#, the term that distinguishes the two distinct osmot
pressure definitions originates from the volume depende

of the optimal linearization point c̄opt52arctanhh
52arccoshk2, as pointed out by Deserno and von Gru¨nberg
@13#.

From its asymptotic expansions to be given next and
formal expression~24!, we see thatP1, although fully ther-
modynamically stable for symmetric electrolytes—related
its positiveness, see Eq.~24!—is inconsistentwith a qua-
dratic expansion of the gauge-invariant nonlinear PB pr
sure ~6!, because of the omitted last quadratic term of E
~22!. Furthermore, we will show next that the cons
tent—although partially unstable—linearized osmot
pressure differenceP2 presents indeed a better agreem
with the nonlinear osmotic pressureP in the weak-coupling
and counterionic ideal-gas limits, when the underlying
sumptions of the linearization are fulfilled. Therefore,
though the alternativeP1 displays the fortuitous advantag
of preserving~for symmetric electrolytes! the positiveness o
the exact nonlinear pressureP, its derivation has no justifi-
cation in our approach based on the minimization of
linearized semi-grand-canonical functionalΩDH@n6(x)#.
Moreover, the partially unstableP2 corresponds indeed t
the negative total derivative of the linearized semi-gra
canonical potentialvDH with respect to the planes separati
l, which we thus believe to be the consistent and corr
definition of the osmotic pressure.

Let us now perform an explicit comparison betwe
asymptotic expressions of the nonlinear osmotic pressureP,
and of the two corresponding linearized versionsP1 andP2
for the distinct regimes listed below. We should remark t
the asymptotic expressions ofP provide higher-order terms
and extend previous calculations by Pincuset al. @3,22#, see
Ref. @32#.

Weak-coupling or zeroth order Donnan (l B→0) limit: l
→0, l→`, but finite productl l
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P5k2F12
h2

6
k2l 22

h2

90
~h223!k4l 41

h2

945
~3h225!k6l 6

2
h2

113400
~7h6118h4151h2284!k8l 81O~k10l 10!G

21, ~26!

P15k2F12
h2

6
k2l 21

h2

30
k4l 42

h2

189
k6l 61

h2

1350
k8l 8

1O~k10l 10!G21, ~27!

P25k2F12
h2

6
k2l 22

h2

90
~h223!k4l 41

h2

945
~2h225!k6l 6

2
h2

9450
~3h227!k8l 81O~k10l 10!G21. ~28!

Counterionic ideal-gas limit:l→0 and finitel

P5
2

l l H 12
l

3l
1S 4

45
1

l4

8 D S l

l D 2

2
16

945S l

l D 3

1O@~ l /l!4#J 21, ~29!

P15
2

l l H 12
l

3l
1S 2

15
1

l4

8 D S l

l D 2

2
8

189S l

l D 3

1O@~ l /l!4#J 21, ~30!

P25
2

l l H 12
l

3l
1S 4

45
1

l4

8 D S l

l D 2

2
8

315S l

l D 3

1O@~ l /l!4#J 21. ~31!

Gouy-Chapman or high-surface charge limit:l→0 andl/ l
→0

P5
1

2 S p

l D 2H 12
2l

l
1O@~l/ l !3#J 211O~ l 2!, ~32!

P15
2

l2 sinh2 A2l /l
1

1

l l
2

l 2A2l /l cothA2l /l

4 sinh2A2l /l
21

1O~Al/ l !, ~33!

P25
1

l2 sinh2A2l /l
2

cothA2l /l

l2A2l /l
1

2

l l
1O~Al /l!.

~34!

Large-separation limit:l→` and finitel
6-5
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P5
32e22l

~l1A11l2!2 H 128F l 211
l~12l2!

A11l2 G
3

e22l

~l1A11l2!2
1O~ l 2e24l !J , ~35!

P15
1

sinh2 l
F 2

l2
2

4 cothl

l4l
2

2~123 coth2 l !

l6l 2

1
2~819l2212 coth2 l !cothl

3l8l 3 G
1

2@11O~e22l !#

l4l 4
1O~ l 25!, ~36!

P25
1

sinh2 l
F 2

l2
2

4 cothl

l4l
2

2~112l223 coth2 l !

l6l 2 G
2

4@11O~e22l !#

l4l 3
1O~ l 24!. ~37!

Looking at Eqs.~34! and ~37! one may see why the lin
earized osmotic-pressure differenceP2 becomes negative a
the Gouy-Chapman and large-separation limits. In the Go
Chapman limit the leading term is given byP2
5O(l23/2l 21/2), which is negative and overcomes the exp
nentially decayingO(l22e22A2l /l) contribution. The leading
term of the large-separation limit is given byP2
5O(l24l 23), which is again negative and overcomes t
exponentially decayingO(l22e22l) contribution. In the full
nonlinear solution, however, all power-law dependencesl
cancel in a nontrivial way, and eventually only an expone
tially ~positive! decaying behavior P5O@e22l /(l
1A11l2)2 # is predicted. Note that both linearized versio
P1 andP2 show asymptotic behaviors that disagree stron
from the nonlinear osmotic-pressure differenceP. This
clearly indicates that both linearized osmotic-pressure d
nitions are meaningless in these limits and so is the posit
ness ofP1 in the presence of symmetric electrolytes.

We see that in the weak-coupling limit the self-consist
linearized osmotic pressureP2 and its nonlinear counterpa
P agree up to theO( l 4) terms, confirming the validity of the
linearization when its underlying assumptions are fulfille
The same occurs for the counterionic ideal-gas limit up
theO( l ) terms. In both cases the fully stableP1 has a worse
agreement, one order lower than the partially unstableP2.
However, in the large-separation limit, the two linearized a
the nonlinear expressions disagree even qualitatively: the
earized asymptotics are power laws onl , P1} l 24 and P2
}2 l 23, whereas the nonlinear is exponential~and positive!
P}e22l . On the other hand, although in the Gouy-Chapm
limit all asymptotics are algebraic onl, in the linearized case
the power laws areP1} l 21 and P2}2 l 21/2, both in dis-
agreement with the nonlinear asymptoticsP} l 22. The fail-
ure of the linearization scheme should not be at all surp
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ing, because it is supposed to be valid in the weak-coup
( l B→0) and counterionic ideal-gas limits, but not in the o
posite, large-separation (l→`) or high-surface charge
Gouy-Chapman~l→0! limits. Therefore, any results ob
tained in a linearized framework outside the weak-coupl
and the counterionic ideal-gas limits should be taken w
caution.

In order to show the accuracy of the self-consistent l
earized osmotic-pressure differencePDH , Eq. ~21!, and the
region where the linearization scheme breaks down, we p
ted in Figs. 1 and 2 the locii of constant errors between
exact nonlinear PB osmotic-pressure difference and the
responding linearized version, measured by the logarith
deviations

dPDH[u ln PDH~l,l !2 ln P~l,l !u. ~38!

We have chosen a logarithmic measure for the deviati
becauseP varies in a range of several orders of magnitud
For small deviations, this definition leads to the relative
rors

dPDH'UPDH~l,l !2P~l,l !

P~l,l ! U. ~39!

Analogously, we may define the logarithmic deviation fro
PB of the linearized semi-grand-canonical potential

dvDH[u ln@vDH~l,l !2v~l,`!#2 ln@v~l,l !2v~l,`!#u,
~40!

which is always smaller thandPDH ~not shown!. Therefore
the linearized semi-grand-canonical potential~19! and the
linearized osmotic-pressure difference~21! describe well the
corresponding nonlinear equations in the limitl/ l @1 andl
!1. Because the nonlinear theory always predicts repuls
the attractive osmotic-pressure region—shown in gray
Figs. 1 and 2—is clearly an artifact of the linearizatio
When plotted on theL/L3(kbL)21 plane, thePDH50 line
reaches at kbL→0 the asymptotic value j05L/L
50.123863965•••, which is given by the solution of the
transcendental equation

2j01Aj0

2
LSA 2

j0
D 1L 2SA 2

j0
D 51. ~41!

To obtain the full nonlinear PB osmotic-pressure diffe
enceP, one needs to numerically solve the transcende
equation ~A8! involving elliptic functions or elliptic inte-
grals. Although the asymptotic expansions of the nonlin
P represented by Eqs.~26!, ~29!, ~32!, and ~35! allow an
explicit analytical comparison in the distinct regimes wi
their linearized versions, they are not very useful for nume
cal evaluation. In Appendix C we derive extended expa
sions of the nonlinear PB semi-grand-canonical potentialv,
Eq. ~A14!, and of the PB osmotic-pressure differenceP, Eq.
~A16!, that involve only elementary functions and are su
able for numerical implementation. These extend the num
cal accuracy of the above mentioned asymptotic expans
of the full nonlinearP and are complementary to the linea
6-6
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WHERE THE LINEARIZED POISSON-BOLTZMANN CELL . . . PHYSICAL REVIEW E 68, 066106 ~2003!
ized equations,vDH , Eq.~19!, andPDH , Eq.~21!, providing
an excellent approximation in the regions where the line
ization scheme breaks down. In Figs. 1 and 2 we also pre
their corresponding logarithmic deviations from the exact
result, which, similarly to Eq.~38!, are defined by

dPGC[u ln PGC~l,l !2 ln P~l,l !u, ~42!

dPLS[u ln PLS~l,l !2 ln P~l,l !u, ~43!

wherePGC andPLS , given explicitly in Appendix C, are the
osmotic-pressure differences in the extended Gouy-Chap
and extended large-separation limits, respectively.

FIG. 1. Logarithmic deviations from the PB of the differe
asymptotic osmotic-pressure differences. DH represents the De
Hückel-like, linearized-functional expansion about the wea
coupling limit, GC corresponds to the expansion about the salt-
Gouy-Chapman limit, and LS denotes the large-separation limit
pansion. The region complementary to LS is split into thr
branches. In the gray region the linearized osmotic-pressure di
encePDH becomes negative. The arrows indicate the direction
decreasing logarithmic deviationdP from the PB results: 1021 ~dot-
dashed lines!, 1022 ~dashed lines!, 1023 ~solid lines!. For compari-
son, we also display~dotted lines! the linearized results by includ
ing quadratic contributions in the expansion densities, as define

the linearized pressureP̂DH , Eq. ~D3!.

FIG. 2. Same as in Fig. 1, but plotted using different variabl
At kbL→0, thePDH50 line reaches the asymptotic value defin
by Eq. ~41!, j05L/L50.123863965••• . Compare with Fig. 1
from Ref. @22#.
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V. CONCLUDING REMARKS

The classical problem of two infinite uniformly charge
planes in electrochemical equilibrium with an infinite sa
reservoir is exactly solved at the mean-field nonlinear lev
as well as by a linearization scheme consistent with quadr
expansions of the nonlinear semi-grand-canonical functio
By using gauge-invariant forms of the electrostatic potent
we have shown that the linearized osmotic pressure co
sponds to a quadratic expansion of the corresponding non
ear version.

As already pointed out in the literature@13#, it is shown
that the self-consistent linearized osmotic pressure lead
artifacts in the large-separation and the Gouy-Chapm
~high-surface charge! limits, predicting there negative
osmotic-pressure differences. Although it is possible to
fine an alternative linearized osmotic pressure that is fu
stable~in the presence of symmetric electrolytes! based on
the partial derivative of the linearized semi-grand-canoni
potential with respect to the separation distance@13#, its sta-
bility is shown to be a fortuitous result. In fact explicit com
parison of the exact nonlinear osmotic pressure and the
linearized versions shows that the linearized self-consis
osmotic pressure, though partially unstable, presents a b
agreement with the PB results in the weak-coupling a
counterion ideal-gas limits, where the linearization can
applied. However, not surprisingly, in the region where t
linearization breaks down none of both proposed lineari
osmotic pressures give quantitatively correct results.

To avoid confusion we should stress at this point the
actness of the PB nonlinear solution at the mean-field le
and discuss its range of validity and limitations. It is know
from numerical simulations of the PM@7# in the planar ge-
ometry that sufficiently close and highly charged planes
the presence of neutralizing counterions attract each o
@33#, even though for realistic charge densities and mono
lent ions this is not observed at room temperature. In t
case the attraction is prevented by steric repulsions at
small separations at which it would be observed neglec
the finite ionic size. Because the mean-field PB approxim
tion always predicts repulsion, theoretical validation for th
attraction ~observed in fact at room temperature only f
multivalent ions! has to be given beyond the PB level, e.
by bulk counterion correlations@34,35#, integral-equations
theories @36,37#, charge-correlation-induced attraction
@38,39#, charge-fluctuation-induced attractions@40–42#,
electrolytic depletion-induced attractions@43#, discrete
solvent-mediated attractions@44#, field-theory methods@45#,
etc.—see also Refs.@46–55# for mechanisms of attraction
between like-charged rods. On the other hand, in the stro
coupling limit the linearization of the WS-cell mean-field P
equation, as discussed in this work, does predict attrac
without including any microionic correlations. Howeve
here the mechanism of attraction is related to mathema
artifacts of the linearization itself and does not correspond
a real physical effect. The fact that this prediction is in agr
ment with the theories beyond the mean-field level is pur
accidental and is intrinsically connected with the inadequ
~meaning incorrect application! of the PB mean-field ap-
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M. N. TAMASHIRO AND H. SCHIESSEL PHYSICAL REVIEW E68, 066106 ~2003!
proach at the same limit. In other words, a qualitatively c
rect result~in this example, attraction! may be deceptively
anticipated in the strong-coupling limit because of the sim
taneous application of two inadequate approximatio
namely, the mean-field PB equation and its subsequent
earization.

The application of the linearization scheme to the exac
solvable planar case sheds light on its limits of applicabil
Because the mechanisms of attraction in the planar geom
are already well known, this represents the perfect fram
work where the linearized theories should be tested. Tha
priori knowledge about the mechanisms of attraction may
used to confirm or invalidate predictions of the lineariz
approaches. These were mainly applied for deionized aq
ous suspensions of charged colloids to theoretically exp
the very puzzling—and still controversial—physical ph
nomenon of gas/liquid-type phase separation mediated
monovalent counterions, see Ref.@9#. In this sense, it would
be very instructive if these linearized theories@10# would
also be applied to the well-studied planar case. It will not
very surprising if eventually they will yield attraction unde
the same conditions predicted by the linearization of the
equation. However, as discussed above, this spurious at
tion will have few in common with the real physical mech
nism that requires~in the planar case! finite-size effects and
microionic correlations. Although important for a corre
physical description of the attraction in the planar geome
the role of the microionic correlations@8# are beyond the
scope of the current work.
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APPENDIX A: EXACT NONLINEAR SOLUTION

In this Appendix we review the exact nonlinear PB so
tion in the traditional gaugemel50 and give the explicit
expression of the nonlinear semi-grand-canonical poten
V. In the standard gaugemel50 @56# the nonlinear problem
reduces into solving the usual PB equation for two char
infinite planes@1,3#

d2w~x!

dx2
5kb

2 sinhw~x!1
2

L
@d~x1L !1d~x2L !#,

n6~x!5nbe7w(x), ~A1!

with the appropriate boundary conditions

w8~x50!50 and w8~x57L !56
2

L
, ~A2!

the prime~8! denoting differentiation with respect to the a
gument. The Debye screening lengthkb

21 associated with the
bulk densitynb of the infinite salt reservoir and the Gouy
Chapman lengthL were defined in Sec. II by Eqs.~7! and
~8!, respectively.
06610
-

l-
s,
n-

y
.
try
e-

e

e-
in

by

e

B
ac-

y,

-

al

d

Using the mathematical identity d2w(x)/dx2

5 1
2 d(w8)2/dw, it is possible to integrate the nonlinear P

Eq. ~A1! exactly,

@w8~x!#25kb
2@2 coshw~x!22 coshw0#, ~A3!

kbuxu5E
w(x)

w0 dw

A2 coshw22 coshw0

5

FS arccosFsinh
w0

2 Y sinh
w~x!

2 G U1Ycosh2
w0

2 D
cosh

w0

2

,

~A4!

whose solution is written in terms of the midplane elect
static potentialw0,0 and F(wum)5*0

wdu/A12m sin2 u is
the incomplete elliptic integral of the first kind@57–60#. Ap-
plying the boundary conditions~A2! yields

2

l
5A2 coshwL22 coshw0, ~A5!

l 5E
wL

w0 dw

A2 coshw22 coshw0

5

FS arccosFsinh
w0

2 Y sinh
wL

2 G U1Ycosh2
w0

2 D
cosh

w0

2

,

~A6!

where we defined the two dimensionless distancesl[kbL
and l[kbL, andwL,w0,0 is the surface electrostatic po
tential at the charged planes. Introducing the variable

t[sinh2
w0

2
, ~A7!

the two boundary conditions can be combined into the eig
value equation

lA11t5FFarctanS 1

lAt
D U 1

11tG
or lAt5csS lA11tU 1

11t D , ~A8!

where cs(uum)5cn(uum)/sn(uum) is the ratio of the cosine-
amplitude and sine-amplitude Jacobi elliptic functions@57–
60#. The explicit exact solution of the nonlinear PB proble
can then be written as

w~x!522 arcsinhFAtY cnS kbuxuA11tU 1

11t D G , uxu<L.

~A9!
6-8
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WHERE THE LINEARIZED POISSON-BOLTZMANN CELL . . . PHYSICAL REVIEW E 68, 066106 ~2003!
It should be remarked that the exact solution to the nonlin
PB problem may be cast in several equivalent forms. Verw
and Overbeek@61#, also quoted by Hunter@62#, gave an al-
ternative form for the implicit solution~A4!,

kbuxu5 l 12e2w0/2@F~arcsine2(wL2w0)/2ue22w0!

2F~arcsine2[w(x)2w0]/2ue22w0!#

52e2w0/2@K~e22w0!2F~arcsine2[w(x)2w0]/2ue22w0!#,

~A10!

whereK(m)5F(p/2u m) is the complete elliptic integral o
the first kind@57–60#, while Behrens and Borkovec’s versio
@63# to the explicit solution~A9! reads

w~x!5w012 ln cd~e2w0/2kbuxu/2ue2w0!, ~A11!

where cd(uum) is the cd Jacobi elliptic function@57–60#.
However, none of these previous works presented the
plicit expression for the nonlinear PB semi-grand-canon
potential V[Ω@n6(x)#equil, which can be extracted from
Ref. @19# by neglecting the electrostatic and elastic contrib
tions arising from the polyelectrolyte brushes.

The dimensionless excess@64# semi-grand-canonical po
tential per unit area

v~l,l ![
kb

2nb
FbV~L,L !

A
12nbLG , ~A12!

may be evaluated inserting the exact nonlinear solution~A9!
into the semi-grand-canonical functional~2! and performing
the integrations. Using additionally the relations

coshwL5112t1
2

l2
, coshw`511

2

l2
, ~A13!

wherew`,0 is the reduced electrostatic surface potentia
the charged plane at infinite separation, and the fact thawL
,0 andw`,0, the excess semi-grand-canonical potentiav
may be cast, after some tedious algebra, in the form@65,66#

v~l,l !5
2

l
arccoshS 112t1

2

l2D 2
4

l
A11l2~11t !

11l2t

14A11t EFarctanS 1

lAt
D U 1

11t G22t l , ~A14!

v~l,`!5
2

l
arccoshS 11

2

l2D 14S 12
1

l
A11l2 D ,

~A15!

whereE(wum)5*0
wduA12m sin2 u is the incomplete elliptic

integral of the second kind@57–60# and v~l,`! represents
the nonlinear excess self-energy of the system at infi
separation.

The osmotic-pressure differenceDP between the inter-
plane region and the infinite salt reservoir can be written
terms of the midplane reduced electrostatic poten
w0—which ~in general! does not coincide with the arbitrar
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midplane electrostatic potentialc0 in the gauge-invariant
formulation, introduced in Eq.~6!,

P[
bDP

2nb
52

1

2nb

d

dL FbV~L,L !

A
12nbLG

m6

52
dv~l,l !

dl
52 sinh2

w0

2
52t. ~A16!

Equation~A16! is a mean-field version@67# of the boundary-
density theorem, which states that the osmotic pressur
simply given by the sum of the microionic densities at t
midplane~WS cell boundary!. This simple relation does no
hold beyond the mean-field level because of finite ionic-s
effects and the presence of microionic correlations betw
particles located in the different semispaces separated by
midplane—even though it still does forone charged plane
with the electrolyte confined by aneutralmidplane@68#. We
restrict ourselves, however, to the nonlinear mean-field re
~A16!, which clearly predicts that the osmotic-pressure d
ferenceP is always positive.The osmotic-pressure differ
ence~A16!, written in the standard gaugemel50, is equiva-
lent to the gauge-invariant form presented in the main te
Eq. ~6!. Although Eq.~A16! looks much simpler than Eq
~6!, it is not suitable for a direct comparison with its linea
ized counterpart~22!.

APPENDIX B: EXACT NONLINEAR
AVERAGED DENSITIES

In this Appendix we will compare the uniform expansio
densities about which the linearization is performed—
state-independent zeroth order Donnan densitiesc6

(1) , Eqs.
~9!—with the exact nonlinear PB averagesc6 , Eqs.~11!.

By using the definite integrals

E
wL

w0 dw sinhw

A2 coshw22 coshw0

52A2 coshwL22coshw0,

~B1!

E
wL

w0 dw coshw

A2 coshw22 coshw0

5
coshw0

cosh
w0

2

FS arccosFsinh
w0

2 Y sinh
wL

2 GU1/cosh2
w0

2 D

22 cosh
w0

2

3ES arccosFsinh
w0

2 Y sinh
wL

2 G U1/cosh2
w0

2 D
2coth

wL

2
A2coshwL22coshw0, ~B2!
6-9
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it is possible to obtain the exact nonlinear PB averaged d
sities

c6

nb
[^e7w(x)&5AS 2

l l D
2

1^ew(x)&^e2w(x)&6
2

l l

5112t6
2

l l
2

2

l
A11t EFarctanS 1

lAt
D U 1

11tG
1

2

l l
A11l2~11t !

11l2t
. ~B3!

In Fig. 3 we compare them with the uniform densities ab
which the linearization is performed, the state-independ
zeroth order Donnan densities~9!

c6
(1)

nb
5AS 2

l l D
2

116
2

l l
, ~B4!

by looking at their logarithmic deviations from the corr
sponding exact PB averages

dc6[ ln c62 ln c6
(1) . ~B5!

FIG. 3. Deviations from the PB averaged densities of the st
independent zeroth order Donnan densities, which were use
perform the quadratic expansions of the nonlinear functional.
arrows indicate the direction of increasing logarithmic deviatio
dc6 from the PB results: 1023 ~solid lines!, 1022 ~dashed lines!,
and 1021 ~dot-dashed lines!. To allow a comparison with the regio
where the linearized theory breaks down, we also plotted the lo
~dark gray thick line! where the logarithmic deviation from PB o
the linearized osmotic-pressure difference isdPDH51023. In the
light gray region the linearized osmotic-pressure difference
comes negative,PDH,0. Although there is a close connection b
tween this region and the increase of the deviationsdc6 for high-
surface charges~l!1!, for low-surface charges~l@1! and large
separations (l @1), the linearized theory still predicts a negativ
linearized osmotic-pressure difference~upper-right region!, while
the full nonlinear one vanishes exponentially from positive valu
06610
n-
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APPENDIX C: EXTENDED EXPANSIONS
OF THE NONLINEAR SOLUTION

In this Appendix we present extended expansions of
nonlinear semi-grand-canonical potential and of the non
ear osmotic-pressure difference that are valid in the reg
where the linearization breaks down. We have made ex
sive use of Refs.@57–60# throughout this Appendix.

1. Extended Gouy-Chapman limit

Both the counterionic ideal-gas~finite l! as well as the
Gouy-Chapman ~l→0! asymptotics of the nonlinea
osmotic-pressure difference, Eqs.~29! and~32!, respectively,
were obtained in the small-separation (l→0) limit. In fact,
for any ratioj5l/ l the summation over thel/ l series for
the leading terms up toO( l 2) may be performed exactly
yielding

t5S y

l D
2

2
1

2
1

3~11j1j2y2!~11j2y2!12j3y2

32y2~11j1j2y2!~11j2y2!
l 2

1O~ l 4!, ~C1!

wherey5y(j) is the solution of the transcendental equati

jy tany51. ~C2!

This general expression yields the leading termO( l 22) of
the counterionic ideal-gas~finite l, wheny→Al /l→0), Eq.
~29!, as well as the Gouy-Chapman~high-surface charge
whenl→0, y→p/2), Eq.~32!, asymptotics as special case
The excess semi-grand-canonical potentialv may be ob-
tained by integration of the osmotic-pressure differencet,
leading to

v~l,l !5
2y2

l
2

4

l F11 lnS l

2
sinyD G1 l

2
1

2
cotyS sin2 y1

l

l D S l

2yD 3

1O~ l 5!. ~C3!

While the third and fourth terms are the leading correctio
due to the presence of salt, the two first terms can be rel
to half of theexact nonlinearHelmholtz free energy of two
charged infinite planes in the presence of neutralizing co
terions only~salt-free Gouy-Chapman case!,

bF

A
5

1

4p l B
H 2y2

L
2

4

L F11 ln~L siny!1
1

2
lnS 2p l B

z1
3 D G J ,

~C4!

where y is the solution of the transcendental equati
y tany5L/L.

We define the extended Gouy-Chapman limit by

e-
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e
s
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truncating the above expansions, neglecting thus hig
order terms,

vGC~l,l ![
2y2

l
2

4

l F11 lnS l

2
sinyD G

1 l 2
1

2
cotyS sin2 y1

l

l D S l

2yD 3

, ~C5!

PGC~l,l ![2S y

l D
2

21

1
3~11j1j2y2!~11j2y2!12j3y2

16y2~11j1j2y2!~11j2y2!
l 2,

~C6!

wherey5y(j) is the solution of the transcendental equati
~C2!.
n
-

in
e

al
c

06610
r- 2. Extended large-separation limit

The large-separation osmotic-pressure asymptotics,
~35!, displays oscillations in the crossover (l'1) region,
even by taking higher-order terms into account. Because
want to match the linearized DH-like, the extended Gou
Chapman and the large-separation asymptotic expressio
the crossover region, we need to find an extended expan
that does not display this shortcoming. In fact the press
oscillations are avoided if one uses instead the implicit fo
l 5 l (l,m), which is obtained by expanding the eigenval
equation

l ~l,m!5Am K~m!2Am F@arctan~l/Am!um#, ~C7!

in powers of (12m)[t/(11t). Accurate results in the
crossover region, which will cover almost the whole (l 3l)
parameter space with logarithmic pressure deviations fr
the exact PB within 0.1%, are obtained by truncating
expansions of the elliptic integrals@69# up to fourth-order
aboutm51,
l ~l,m!

Am
5 ln 42

1

2
ln~12m!1

1

4
~12m!F ln 4212

1

2
ln~12m!G1

3

128
~12m!2@6ln 42723 ln~12m!#

1
5

1536
~12m!3@30 ln 4237215 ln~12m!#1

35

196608
~12m!4@420 ln 425332210 ln~12m!#

2
l~12m!

2~11l2!7/2F ~11l2!31
1

4
~12m!~11l2!2~322l4!1

1

24
~12m!2~11l2!~1515l2210l416l619l8!

1
1

192
~12m!3~105170l2270l4128l6166l8272l10260l12!G2 ln~l1A11l2!2

12m

4
@ ln~l1A11l2!

2lA11l2#2
3~12m!2

64
@3 ln~l1A11l2!2lA11l2~322l2!#2

5~12m!3

768
@15 ln~l1A11l2!

2lA11l2~15210l218l4!#2
35~12m!4

49152
@105 ln~l1A11l2!2lA11l2~105270l2156l4248l6!#.

~C8!
The extended large-separation osmotic-pressure differe
PLS[2(12m)/m is defined implicitly by the above rela
tion.

The associated semi-grand-canonical potential is obta
by truncating the expansion of the asymptotic larg
separation (l→`) excess semi-grand-canonical potenti
evaluated by integration of the osmotic-pressure differen
2t52dv/dl,
ce

ed
-
,
e,

vLS~l,l ![
2

l
arccoshS 11

2

l2D 14S 12
1

l
A11l2D

2
2

m
~12m!l ~l,m!22E

1

m dm

m2
l ~l,m!.

~C9!
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This final expression can be straightforwardly casted in
explicit form by evaluating integrals of type*1

mdm(1
2m)n/m3/2,*1

mdm ln(12m)(12m)n/m3/2, for n50, . . . ,4.

APPENDIX D: ENSEMBLE-INVARIANT
SELF-CONSISTENT LINEARIZED EQUATIONS

In this Appendix we show that the linearized equatio
that preserve the ensemble invariance do not lead to
improvements in the agreement between the linearized
nonlinear osmotic pressures in comparison to the linear
versions obtained in Sec. III.

As discussed in detail in Appendix G of Ref.@9#, the
linearized semi-grand-canonical equations of state may
renderedensemble invariantif—instead of using the state
independent zeroth order Donnan densitiesc6

(1) , Eqs.
~9!—one uses the quadratic truncation of the nonlinear a
agesc65c6

(2)1O@^d3(x)&#,

c6
(2)[

Anc
21~2nb!2e^d2(x)&6nc

2
, ~D1!

as expansion densities to obtain the linearized semi-gra
canonical functional. With the inclusion of the quadra
state-dependent contribution̂d2(x)& to the average densi
ties, we obtain the ensemble-invariant self-consistent lin
ized semi-grand-canonical potential and linearized osmo
pressure difference

v̂DH~l,l ![
kb

2nb
FbV̂DH~L,L !

A
12nbLG

5
2

l Farctanhĥ2
1

ĥ
1

1

2
ĥ k̂lL~ k̂l !

1
1

2ĥ
^d2~x!&G1 l

5
2

l H arctanhĥ2
1

ĥ
1

5

4
ĥ k̂lL~ k̂l !

1
1

4
ĥ~ k̂l !2@L 2~ k̂l !21#J 1 l , ~D2!

P̂DH~l,l ![2
dv̂DH~l,l !

dl

5 k̂2F11ĥd1~0!1
1

2
d2~0!2

1

2
^d2~x!&G21

5 k̂2H 11
1

4
ĥ2k̂lL~ k̂l !

1
1

4
~ ĥ k̂l !2@L 2~ k̂l !21#J 21, ~D3!

where the dimensionless parameters
06610
n

s
ny
nd
d

e

r-

d-

r-
c-

ĥ5
1

A11~l l /2!2e^d2(x)&
,

k̂25Ae^d2(x)&1@2/~l l !#25
e^d2(x)&/2

A12ĥ2
, ~D4!

are given implicitly in terms of the quadratic moment of th
electrostatic potential

^d2~x!&5
1

2
ĥ2k̂l $3L~ k̂l !1 k̂l @L 2~ k̂l !21#%. ~D5!

To compute the ensemble-invariant linearized osmo

pressure differenceP̂DH , Eq. ~D3!, one needs to take into
account the total derivatives of the parametric forms, E
~D4!,

d

dl
5

]

] l
1

dĥ

dl

]

]ĥ
1

dk̂

dl

]

] k̂

5
]

] l
2

ĥ

l
~12ĥ2!S 11

l

2

d^d2~x!&
dl D ]

]ĥ

2
k̂ĥ2

2l F12
l

2 S 12ĥ2

ĥ2 D d^d2~x!&
dl G ]

] k̂
. ~D6!

In accordance to the infinite-separation linearized self-ene
obtained in Sec. III, the ensemble-invariant version is a
given by v̂DH(l,l→`)52/l2.

In Figs. 1 and 2 we compare the two linearized osmo

pressure definitionsPDH and P̂DH , given by Eqs.~21! and
~D3!, with the exact nonlinear versionP, given by Eq.
~A16!. The dotted lines in Figs. 1 and 2suggesta better
agreement between the ensemble-invariant lineari

osmotic-pressure differenceP̂DH and the full nonlinear coun-
terpartP—in comparison to the linearized versionPDH , ob-
tained in Sec. III, which is not ensemble invariant. Howev
as shown below by explicit analytical comparison, these
merical evidences are in fact misleading.

Asymptotic analytical expansions of the ensemb

invariant linearized osmotic-pressure differenceP̂DH about
the weak coupling (l B→0)

P̂DH5PDH1k2F h4

16200
~h215!~12h2!k8l 81O~k10l 10!G

5k2F12
h2

6
k2l 22

h2

90
~h223!k4l 41

h2

945
~2h225!k6l 6

2
h2

113400
~7h6128h41h2284!k8l 81O~k10l 10!G

21, ~D7!

and the counterionic ideal-gas (L→0, finite L! limits
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P̂DH5PDH1
2

l l H l4

675S l

l D 6

1O@~ l /l!7#J , ~D8!

show explicitly that both linearized osmotic pressures,PDH

andP̂DH , agree with the full nonlinear PB versionP up to
thesame order—cf. Eqs.~26!–~31!. Therefore, the numerica
r-

-
tte

s.

ld,

. B

l-

06610
indications of a better agreement ofP̂DH , as suggested by
Figs. 1 and 2, are purely fortuitous. In fact, for ratiosL/L
.102 ~beyond the values shown in Fig. 2! one observes a
crossover between the deviations of the linearized versio

PDH and P̂DH , with respect to the full nonlinear osmotic
pressure differenceP. These results, however, can only b
verified a posteriori.
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