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Abstract:  In this work we focus on hierarchical relaxation in complex systems. 

Two means of describing relaxation are considered in detail: first we use a 

microscopic model based on continuous-time random walk (CTRW) ideas; this 

procedure is efficient in describing photoconductive behaviour and is used here 

also in the framework of polymer chain dynamics, by letting each bead move 

according to its own waiting-time distribution. Second, a more qualitative 

picture for relaxation emerges from constitutive expressions with fractional 

derivatives: we present two mechanical realisations for a basic fractional 

differential equation. 
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Introduction 

 

The dynamics of disordered systems is often slowed down in a characteristic 

manner. In many cases experimental data show algebraic decay forms 

€ 

Φ t( )∝ t τ( )−γ  (1) 

with  over many decades in time. This behaviour is observed for 

example for the charge carrier transport in amorphous photoconductors [1] and 

for the dynamics of polymeric systems [2]. In photoconductive materials the 

motion of charge carriers through a sample becomes slower and slower with 

the passage of time, so that no diffusion constant in the usual sense exists. In 

fact, the diffusion coefficient often displays an algebraic dependence on time 

 (2) 

which excludes the possibility of having a simple underlying process; Eq. (2) is 

a sign of a non-Markovian situation. Non-Markovian concepts have turned out 

to be very fruitful in the study of polymeric systems, as exemplified by DNA-

diffusion through gels. Here the chains distort during the motion: typical are 

the formation of temporary entanglements with the matrix, which lead, say, to 

the appearance of U-shaped configurations [3, 4, 5]. As a result, the motion of 

the center-of-mass (CM) of the chain is not Markovian on the time-scales 

needed to leave such configurations, so that the configuration of the whole 

chain (and not only the CM-position) matters. 

The theoretical understanding of the internal mechanisms leading to such 

characteristic behaviour is in many respects an outstanding problem. Here we 

focus on two theoretical approaches: continuous-time random walks (CTRW) 

and fractional calculus. In the first one, the disorder of the system is 

incorporated in the temporal behaviour of a waiting-time distribution , 

whereas the physical interpretation of the second one is not straightforward. 
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Recently, we have presented a model obeying generalised, fractional 

differential equations, which describe algebraic decay forms like Eq. (1) [6]. 

The characteristic feature of this model is a hierarchically constrained 

dynamics. Here we give another model, where the same relaxation behaviour 

results from parallel mechanisms. 

 

Continuous-time random walks 

 

Returning to Eq. (2), we note that it can be viewed as arising from a broad 

distribution of waiting times. Then the basic modelling problem is to account 

for such broad distributions. Technically, one introduces waiting-time 

distributions (WTD): 

 . (3) 

For  the zeroth, but not the first moment  of the distribution 

exists. In a simplified way one assumes the motion [1, 7] to take place on a 

regular lattice, say simple cubic. This leads to random walks in continuous time 

(CTRW). The major breakthrough here occurred with the realisation [1] that 

the basic CTRW framework (as formulated by Montroll and Weiss [7]), could 

readily incorporate complex -forms, such as the one given in Eq. (3). 

On a technical note, we remark that the distribution given by Eq. (3) is not 

well-behaved at the origin. One may circumvent this problem by either adding 

a constant to the denumerator, see the form put forward by Schieber, Biller and 

Petruccione (SBP) [8] 

€ 

ψ t( ) =
γ τ

1+ t τ( )γ+1  , (4) 

or by using an analytical expression, such as the so-called Weierstrass function 

[9] 
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€ 

ψ t( ) =
1− a
a

an bn exp −bnt( )
n=1

∞

∑  . 
(5) 

In Eq. (5) and for longer times  , with  being given by 

. 

The CTRW-model with a broad WTD offers an explanation for the appearance 

of anomalous diffusion, Eq. (2), and permits to compute the form of the 

photoconductive currents, such as measured through the time-of-flight (TOF) 

technique. In TOF-measurements charge carriers, generated by a short light 

pulse near the top surface of a thin film made of photoconductive material, drift 

through the sample under the influence of electric fields and give rise to 

transient photocurrents  in the external circuit. These photocurrents often 

show dispersive behaviour;  decreases monotonically, and one can in 

general distinguish two regimes: In the time regime before the so-called transit-

time  (the time which it takes the fastest carriers to pass through the sample) 

one has: 

 (6a) 

whereas for  one observes: 

 . (6b) 

From Eqs. (6a) and (6b) one usually infers that the temporal aspect dominates 

the dynamics. Following Ref. [1] we have analysed in Ref. [9] the transient 

photocurrent in polysiloxane with pendant carbazole groups. There we found 

that the experimental and the theoretical curves, calculated with , 

coincided over a range stretching over four decades in time. 

The derivation of the results presented so far depends on the fact that a CTRW 

is linked to a renewal process in time and to a renewal process in space: after 

each step the motion of the particle starts anew under the same WTD and with 
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the same step-size probability distribution. What happens, however, when a 

whole polymer chain of N monomers moves, so that each monomer (viewed as 

a bead) follows its own dynamics under the WTD? Two difficulties emerge: 

first, due to the geometrical constraints, the beads, considered as random-

walkers, are not free to move independently and thus the position of the CM is 

not given by a simple renewal process in space. Second, the fact that the CM 

moves according to the superposition ("pooling") of N renewal processes in 

time, does not necessarily lead to a renewal process for the stepping times of 

the CM: one remarkable exception are exponential WTDs corresponding to 

Poisson processes (and which in the CTRW-framework lead to simple 

diffusion) [10]. These two aspects of the problem are not independent and lead 

to a new situation in the theory of CTRW. 

The problem is in fact of great interest: SBP have advanced a model for the 

motion of polymer chains in concentrated solutions, which they have analysed 

numerically [8]: In the SBP model the chain is frozen in space until a free 

volume (gap), which moves in the medium surrounding the polymer, reaches a 

bead of the chain. Such encounters are modelled at a mesoscopic level by 

assuming that the time between successive flips of the i-th bead ( ) of 

the polymer chain follows WTDs of the form . For concentrated 

solutions or melts, the non-Poissonian occurrence of gaps next to the chain may 

be described using WTDs with long-time-tails, such as given by Eq. (3). 

The motion of the chain involves thus a whole series of WTDs and is, from the 

point of view of stochastics, a "pooling" process. Now, as stressed above, the 

problem which arises in pooling arbitrary WTDs is that this "pooling" process 

is not necessarily a renewal process, i.e. it does not necessarily leads to a WTD, 

, for the motion of the CM of the chain [10]. 

To proceed we use an approximate way to describe the mobility of the CM, and 

focus on the probability  that the CM has performed n steps up to time t. 

In the SBP model each bead flips independently of the others, and thus  
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can be written in terms of the individual , which give the probability that 

 bead i has carried out exactly m flips up to time t. 

One can now, using generating-functions techniques, find that: 

€ 

χ CM( ) z, t( ) = zn χn
CM( ) t( ) =

n=0

∞

∑ −1 1
u
1−ψ u( )
1− zψ u( )

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

N

 . (7) 

Here we have, for simplicity, assumed that all  are the same, 

. Furthermore 

€ 

−1 is the inverse Laplace transform and the 

Laplace transform is defined by 

€ 

f{ } = f u( ) = e−ut f t( )
0

∞

∫ dt  . (8) 

Decoupling the spatial and the temporal aspect, i.e. assuming that the mean 
squared displacement  of the CM obeys [11] 

 (9) 

one finds, using the fact that  is proportional to n for large n, i.e. 

 [12] 

€ 

r 2 t( ) ≅ NS2 −1 1
u

ψ u( )
1−ψ u( )

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 
 . 

(10) 

The decoupling approximation used in Eq. (9) is, however, very rough. 

Moreover, it is based on the assumption that the first step (starting at zero) can 

be treated on the same footing as the other steps (unrelaxed situation). For 

Poissonian  with  Eq. (10) allows to obtain diffusive transport 

quickly. On the other hand, for long time-tailed  one finds at long times 

(unrelaxed condition) 

 . (11) 
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In the intermediate domain, for , one also obtains under the same 

assumptions at long times 

€ 

r 2 t( ) ∝ t t −O t 2−γ( )  . (12) 

Although also in this case the final regime is diffusive, at intermediate times 

correction terms emerge. A more careful analysis of the situation (without the 

decoupling approximation and also including the relaxation) leads to a quite 

complex situation, which will be discussed elsewhere. 



8 

 

Fractional calculus 

 

Fractional calculus is an extension of classical calculus. It evolves from the so-

called Riemann-Liouville integral [13] 

€ 

dα f t( )
dtα

=
1

Γ −α( )
f τ( )

t −τ( )α+1
0

t

∫ dτ  (13) 

with , a convolution integral, which for  reproduces 

Cauchy's formula for repeated integration. To extend the domain of validity to 

positive , one sets 

€ 

dα f t( )
dtα

=
dn

dtn
dα−n f t( )
dtα−n

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  (14) 

where this definition is independent of the choice of the integer  (see Ref. 

[13] for details). For   represents the ordinary differential 

operator. Thus, Eqs. (13) and (14) allow to define the so-called 

differintegration of arbitrary order . 

A convenient means to express fractional calculus is provided by its behaviour 

under Laplace transformation; one has 

€ 

dα f t( )
dtα

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

= uα f u( ) − uk

k =0

n−1

∑ dα−1−k f 0( )
dtα−1−k  , (15) 

where the integer n fulfils  [13]. For integer  one obtains the 

well-known transforms of integer-order derivatives and multiple integrals. 

How can fractional calculus be applied to slow relaxation phenomena in 

disordered systems? Whereas no simple differential equations for the 

description of slow relaxation processes like Eq. (1) or (6) exist, fractional 

calculus provides a useful mathematical tool for their description. Two 

important so-called extraordinary differential equations [13] are 
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 (16) 

with  and 

 (17) 

with . For a Heaviside-type input  the solution of Eq. 

(16) is algebraic 

 (18) 

whereas Eq. (17) possesses a solution with the asymptotic behaviour 

€ 

g t( )∝
t −1+γ for t →0
t −1−γ for t →∞

⎧ 
⎨ 
⎩ 

. (19) 

Now, we can apply these fractional expressions to anomalous diffusion of 

photoconductive currents. Denoting by  the charge carriers generated in 

the system, a short light pulse at time  causes a Heaviside-type form of 

, i.e. 

 (20) 

Using Eq. (18), it follows that the differential equation 

 , (21) 

where  and  denote material dependent parameters, describes an algebraic 

relaxation of the photocurrent: 

€ 

I t( ) =Q0κ
t τ 0( )−α

Γ 1−α( )
Θ t( ) . (22) 
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The observed crossover behaviour (cf. Eqs. (6a) and (6b)), which is a 

consequence of the finite extension of the sample, can be described by the 

differential equation 

 (23) 

with the transit-time  (cf. Eqs. (17) and (19)). 

A wide-spread application of fractional calculus is the formulation of 

rheological constitutive equations in polymeric materials [2, 6, 14, 15]. The 

extension consists in the replacement in the stress-strain-relationships of the 

first-order time derivatives ( ) by fractional derivatives ( ) of 

noninteger orders  with . Thereby [16], it is possible to interpolate 

between simple rheological models such as a spring, for which Hooke's law 

holds 

 (24) 

(typical for solid-like behaviour), and a dashpot, whose stress and strain are 

related by Newton's law 

 (25) 

(typical for fluid-like behaviour). The extraordinary differential equation 

 (26) 

with  interpolates between Eq. (24) ( ) and Eq. (25) ( ). After 

a strain jump , we recover an algebraic relaxation of the stress (cf. 

Eq. (18)): 

€ 

σ t( ) = ε 0η
γE1−γ t −γ

Γ 1− γ( )
Θ t( )  . (27) 
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- Fig. 1 - 

Fractional equations such as Eqs. (21), (23) and (26) seem to be rather formal 

because their physical realisation is not immediately obvious. To give a 

pictorial view of the situation we have developed in Ref. [6] a mechanical 

model which obeys the stress-strain-relationship of Eq. (26). In our model, 

shown in Fig. 1, we have a ladder-like arrangement of springs and dashpots. 

The analysis of Ref. [6] shows that  and  are related through 

 . (28) 

Choosing the spring constants  and viscosities  in such a way that both 

 and  hold, it can be shown [6] that Eq. (28) obeys the 

simple form 

€ 

E0
ε u( )
σ u( )

= E0 η0( )γ u−γ  . (29) 

Using the boundary condition  one obtains directly from 

Eq. (15) that  and  fulfill the fractional differential equation (26). 

A characteristic feature of the model presented in Ref. [6] is its hierarchically 

constrained dynamics in the sense of Palmer et al [17]. A strain jump causes a 

deformation of the first spring . Then the deformation moves along the 

ladder overcoming the resistance of the dashpots. 

- Fig. 2 - 

Fig. 2 displays a possible technical realisation of the ladder model. It consists 

of concentric cylinders fixed on a bottom plate. Other cylinders, which are 

connected by springs, are placed in the spaces between them, which are filled 

with a damping fluid. 

Our model may give the impression that Eq. (26) necessarily implies that the 

relaxation occurs in sequential fashion. This is not so, as we repeatly pointed 

out [11]; both parallel and sequential models lead to similar decay forms. In our 
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case it is also possible to construct mechanical models which relax via parallel 

mechanisms in such a manner, that their stress-strain relationship obeys Eq. 

(26). As an example, we consider a continuous model which was proposed by 

Wang [18] to describe the behaviour of rough electrode-electrolyte interfaces. 

Translating this discretized electrical model into its mechanical analogue we 

obtain the arrangement shown in Fig. 3. Its basic units are Maxwell elements 

consisting of a spring and a dashpot in series; these units are arranged in 

parallel. After a given strain jump each unit relaxes independently of the others 

in exponential fashion. 

- Fig. 3 - 

The model extends along the x-axis ( ) and its viscosities and spring 

constants are  and  (in a continous formulation). One can verify 

readily, using Eqs. (24) and (25) in Laplace transformed form, that for an 
infinitesimal element 

€ 

x, x + dx( ) the relationship between stress and strain 

fulfils 

€ 

σ u; x( )dx = ε u( ) dx
1

E x( )
+

1
uη x( )

 . (30) 

Therefore, we obtain for the whole arrangement 

€ 

σ u( ) = σ u;x( )dx = ε u( ) η x( )u
1+ η x( )

E x( ) u
dx

0

∞

∫
0

∞

∫  . (31) 

By taking the distributions 

 (32) 

the integral in Eq. (31) can be solved exactly (see Ref. [18] for details) and one 

obtains 
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€ 

σ u( ) =
πη0 E0

−1η0( )γ −1

α + β( )sin β +1
α +β π( )

uγ ε u( ) ,  (33) 

as long as . Therefore, we have another model obeying Eq. (26). 

- Fig. 4 - 

A technical realisation of this continuous model is shown in Fig. 4. The whole 

arrangement extends from  to infinity. The elongation ε is given by the 

height of the rigid plate above the ground. The elastic part of this model is 

represented by the grey layer below this plate. It consists of a homogeneous 

material with constant modulus of elasticity E, height  in the relaxed state and 

a width  varying along x. Therefore, the distribution of  is given by 

 . (34) 

The elastic layer rests on a structure which is T-shaped perpendicular to the x-

axis ; the T-shaped structure extends into a rigid block filled with a viscous 

liquid. A down- or upwards movement of the beam is accompanied by friction 

between its vertical part and the two immobile plates with constant distance a 

from the beam. Therefore, one obtains the following distribution of the shear 

viscosity: 

 , (35) 

where  denotes the varying width of the plates (see Fig. 4). 

The independence of the Maxwell units (as can be seen in Fig. 3) is reflected in 

the request that the T-shaped structure has a vanishing shear modulus for 

shearings in the plane perpendicular to the x-axis. We have therefore drawn the 

T-shaped structure as a parallel arrangement of layers. Choosing the widths 

 and  as given in Eq. (32), the stress-strain-relationship of this 
arrangement obeys the fractional expression Eq. (26) with . 
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Conclusion 

 

In this work we have concentrated on two means to mimic relaxation in 

disordered systems. A rich microscopic picture emerges when using the 

continuous-time random walk formalism. As a more qualitative picture we 

have discussed constitutive equations with fractional derivatives and have 

displayed mechanical models which obey them. 
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(Figure legends) 

 

 

 

 

 

 

Fig. 1. Diagram of the finite mechanical arrangement used to model Eq. (26) 

(see text) 
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Fig. 2. Technical realisation of the hierarchy of Fig. 1 with  
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Fig. 3. Discretized version of the continuous mechanical model (see text) 

 

 

 

Fig. 4. Technical realisation of the continuous model shown in Fig. 3 
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