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Introduction
For its fundamental importance in gene regulation and epigenetics, the physical chemistry of

structural changes in the chromatin fiber has become a major focus of interest in recent years. It is

now clear that the mechanism of chromatin remodeling, opening and closing of the structure during

transcription, and many other biological processes related to the higher order structure of the

genome cannot be understood without fundamental knowledge of the arrangement of nucleosomes

and DNA in the chromatin fiber and its variations during different physiological states of the cell.

The ‘bead-chain’ structure of nucleosomes spaced regularly on DNA will compact into a higher

order structure under physiological conditions. The generally accepted view is that the first stage of

compaction of the nucleosome chain is a fiber-like structure with a diameter of approximately 30

nm, the so-called ’30-nm fiber’, although alternative structures have been proposed (e.g. the

‘superbeads’ seen in electron microscopy images by Zentgraf and Franke 1). Since the discovery of

the bead-chain structure of chromatin by Olins and Olins2; 3 and Woodcock4, many attempts have

been made to construct models for the path of the DNA inside this fiber and its possible

conformations. Although many new insights have been obtained, the picture is not yet conclusive

and the precise arrangement of DNA and histones inside the 30 nm fiber is still controversial 5; 6; 7; 8.

Mainly two competing classes of models have been discussed: the solenoid models 9; 10; 11; and the

zig-zag or crossed-linker models 12; 13; 14; 15; 16; 17. In the solenoid model (Fig. 1a) it is assumed that the

chain of nucleosomes forms a helical structure with the nucleosome axis being almost perpendicular
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to the solenoid axis. The DNA entry-exit side faces inward towards the axis of the solenoid. The

linker DNA is required to be bent in order to connect neighboring nucleosomes in the solenoid. The

other class of models assumes straight linkers that connect nucleosomes located on opposite sides

of the fiber. The axis of the nucleosomal disk is only slightly tilted with respect to the fiber

direction. The resulting linker geometry shows a three-dimensional zig-zag-like pattern (Fig. 1b).

Fig. 1: The two competing classes of models for the 30-nm fiber can be distributed into (a) solenoid models
and (b) crossed-linker models. For both fiber types the side and the top view are shown. Two nucleosomes
that are directly connected via DNA linker are shaded in grey. In the solenoid these nucleosomes are located
on the same side of the fiber requiring the linker to be bent. In the crossed-linker case they sit on opposite
sides of the fiber and are connected via a straight linker.

Images obtained by cryo electron microscopy should in principle be able to distinguish between the

structural features proposed by the different models mentioned above 16. The micrographs show a

zig-zag motif at lower salt concentrations and they indicate that the chromatin fiber becomes more

and more compact when the ionic strength is raised towards the physiological value (i.e. about 150

mM monovalent ions).

From the physics point of view, the system that we deal with here – a semiflexible polyelectrolyte

that is packaged by protein complexes regularly spaced along its contour – is of a complexity that
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still allows the application of analytical and numerical models. For quantitative prediction of

chromatin properties from such models, certain physical parameters must be known such as the

dimensions of the nucleosomes and DNA, their surface charge, interactions, and mechanical

flexibility. Current structural research on chromatin, oligonucleosomes and DNA has brought us

into a position where many such elementary physical parameters are known. Thus, our

understanding of the components of the chromatin fiber is now at a level where predictions of

physical properties of the fiber are possible and can be experimentally tested.

Computational modeling can be a very powerful tool to understand the structure and dynamics of

complex supramolecular assemblies in biological systems. We need to sharpen the definition of the

term ‘model’ somewhat, designating a procedure that allows us to quantitatively predict the

physical properties of the system. In that sense, the simple geometrical illustrations in Fig. 1 only

qualify if by some means experimentally accessible parameters can be calculated. As an example, a

quantitative treatment of DNA bending in the solenoid model would only be possible if beyond the

mechanical and charge properties of DNA and nucleosomes the energetics of linker DNA-histone

and nucleosome-nucleosome interaction necessary to overcome the elastic stress in the DNA due to

the bend were quantitatively known. The straight linker configuration offers the advantage for

modeling that the geometry and the energetics of the fiber are controlled to a large extent by the

linker DNA, whose conformations and mechanical properties are very well understood, and its

energetics are favorable because no energy is required to bend the DNA. It therefore comes as no

surprise that most recent numerical and analytical models assume straight linkers (at elastic

equilibrium, notwithstanding thermal fluctuations, v.i.), which is also supported by current

experimental data.

In this chapter we attempt to give an overview of current computational modeling approaches of the

30 nm fiber, their capabilities and limitations. In order to setup a quantitative model of this

supramolecular assembly, we first need to understand the physical properties of its subcomponents:

nucleosomes and DNA.
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Physical properties of nucleosomes and DNA
DNA, on a length scale beyond some tens of base pairs, can be described as a stiff polymer chain

with an electrostatic charge. In the most basic view, four parameters are sufficient to describe this

chain with sufficient precision: the diameter, the elastic constants for bending and torsion and the

electrostatic potential.

The average DNA helix diameter used in modeling applications such as the ones described here

includes the diameter of the atomic-scale B-DNA structure and – approximately – the thickness of

the hydration shell and ion layer closest to the double helix 18. Both for the calculation of the

electrostatic potential and the hydrodynamic properties of DNA (i.e. the friction coefficient of the

helix for viscous drag) a helix diameter of 2.4 nm describes the chain best 19; 20; 21; 22. The choice of

this parameter was supported by the results of chain knotting 23 or catenation 24, as well as light

scattering 25 and neutron scattering 26 experiments.

The bending elasticity of the DNA chain can be expressed as the bending persistence length Lp, the

distance over which the average cosine of the angle between the two chain ends has decayed to 1/e.

Molecules shorter than Lp behave approximately like a rigid rod, while longer chains show

significant internal flexibility. The bending elasticity A - the energy required to bend a polymer

segment of unit length over an angle of 1 radian - is related to the persistence length by Lp = A/kBT,

kB being Boltzmann's constant and T the absolute temperature. For DNA, Lp has been determined in

a number of experiments (for a recent compilation, see 27). While some uncertainties remain as

regards the value at very high or low salt concentrations, the existing data agree on a consensus

value of Lp = 45-50 nm (132-147 bp) at intermediate ionic strengths (10-100 mM NaCl and/or 0.1-

10 µM Mg2+).

The torsional elasticity C, defined as the energy required to twist a polymer segment of unit length

through an angle of 1 radian, may be related in an analogous way to a torsional persistence length

LT, which is the correlation length of the torsional orientation of a vector normal to the chain axis.

Again, C is related to LT by LT = C/kBT. C has been measured by various techniques, including
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fluorescence polarization anisotropy decay 28; 29; 30 and DNA cyclization 31; 32; 33, and the published

values converge on a torsional persistence length of 65 nm (191 bp).

The stretching elasticity of DNA has been measured by single molecule experiments34; 35 and also

calculated by molecular dynamics simulations36; 37. One may estimate the stretching elasticity of

DNA to be given by a stretching modulus s of about 1500 pN, where 

† 

s = F ⋅ DL L0 (DL being the

extension of a chain of length L0 by the force F). We may safely assume that DNA stretching does

not play a significant role in chromatin structural transitions, since much smaller forces are already

causing large distortions of the 30 nm fiber (see below).

The structure of the second important component of the chromatin fiber, the histone octamer38 resp.

the nucleosome39, has been determined by X-ray crystallography to atomic resolution. From this

structure, one can approximate the overall dimensions of the nucleosome as a flat disk of 11 nm

diameter and 5.5 nm thickness. The mechanical properties of the nucleosome are not known, and

current models take it as nondeformable, which is probably a good approximation in the range of

forces usually employed in single-molecule experiments on chromatin fibers (Sivolob et al. showed

quite a high stability of nucleosomes even when the DNA was under considerable superhelical

stress40, however the (H3-H4)2 tetramer showed a structural transition41). Also, the nucleosomal

DNA is usually assumed as being rigidly attached to the histone core while the elasticity of the

DNA at the point where the linker leaves the nucleosome is the same as that for free DNA; the

unwrapping of the DNA from the histone core under tension, which is experimentally proven 42; 43,

is not yet included in current models, mainly because of lack of quantitative thermodynamic data on

core particle-DNA binding. Only very recently a theory has been developed that accounts for

tension-induced nucleosome unwrapping; the theoretical predictions of typical unwrapping forces

are in good agreement with the experimental observations (I. Kulic and H. Schiessel, preprint cond-

mat/0302188).
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The interaction between nucleosomes plays an important role for the stability of the 30 nm fiber;

recent experiments on liquid crystals of mononucleosomes 44; 45; 46; 47 and also less concentrated

mononucleosome solutions 48; 49 show an attractive interaction that can be parameterized by an

anisotropic Lennard-Jones type potential 50. Also, an electrostatic interaction potential has been

computed using the crystallographic structure of the nucleosome 51. The influence of these

potentials on the structure of the fiber is discussed below together with the corresponding models.

Computational implementation
The computational description of a large biomolecular complex such as the chromatin fiber requires

techniques that are different from the widely applied molecular dynamics methods used to simulate

biopolymers at atomic resolution. The current limits (beginning of 2003), for which one can still

solve Newton’s equations of motion explicitly for each atom in its force fields in a reasonable

amount of computer time, are a system size of 105 – 106 atoms (including the water) and simulation

lengths of some nanoseconds. Chromatin fragments of biologically interesting size (i.e., more than

12 nucleosomes) are much more complex, and the times at which typical processes such as

nucleosome opening, DNA slipping, etc. take place, are much longer. It is evident that in such a

case the biological macromolecule must be described by some approximation.

Energetics: Coarse-graining and interaction potentials
All such approximations are based on ‘coarse-graining’: subunits are defined that contain many

atoms, but behave like rigid objects on the time and length scales considered. As an example, let us

look at a chain of ‘naked’ DNA. If molecular detail is not required, DNA may be approximated by a

chain of segments that are substantially shorter than its bending or torsional persistence length;

segments up to 50 bp constitute a safe choice. The segments or other subunits interact through

appropriate force fields, which can in principle be derived from the interatomic potentials. With the

development of all-atom molecular dynamics (MD) in recent years, detailed studies have been

possible on the molecular basis of DNA flexibility and on its sequence dependence. While a

comprehensive overview of that work falls outside the scope of this article, we would like to
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mention some recent studies that can serve as starting points to the reader looking for information in

this field: normal-mode analyses of the sequence dependence of DNA flexibility 52; 53 or work from

our own laboratory in which DNA flexibility constants are extracted from molecular dynamics

trajectories of DNA oligonucleotides36; 37. A review of this field is given in 54. Since the absolute

reliability of force constants determined from MD simulations is still limited, however, one usually

employs parameters that are determined separately by experiment.

For coarse-grained models of linear biopolymers – such as DNA or chromatin – two types of

interactions play a role. The connectivity of the chain implies stretching, bending and torsional

potentials, which exist only between directly adjacent subunits and are harmonic for small

deviations from equilibrium. As mentioned above, these potentials can be directly derived from the

experimentally known persistence length or by directly measuring bulk elastic properties of the

chain.

The second type of interactions necessary for modeling the chromatin fiber occurs between non-

adjacent subunits of the chain, i.e., contact or other long-range interactions between nucleosomes

and/or DNA segments. DNA-DNA interactions in a typical biological environment are mainly due

to electrostatic repulsion between the negatively charged backbone phosphates. For intermediate

ionic strengths (1 mM – 1 M) and distances larger than about the DNA double helix diameter of 2

nm, these interactions are rather well characterized. A number of simulations simply used an

effective hard-core radius, below which the DNA segments are not allowed to approach each other,

and which decreases with increasing ionic strength23; 55; 56; 57; 58; 59. Other work described the

electrostatic interaction through a screened Coulomb potential in the Debye-Hückel approximation,

using a renormalized surface charge density for the DNA in order to account for ion condensation18.

This has the advantage that the dependence of the interaction on the ionic strength does not have to

be calibrated empirically, but is contained implicitly in the form of the potential. DNA models

based on such potentials have been developed and applied widely in the last two decades, and their

predictive power for average solution structural properties, intramolecular interaction kinetics and
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other globally measurable parameters is usually very good 19; 20; 21; 22; 26; 60; 61; 62; 63; 64. One can assume

that the approximation of a DNA chain as an elastic filament with Debye-Hückel electrostatics

constitutes a safe choice for obtaining a realistic picture of the solution structure.

Less is known about the interaction of the nucleosomes between themselves or with free DNA. The

nucleosome-nucleosome interaction has recently been parameterized by using the surface charge

density of the known crystal structure 39 in a point-charge model 51. While in that work only

electrostatic interactions were considered and the quantitative influence of the histone tails on the

interaction potential still remains obscure, simulations based on this potential allowed to predict an

ionic-strength dependent structural transition of a 50-nucleosome chromatin fragment that occurred

at a salt concentration compatible with known experimental data (ref.65, see below).

Nucleosome-nucleosome interaction potentials can be calibrated by comparison with the

characteristics of liquid crystals of mononucleosomes at high concentrations. Under suitable

conditions, nucleosome core particles form a hexagonal-columnar phase with a distance of

11.55±1!nm between the columns and a mean distance of 7.16±0.65!nm between the particles in

one column44; 46. These distances may be assumed to correspond to the positions of the minima of an

attractive internucleosomal potential. The depth of the interaction potential (i.e. the binding energy

per nucleosome) was estimated in the stretching experiments of Cui and Bustamante66 to 2.6-3.4 kT.

A slightly lower potential minimum of 1.25 kT is obtained by a comparison of the stability of the

nucleosome liquid crystal phase with simulations50.

The DNA-nucleosome interaction parameters are not known at present. In most of the theoretical

work it is deemed negligible compared to the DNA-DNA and nucleosome-nucleosome interaction,

except for a hard-core excluded volume interaction. Nevertheless, recent work on the mechanism of

nucleosome repositioning67 assumes that the DNA can dynamically detach from the nucleosome

surface and reattach in different conformations, such that it is conceivable that distant DNA
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segments may also transiently bind to ‘open regions’ of the DNA-binding surface of the

nucleosome.

Mechanics of the chromatin fiber
The conformations of the ‘zig-zag’ model first proposed by Woodcock et al. 12 and van Holde and

Zlatanova 5 are determined by the linker DNA length, the nucleosome shape and two angles: the

opening angle q of the linker DNAs at the nucleosome and the twisting angle j between successive

nucleosomes on the chain. Since for a given nucleosome spacing (and therefore linker length) the

geometry of the resulting chain is uniquely determined by q and j, this model is also called the

‘two-angle’ model of the chromatin chain. Simply generating conformations of polynucleosome

chains with varying values of q and j will create chains that are already very similar to typical

conformations of chromatin fibers as seen in cryo-electron microscopy 12 or scanning force

microscopy 15.

For the solenoid conformation, few attempts at a quantitative description exist. One notable

exception is the work recently presented by Bishop and Hearst68 and Bishop and Zhmudsky69. In

their approach the chromatin fiber is described as a continuous ‘coiled-coil’ filament of an elastic

polymer, in which the DNA forms a continuous 11nm diameter spiral that is wound into a 30nm

superhelix. The nucleosomes are not assigned to fixed positions, but viewed as bound in a

delocalized manner, leading – on average – to a ‘fluid-like’ structure for the 30 nm fiber. Under

these conditions, the chromatin elasticity mostly depends on the mechanical properties of the DNA

coil, and the histones may be regarded as some viscous fluid that sticks non-specifically to the DNA

surface. This view is rationalized because in its biological function the energy landscape of

nucleosome positioning is ‘fairly smooth with multiple local minima’, because of the rather low

specificity of nucleosome positioning. The authors calculate the elastic constants for stretching,

shearing and torsion, the linear mass density and moments of inertia for linear DNA and the

DNA/histone coil at various degrees of compaction. While qualitative conclusions could be drawn

about the relative elasticities of DNA and the chromatin coil, the absolute values of the elasticity
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parameters differ quite strongly from the known experimental data in that model. However, with

more knowledge about the histone-DNA interaction, the approach by Bishop and coworkers could

be valuable for comparing the energetics of zig-zag and solenoid conformations.

For the moment, however, we concentrate here on variants of the two-angle model. We will first

give a systematic account on the possible fiber geometries based on straight linkers, then show how

the mechanical properties of the model can be understood as being a result of the fiber geometry. It

will become clear why it is indispensible to go beyond purely theoretical descriptions, which focus

mainly on the geometry and energetics of the linker DNA, to numerical computer models in order

to obtain the full picture. It turns out that in determining the fiber properties the interplay between

linker DNA stiffness and nucleosome-nucleosome interaction is crucial.

The ‘two angle’ model – basic notions
Since the linker DNA is assumed straight and the nucleosome non-deformable, the fiber geometry

of the two-angle model is completely determined by the entry-exit angle of the linker DNA at each

nucleosome and by the rotational angle between neighboring nucleosomes. Depending on the

values of these angles and their variation, the structures obtained are either completely regular or

more random fibers that resembled real fibers at lower ionic strength. As far as the linker geometry

can be detected via cryo-electron microscopy 16 or scanning force microscopy 15; 70, this model

indeed describes the geometry of the 30-nm fiber adequately.

Schiessel, Gelbart and Bruinsma 17 introduced a mathematical description for the different possible

folding pathways in the two-angle model. At the simplest level, it was assumed that the geometric

structure of the 30-nm fiber can be obtained from the intrinsic, single-nucleosome structure where

the incoming and outgoing linker chains make an angle q with respect to each other. In the presence

of the histone H1 (or H5) the in- and outcoming linker are in close contact forming a stem before

they diverge16.
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Next, there is a rotational (dihedral) angle f  between the axis of neighboring histone octamers

along the necklace (see Fig. 2). Because nucleosomes are rotationally positioned along the DNA,

the angle f  is a periodic function of the linker length B, with the 10 bp repeat length of the helical

twist of DNA as the period. There is experimental evidence that the linker length is preferentially

quantized by integral multiples of this helical twist 71, i.e., there is a preferred value of f .

The geometrical structure of the chain in Fig. 2 is determined entirely by q, f  and B. The model

only describes the linker geometry and does not account for excluded volume effects and other

forms of nucleosome-nucleosome interaction; it assumes that the core particles are point-like and

that they are located at the joints of the linkers, which are straight rods.

An overview of the possible two-angle fibers is provided in Fig. 3, where q andf  are varied over

the range 0° to 180° (for a more thorough discussion of the possible structures, see Schiessel and

others 17.

Various examples of two-angle fibers were already displayed by Woodcock et al. 12 in their Fig. 2,

namely fibers with q = 150° and many different values of f , corresponding to a vertical trajectory

on the right-hand side of Fig. 3. Three different configurations with a fixed value of f  and different

values of q are displayed in Fig. 3c in another paper by these authors 16. Schiessel et al. 17 were able

to obtain analytical expressions for all the geometrical quantities that characterize the resulting fiber

Fig. 2: The geometry of the two-angle fiber can be characterized by the deflection angle q and the
dihedral angle f . Also indicated is B, characterizing the linker length, and the nucleosome diameter 2R0.
For simplicity, the nucleosomes are represented by spheres connected via links, the linker DNA. The
arrows indicate the nucleosomal superhelix axis.
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as a function of q , f  and B (cf. also 72). Such quantities are, for instance, the diameter of the fiber,

the nucleosome line density or the nucleosomal tilt angle.

If one takes into account the excluded volume of the core particles, then certain areas in that phase

diagram, Fig. 3, are forbidden – reminiscent of the familiar Ramachandran plots used in the study of

protein folding. This is indicated in Fig. 3 by dashed and dotted lines. Except for these regions,

however, the diagram in Fig. 3 by itself does not favor any structure over another, since the

energetics are not included. Schiessel et al. 17 suggested that the optimum structure for the 30-nm

fiber might be a balance between (i) maximum compaction and (ii) maximum accessibility, in order

to fit the DNA chain into the limited nuclear volume (cf. Ref. 73 to see how severe this packing

problem actually is) and to keep local accessibility, which is required for transcription.

Fig. 3: The full range of the two-angle structures. Shown are some example configurations with the arrows
indicating their position in the (q, f )-plane. The lines denote the boundaries to the forbidden structures
where the “nucleosomes” would overlap. To the right of the dashed line nucleosomes i and i+2 would
overlap (“short-range excluded volume”). Below the dotted line nucleosomes further apart with respect to
their chemical distance would overlap (“long range excluded volume”). For instance, for the circle,
structure “2”, nucleosomes collide after one turn (10 nucleosomes).
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In order to attain maximum compaction one needs structures that lead to high bulk densities. A

comparison of the densities of all possible structures shows that fibers with internal linkers have

highest densities 17. As detailed there, the highest density is achieved for the largest possible value

of q and the smallest possible value of f  that is still in accordance with the excluded volume

condition, corresponding to the black dot in Fig. 3 where the dotted curve and the dashed line cross

each other. This unique set of angles is given by ( )BR0max arccos2=q  and 

† 

fmin @ 8 p( ) R0 B( ) . It

was suggested in Ref. 17 that maximum accessibility is achieved for structures that, for a given

entry-exit angle qp -  of a highly compacted structure, lead to the maximum reduction in

nucleosome line density for a given small change of the angle q . Interestingly, that the such defined

accessibility is maximized at the same unique pair of angles ( maxq , minf ). The corresponding fiber

shows a crossed-linker geometry as depicted in Fig. 1b (cf. also structure “10” in Fig. 3). For

reasonable values of the linker length it was found17 that 151max =q °, 36min =f ° together with a

nucleosome line density 9.6=l  nucleosomes per 11 nm 72 and a diameter of the order of 30nm,

values that are close to the experimental ones reported by Bednar et al. 16 for chicken erythrocyte

chromatin fibers.

The local accessibility can be controlled in vitro by changing the salt concentration. Bednar et al.16

report, for example, that q decreases with decreasing ionic strength, namely 

† 

q ª145° at 80 mM,

135ªq ° at 15 mM and 95ªq ° at 5 mM 16. In the biochemical context the change of q can be

accomplished by other mechanisms, especially by the depletion of linker histones and the

acetylation of core histone tails (cf., for instance 74), both of which occur in transcriptionally active

regions of chromatin (for details compare75). . These mechanisms lead effectively to a decrease of q

causing the linear nucleosome density to decrease 0.6ªl  (80 mM salt) via 2.3ªl  (15 mM) to

5.1ªl  (5 mM) 16, in good agreement with theoretical predictions17.

Beyond pure geometry, the two-angle model is also useful to predict some of the physical

properties of the 30-nm fiber, for instance, its response to elastic stress17. In an independent study
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on the two-angle model by Ben-Haïm, Lesne and Victor 76 this question has been the major focus,

and as demonstrated by Schiessel72, the elastic properties of the two-angle model as a function of q

and f  are analytically solved completely by combining the results from both papers.

The elastic stress may be external or internal. External stresses are exerted on the chromatin during

the cell cycle when the mitotic spindle separates chromosome pairs. The 30-nm fiber should be both

highly flexible and extensible to survive these stresses. The in vitro experiments by Cui and

Bustamante demonstrated that the 30-nm fiber is indeed very “soft” 66. The 30-nm fiber is also

exposed to internal stresses. Attractive or repulsive forces between the nucleosomes will deform the

linkers connecting the nucleosomes. For instance, electrostatic interactions, either repulsive (due to

the net charge of the nucleosome core particles) or attractive (bridging via the lysine-rich core

histone tails49) could lead to considerable structural rearrangements.

Fig. 4: Two-angle fibers can be easily deformed via the bending and twisting of their linkers. This can be
most easily seen for the special case of a planar zig-zag fiber under an external tension F, which extends
the fiber via the bending of its linkers from its unperturbed state with contour length L0 (a) to a stretched
state of length L>L0 (b).
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It is not the purpose of this chapter to present further mathematical details of the two-angle fiber.

We merely mention that its mechanical properties can be described by four moduli, namely the

stretching, bending and twisting moduli as well as a twist-stretch coupling constant76. Thus the two-

angle fiber behaves as an extensible worm-like chain as compared to naked DNA that is

inextensible for moderate forces. The extensibility of two-angle fibers can be easily understood as a

result of the DNA bending/twisting. A special case is depicted in Fig. 4: the planar zig-zag fiber.

The external tension F induces an increase of the contour length from the unperturbed value 0L

(Fig. 4 a) to the new value 0LL >  (Fig. 4 b). In the zig-zag case this is accomplished via the bending

of the linker DNA only. For more general geometries fiber stretching involves linker twisting as

well.

The linker backbone is predicted to be very soft: For instance, the stretching modulus of fibers with

crossed linkers and zig-zag chains is of the order one (per nm) for an effective linker length of 20

bp as compared to the much larger value of 1300 -nm  for naked DNA. Of course, depending on the

values of q , f and linker length, this value varies over a wide range. Also the other mechanical

parameters of the two-angle fiber indicate an extremely soft structure, as long as the elastic

properties are determined by the DNA backbone alone. It is thus evident that the presence of the

nucleosomes must play a crucial role in determining many of the mechanical properties of the 30-

nm fiber. For instance, the excluded volume will not allow a strong fiber bending that would lead to

overlapping nucleosomes, and the nucleosome-nucleosome attraction counteracts the stretching of

the fiber under external tension.

To account for these effects, one has to go beyond the simple geometrical two-angle model and

must include nucleosome-nucleosome interactions. On a purely theoretical level this is a hard task,

and there have only been approximate estimates to the tension-induced condensation-

decondensation transition of the fiber17. Numerical computer models are of great help to clarify the

picture since it is relatively straightforward to build in linker elasticity, nucleosome/nucleosome



Langowski and Schiessel Chromatin fiber modelling

- 16 -

interactions and other force fields as they become necessary to describe structural details.

Furthermore, while the two-angle model is of great help in exploring those regions of

conformational space that are accessible to the chromatin chain, it generates very regular structures.

Local variations in nucleosome positioning and, most importantly, thermal fluctuations at room

temperature will cause random deviations from this regular structure; to understand the dynamics of

the chromatin chain, it is very important to include these fluctuations into the model. The same

issue has been discussed in the DNA field some time ago: while elastic rod models were successful

in early theoretical descriptions of DNA supercoiling (e.g. 77; 78; 79, for review see80), the computation

of real-life structural properties of superhelical DNA is only possible with numerical models that

include thermal fluctuations (for a discussion of this point, see also81). Here we will therefore now

consider methods that create configurational ensembles which reflect the structure of the chromatin

chain at a finite temperature.

The chromatin chain at thermodynamic equilibrium
To find the equilibrium structure of the chromatin chain, one could try and minimize the total

energy of the two-angle model computed numerically from appropriate elastic tension, electrostatic

attraction/repulsion and other interaction potentials. This energy would then be minimized by

standard minimization procedures, leading to a conformation at elastic equilibrium. If the molecule

is small enough, its structural fluctuations will be small compared to its overall size, and then this

simple energy minimization can in principle find a structure close to the structure free in solution at

room temperature. However, in the case of a complex polymer chain typically only one or a few

minimum energy conformations are predicted. As the temperature becomes larger than absolute

zero (certainly at physiological temperatures), thermal motion leads to a multitude of possible

conformations with almost the same energy; as long as the energy difference between two

conformations is less than kT, both will be present at equilibrium with significant probability. The

chance for the minimum elastic energy conformation to occur at thermodynamic equilibrium is

actually very close to zero in this case.
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Thus, to reflect correctly the state of the system at a certain temperature, one needs a simulation

technique that generates an ensemble of chain conformations whose statistical properties reflect

those of the ‘real’ chain at thermodynamic equilibrium. The chromatin fiber models that are

discussed in the following all use one or another variation of such techniques.

Metropolis Monte-Carlo
Since minimum energy structures do not adequately describe the average structure of large

biopolymers in an ensemble at thermodynamic equilibrium, one must minimize the free energy,

which includes the configurational entropy of the structure. Depending on whether time dependent

information is to be calculated, different approaches can be taken for such a minimization. A very

popular method to sample the thermodynamic equilibrium of a system is known under the name of

‘importance-sampling Monte-Carlo’ and has been described half a century ago by Metropolis et

al.82. The ‘Metropolis Monte-Carlo’ algorithm works as follows:

1. Starting from a given initial conformation with energy E1, we generate a new “trial”

conformation by a random variation (e.g. in the position or orientation of a subunit) and

calculate its energy E2. For a model chromatin chain, the total energy of each particular

conformation can be very easily calculated if all the interaction energies between the

constituents, DNA and nucleosomes, are known (as is the case for the interactions discussed

above).

2. If E2 ≤ E1, then we accept the new conformation into the ensemble.

3. If E2 > E1, we calculate the Boltzmann factor p for the increase in energy,

† 

p = e- E2 -E1( ) kT ,

and then compare this factor to a random number x between 0.0 and 1.0. If p > x, we accept

the new conformation into the ensemble, otherwise we reject it and add the old

conformation once more to the ensemble.

This algorithm will generate the ensemble of conformations at thermodynamic equilibrium, if

the conformational variations introduced in step 1 (the so-called ‘moves’) are sufficient to cover

all possible regions of conformational space and are locally reversible. It is easy to understand

that feature of the Metropolis procedure: the transition probability into the higher energy state is
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given by the Boltzmann factor, the transition probability into the lower energy state is  one. The

relative population of the two states is then the ratio of the transition probabilities, thus the

Boltzmann factor; this is the outcome expected from thermodynamics.

Brownian dynamics simulation
For calculating the time-dependent properties of biopolymers, the equations of motion of the

molecule in a viscous medium (i.e., water) under the influence of thermal motion must be

solved. This can be done numerically by the method of Brownian dynamics (BD) 83. Allison and

coworkers 61; 62; 84 and later others 85; 86; 87; 88 have employed BD calculations to simulate the

dynamics of linear and superhelical DNA; BD models for the chromatin chain will be discussed

below.

Like in the case of Monte-Carlo, the internal energy of the chain is computed from the

interaction potentials. Forces are then calculated from the derivatives of these energies with

respect to the coordinates, and allowed to act during a certain time step (typically a few

nanoseconds). This procedure will relax a given initial conformation into a state that fluctuates

around the thermodynamic equilibrium. Since the motions at each step of the simulation come

from the solution of equations of motion, including real forces, viscosities and thermal energies,

the BD approach has the advantage that the calculated trajectories describe the real-time motion

of the molecule in its solvent. Thus quantities related to the motions of the polymer like

translational and rotational diffusion coefficients or internal relaxation modes can be obtained

from the model using only the known physical properties of the constituents, as discussed

above.

Monte Carlo modeling of the chromatin fiber
The first Monte-Carlo model of the chromatin chain was introduced by Katritch et al.89 to

interpret the stretching experiments on chromatin fibers by Cui and Bustamante66. Their model

approximates the nucleosome as a spherical particle with an effective diameter between 11 and

20 nm and an optional attractive interaction. The linker DNA was modeled as a chain of rigid

segments held together through bending and twisting potentials; the angle of the linker DNA at
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the nucleosome was varied as one of the parameters used to fit the experimental data. Different

from the two-angle model described above, the authors did not fix the value for the rotational

angle f  between each pair of neighboring nucleosomes. The energy function used in the

Monte-Carlo model included a constant stretching force. The best fit to the experimental force-

extension curves at low salt (5 mM) was obtained with an effective nucleosome diameter of 14

nm, a free linker length of 40 base pairs and a linker DNA opening angle of 50°. Other

parameters of the model, such as the twist between nucleosomes, do not influence the computed

force-extension characteristics significantly. To reproduce the response of chromatin fibers to

extension at high salt conditions, it was necessary to introduce an attractive potential between

closely spaced nucleosomes, which was a simple step function and radially symmetric. The

equilibrium conformations of chromatin fibers generated by the model without an applied force,

however, are quite irregular and do not resemble the typical 30 nm fiber; rather, even small

(<2kT) internucleosomal attractions collapse the chain into a highly condensed form.

To overcome the restrictions of the Katritch model due to the approximation of the nucleosome

as a sphere, Wedemann and Langowski50 developed a Monte-Carlo model for the 30 nm fiber in

which the nucleosome core particles are represented by oblate ellipsoids. The linker DNA was

again described as a segmented elastic polymer, whose segments are connected by elastic

bending, torsional, and stretching springs. The electrostatic interaction between the DNA

segments was described by the Debye-Hückel approximation.

An important addition compared to previous models was the parameterization of the

internucleosomal interaction potential in the form of an anisotropic attractive potential of the

Lennard-Jones form, the so-called Gay-Berne potential90. Here, the depth and location of the

potential minimum can be set independently for radial and axial interactions, effectively

allowing the use of an ellipsoid as a good first-order approximation of the shape of the

nucleosome.  The potential had to be calibrated from independent experimental data, which

exists, e.g., from the studies of mononucleosome liquid crystals by the Livolant group44; 46 (see
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above). The position of the potential minima in axial and radial direction were obtained from

the periodicity of the liquid crystal in these directions, and the depth of the potential minimum

was estimated from a simulation of liquid crystals using the same potential.

In order to connect the chromatin chain and to model the effect of the linker histone, DNA and

chromatosomes were linked either at the surface of the chromatosome or through a rigid

nucleosome stem 2 nm long. A Metropolis-Monte Carlo algorithm was then used to generate

equilibrium ensembles of 100-nucleosome chains at physiological ionic strength. For a DNA

linked at the nucleosome stem and a nucleosome repeat of 200!bp, the simulated fiber diameter

of 32!nm and the mass density of 6.1!nucleosomes per 11!nm fiber length are in excellent

agreement with the canonical value of 6 for the solenoid fiber as well as with experimental

values from the literature, e.g. the neutron scattering data reported by Gerchman and

Ramakrishnen91 (other references given in 50). The experimental value of the inclination of DNA

and nucleosomes to the fiber axis92 could also be reproduced.

One result of the simulations was that the torsion angle j between successive nucleosomes

determines the properties of the structure to a great extent (as also predicted by the two-angle

model). While a variation in the internucleosome interaction potential by a factor of four

changes the simulated mass density by only about 5%, this quantity is very sensitive to

variations in twist angle (see Fig. 6 in50).

The linker DNA connects chromatosomes on opposite sides of the fiber, and the overall packing

of the nucleosomes leads to a helical aspect of the structure. The persistence length of simulated

fibers with 200 bp repeat and stem is 265!nm. For more random fibers where the tilt angles

between two nucleosomes are chosen according to a Gaussian distribution along the fiber, the

persistence length decreases to 30!nm with increasing width of the distribution, while the other

observable parameters such as the mass density remain unchanged. Polynucleosomes with repeat

lengths of 212!bp also form fibers with the expected experimental properties. Systems with even
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larger repeat length form fibers, but the mass density is significantly lower than the measured

value. While a nucleosome chain without a stem (i.e., DNA and nucleosomes are connected at

the core particle) and a repeat length of 192!bp gives stable fibers with linear mass densities in

range with the experimental values, chains without a stem and a repeat length of 217!bp do not

form fibers.

The persistence length computed from the bending fluctuations of the computed conformations

shows an increase for shorter linker lengths, which confirms the tendency predicted by the

simple two-angle model. However, the absolute values of the persistence length are between 60

and 260 nm, much higher than in the two-angle model, indicating that the nucleosome-

nucleosome interactions are essential for controlling the mechanical properties of chromatin.

Also, highly ordered chromatin structures are stiffer than more irregular ones: High values for

the persistence length (200-300 nm) were obtained when the twist angle between adjacent

nucleosomes was constant; when this twist was varied randomly, the persistence length

decreased significantly.

Simulation of chromatin stretching
Cui and Bustamante66, Bennink et al.43, Brower-Toland et al.42 and Leuba and Zlatanova

(unpublished results) have reported single molecule stretching experiments on chromatin. For

the force-extension curves, generally two regimes with different behavior can be distinguished:

at low forces no structural transitions occur and the extension of the chain is determined solely

by its elasticity, while at forces above 10-20 pN individual nucleosomes start to disintegrate.

The dissociation of the NCPs that occurs at higher forces gives rise to distinct ‘jumps’ in the

force-extension curve, whose amplitude is directly related to the length of DNA liberated during

the dissociation42; 43.The energetics of DNA unbinding from the histones have not been

characterized in detail, although some estimates exist93; 94. Therefore, current computer models

of the chromatin fiber do not yet include the ‘unrolling’ of the DNA from the nucleosome core
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during stretching. We hope that this will become possible soon since a theoretical understanding

of this process has now been achieved (I. Kulic and H. Schiessel, manuscript in preparation).

While structural transitions at the level of nucleosomes are still outside the scope of current

models, applying a constant force to both ends of the fiber allows to simulate the low end of the

force-extension curve. First results from our own work (Aumann, Caudron, Wedemann and

Langowski, manuscript in preparation) are shown in Fig. 5. In this particular example, a

nucleosome repeat of 200 bp and a linker DNA length of 11 bp was used.

The stretching modulus of the chromatin fiber can be extracted from the simulations in Fig. 5.

Through a comparison with the third-power dependency predicted by the two-angle model17 we

can estimate that for linker lengths of 11-24 bp, stretching moduli of 50-5 pN are obtained, in

line with the existing single molecule stretching data. A more detailed analysis of the

dependence of the stretching rigidity on the local geometry of the chromatin fiber and on the

internucleosomal interaction is under work.

0 pN

5 pN 40 pN

10 pN

20 pN

60 pN

Fig. 5: Monte-Carlo simulation of the stretching of a chromatin chain. A 100 nucleosome chain
with 200 bp repeat and 11 bp linker DNA was first equilibrated and then exposed to a pulling
force as indicated below the drawings. For displaying the full chain, the scale of the picture was
changed with increasing force. An unwinding of the chromatin fiber and sliding of the
nucleosomes can be readily observed.
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Dynamic simulations of the chromatin fiber
For modeling time-dependent structural changes in the chromatin chain, time scales need to be

used that are by far larger than the typical nanosecond range that is used in all-atom molecular

dynamics. Conformational changes, internal motions, etc. of a large biomolecule occur on a

millisecond time scale or longer. In order to reach this time scale in a simulation, the molecule

has to be described by a coarse-grained model (see above), and the embedding solvent also

needs to be approximated by a homogeneous fluid with given viscosity, dielectric constant and

ion composition. The Brownian motion of the biomolecule, which is caused by the random

thermal ‘pushes’ of the solvent molecules, is described by a random force.

In this type of modeling, called Brownian dynamics83, an ensemble of conformations at

thermodynamic equilibrium is generated in a way very analogous to the Monte-Carlo model:

starting from an initial conformation, the model relaxes in steps towards the minimum free

energy state. Other than in the Monte-Carlo method, however, the displacements of the subunits

(beads and DNA segments) at each step are determined by the forces that act on each subunit,

their viscous drag in the aqueous medium and the random force that corresponds to the thermal

motion. In this way, real-time dynamics may be calculated for large systems, such as

superhelical DNA21; 95, chromatin chains65; 96 or entire interphase chromosomes97, over time

scales of several hundred milliseconds.

Brownian dynamics models of the chromatin fiber
In an early attempt to model the dynamics of the chromatin fiber, Ehrlich and Langowski96

assumed a chain geometry similar to the one used later by Katritch et al.89: nucleosomes were

approximated as spherical beads and the linker DNA as a segmented flexible polymer with

Debye-Hückel electrostatics.  The interaction between nucleosomes was a steep repulsive

Lennard-Jones type potential; attractive interactions were not included.

With this model, dynamics of dinucleosomes could be simulated for trajectories of 50 µs within

a couple of hours of CPU time. From these trajectories, diffusion coefficients were extracted
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and compared with the light scattering data of Yao et al.98. The salt-dependent increase of the

diffusion coefficient could be reproduced quantitatively, using a linker length of 76 bp, an

effective hydrodynamic radius of the nucleosome of 5.95 nm and a linker DNA bending angle

of 40°. Also, the simulated sedimentation coefficients showed good agreement with the

experiments of Butler and Thomas99. The ionic strength dependence of the diffusion coefficient

was interpreted by a change in the conformation of the linker DNA opening angle rather than

changed bending of the linker DNA.

The missing internucleosome attraction, however, led to problems when longer nucleosome

chains were simulated. Starting from an extended zig-zag conformation, folding of a 25-

nucleosome chain occurred within 200 µs and the diameter of the resulting fiber-like structure

was 45 nm in approximate agreement with values measured for chicken erythrocyte chromatin.

On the other hand, the structure showed no regular helical arrangement of the nucleosomes, and

the mass density of 1.3 nucleosomes/11 nm was much less than typical experimental values.

A more detailed view of the dynamics of a chromatin chain was achieved in a recent Brownian

dynamics simulation by Beard and Schlick65. Like in previous work, the DNA is treated as a

segmented elastic chain; however, the nucleosomes are modeled as flat cylinders with the DNA

attached to the cylinder surface at the positions known from the crystallographic structure of the

nucleosome. Moreover, the electrostatic interactions are treated in a very detailed manner: the

charge distribution on the nucleosome core particle is obtained from a solution to the nonlinear

Poisson-Boltzmann equation in the surrounding solvent, and the total electrostatic energy is

computed through the Debye-Hückel approximation over all charges on the nucleosome and the

linker DNA.

Using this model, the authors performed Brownian dynamics simulations with a time step of 2

ps and maximum simulation times of 50 ns for a 48-nucleosome chain and 100 ns for di- and

trinucleosomes. Like in the previous work of Ehrlich et al.96 the oligonucleosome trajectories
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were used to compute diffusion coefficients and compare them to the experimental data by Yao

et al.98 and Bednar et al.16. The study does predict a salt-dependent compaction of the

oligonucleosomes, which manifests itself in an increased diffusion coefficient; within the limits

of salt concentration studied, the authors obtained good quantitative agreement with the

experimental data. The simulations on the 48-nucleosome chain show a stable 30 nm diameter

zig-zag fiber at 50 mM salt, which unfolds when the salt concentration is decreased to 10 mM.

Due to the computational requirements of the dynamics simulation, only the initial phase of the

unfolding could be simulated and the equilibrium configuration was obtained through a Monte-

Carlo simulation using the same energetics as the BD model.

The flexibility of the 30 nm fiber
For understanding the folding of the chromatin chain into interphase and metaphase

chromosomes, an important quantity to be known is its flexibility, expressed as the bending

persistence length. Distance distribution analysis for genetic marker pairs in human fibroblast

nuclei 100; 101; 102 suggested a wormlike chain conformation for the 30 nm fiber with a persistence

length Lp=100-140 nm. On the other hand, scanning force microscopy analysis of end-to-end

distances of chromatin fibers on a mica surface gave Lp = 30-50 nm (Castro103  as cited by

Houchmanzadeh104), but the binding conditions of the fiber to the mica will influence the

measured persistence length to a great extent (Bussiek, Mücke and Langowski, submitted to J.

Mol. Biol.).  At low salt concentrations, stretching experiments of single chromatin fibers from

chicken erythrocytes with laser tweezers yielded Lp = 30 nm66, but no data for the persistence

length at physiological salt was given there. Two in vivo studies have been published, where

recombination frequencies in human cells105 or formaldehyde crosslinking probabilities in

yeast106 have been used to measure relative end-to-end distances. These studies report rather

small persistence lengths of 30-50 nm. Thus, the experimental values for Lp in the literature

span a rather large range of 30-140 nm, where the smaller values were obtained either on

chromatin fibers in low salt or on chromosomes that were constrained in the volume of a
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nucleus. Our recent simulations of the 30 nm chromatin fiber structure reported above suggest a

rather stiff chain of Lp ≈ 250 nm for very regular nucleosome spacing and short linkers, which

decreases for more irregularly spaced nucleosomes or longer linkers.

The small persistence length obtained in vivo by recombination or crosslinking experiments,

however, may correspond to a chromatin fiber stiffness several times higher than that estimated

from the measured Lp alone. The persistence length is computed from distance measurements

assuming an unconstrained self-crossing random walk. Since this condition is only fulfilled for

the interphase chromatin fiber over rather short distances, the measured apparent Lp will

depend, for a given chain flexibility, on the folding topology and the region or genomic

separation for which it is calculated. The apparent Lp decreases with increasing compaction of

the chromatin fiber relative to a random walk, because the assumption of a free wormlike chain

breaks down. In recent model calculations of the arrangement of a 30 nm fiber with a free

persistence length of Lp = 150 nm in interphase chromosomes (T. A. Knoch, Ph.D. thesis,

University of Heidelberg, Knoch and Langowski, manuscript in preparation) we find that the

folding topology may reduce the apparent persistence length quite dramatically.

This shows that the chromatin chain flexibility can only be reliably obtained from genomic

distance measurements when an unconstrained random walk behavior of the chromatin fiber is

assured100; 101. On the other hand this might explain the rather big differences in experimental

values for the chromatin persistence length100; 101; 102; 107; 108. The in vivo studies that determined

the persistence length indirectly by recombination105 or crosslinking techniques106 probably

overestimate the chromatin fiber flexibility, because the external constraints such as folding

topology and finite nuclear volume have not been taken into account. At any rate, a persistence

length for the unconstrained chromatin fiber that is comparable to its diameter would give rise

to structures that are so irregular that the notion of a ’fiber’ breaks down completely.

Comparison with numerical simulations, however, might allow extraction of physical properties

of the chromatin fiber from sufficiently detailed experimental data.
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Conclusion
Let us summarize the state of our understanding of the physics of chromatin folding by saying

that the current knowledge about the structure and interaction of the basic components of

chromatin – histones and DNA – enables us to develop the first quantitative models of the

structure and dynamics of the chromatin fiber. Even so, these models are still at a very

rudimentary stage: data on the interaction of the histone tails with their surroundings, on DNA

binding/unbinding at the nucleosome surface, nucleosome/nucleosome interactions, the role of

histone modifications and other chromatin-associated proteins are badly needed. However,

biophysical techniques together with computational modeling and the ever-expanding body of

such quantitative data hold a promising outlook for a much more detailed picture of the

chromatin fiber in the years to come.
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