
Macromol. Theory Simul. 6,103-143 (1997) 103 

Feature Article 

Theory of dilute polyampholyte solutions in external 
electrical fields 

Helmut Schiessel*, Alexander Blumen 

Theoretical Polymer Physics, Freiburg University, 
Rheinstr. 12,791 04 Freiburg, Germany 

(Received: July 2, 1996; revised manuscript of July 17, 1996) 

SUMMARY: 
In this work we display recent findings on the conformations and dynamics of polyam- 

pholytes (PAS; polymers with positively and negatively charged monomers) in external 
electrical fields. We consider the case in which the interactions between the charges are 
less important (weak coupling limit) and also the case in which they are fundamental 
(strong coupling case). In the weak coupling limit we present analytical results for Gaus- 
sian and also for freely-jointed chains. Through scaling arguments we discuss the influ- 
ence of the excluded volume on the PA's configurations. Furthermore we evaluate the 
dynamics of PAS in the framework of the Rouse and of the Zimm models. In the strong- 
coupling regime PAS with vanishing total charge form spherical globules. Using a droplet 
analogy we examine the response of PAS to external fields and show the onset of an 
instability reminiscent of a first-order phase transition. 

1. Introduction 

Recently polyampholytes (PAS), i.e. heteropolymers carrying quenched positive 
and negative charges along their backbone, have received much attention; the inves- 
tigation of their conformational and dynamical properties is of much current interest. 
A characteristic feature of PAS are the competing interactions between the charged 
monomers. Thus PAS resemble in certain ways proteins, whose specific sequence of 
monomers induce their unique conformation'-5). From a more general point of view 
PAS may be seen as being soft matter counterparts to random systems with compet- 
ing interactions, such as spin 

Many current investigations focus on the influence of the charge distribution on 
the PAS' conformational For random PAS where the q charges are 
located randomly along the chain, the determination of the conformation is, how- 
ever, a difficult task. The most important parameter here is the excess charge: 
Whereas neutral PAS form spherical globules12), highly charged PAS behave simi- 
larly to polyelectrolytes, i. e., they are highly expanded. Theoretical and numerical 
investigations indicate a critical excess charge Qc, namely Q, = q& ( N  denotes 
the number of monomers), which marks the borderline between compact and 
expanded states 7 2  20- 22) . Th' I S  is also consistent with experiments on polyampholyte 
 solution^^^-^^) and  gel^^'-^^), where both compact and extended conformations 
were observed. 
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Another question concerns the influence of an external electrical field on the 
dynamical and conformational properties of a PA with a given distribution of 
charges. Whereas the general situation is much more involved34), in the weak coup- 
ling limit, i.e. when the interaction between the individual charges is of marginal 
importance, one has a generalized tug of war: the electric field acts on the charged 
monomers and pulls portions of the chain in different  direction^^^-^^). A similar 
situation obtains for an A-B copolymer at the interface between two immiscible 
homopolymers A and B3@: the concentration profile perpendicular to the interface 
may exhibit an extended gradient region39340); if the A-B copolymer is located in 
this gradient region, its different monomers will feel forces in opposite directions, 
quite similar to the situation of a PA in an external electrical field. 
Using analytical methods as well as scaling arguments we have calculated in a series 
of works34-37) the behavior of PAS in external electrical fields for different physical 
regimes. It is the purpose of this feature article to survey our present knowledge of 
the field and to make connections to related problems; by this we extend in several 
instances the previous approaches. In detail, the paper is organized as follows: In 
section 2 we discuss the role of the interactions between the charges. In section 2.1 
we review following the lines of Higgs and Joanny'*) the results for neutral PAS (i. e. 
for which the overall charge vanishes); section 2.2 is devoted to the role of the 
excess charge for non-neutral PAS. Section 3 displays the conformational properties 
of PAS in external fields in the weak-coupling limit. Here we start by modeling the 
PA as a Gaussian chain in section 3.1, then as a freely-jointed chain in section 3.2 
(cf. also ref.37)) and as an excluded volume chain in section 3.334). Section 4 is 
devoted to the conformational properties of a PA in the case when the interaction 
between the charges plays a dominant role (strong coupling); here an instability is 
predicted34). In section 4 the dynamical properties of PAS in external fields are calcu- 
lated in terms of the Rouse35936) and of the Zimm dynamics. Our conclusions are 
summarized in section 5. 

2. Randomly charged PAS: collapsed and stretched conformations 

Two antagonistic effects determine the overall shape of a PA. First the Coulomb 
attraction of oppositely charged monomers may induce a collapse. Secondly, the PA 
may have an excess charge; this leads to a repulsion which may induce a stretching 
of the chain. In order to distinguish between these two mechanisms we first report in 
section 2.1 some results for neutral PAS, whereas the influence of an excess charge 
is discussed in section 2.2. 

2.1. Collapse of neutral chains 

Consider a PA with zero total charge, whose polymerisation degree is N, N ,> 1 .  A 
fraction 2f of the monomers is charged, so that one has f N  positive charges +q and 
f N  negative charges -4. The charges are distributed randomly along the chain and 
form a quenched pattern. We assume furthermore that no counterions are present; 
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such counterions are not required experimentally since the PAS are - as a whole - 
already neutral. As it is such neutral PAS collapse to spherical glo- 
bules with a volume V significantly smaller than the unperturbed chain volume 
b3N3’ and significantly larger than the volume b3N of the closely packed configura- 
tion. Here b denotes the monomer size and the Flory exponent v equals 3/5 for a 
swollen chain (good solvent) and 1/2 for an ideal chain (@-solvent). Thus the follow- 
ing relations hold: 

b3N e V 4 b3N3” (1) 

which impose some restrictions on the physical parameter (see below). Edwards, 
King and Pincuss) suggested that a neutral PA behaves similarly to a (micro)electro- 
lyte confined to a volume I/: Starting from this assumption Higgs and Joanny”) esti- 
mated the volume of such a PA using the Debye-Huckel approximation (see also 
ref.I7)). Neglecting the connectivity of the chain the screening length r, within the 
PA can be estimated as in the case of an electrolyte: In the volume r i  there is a typi- 
cal excess charge of the order m q ,  with p = N N  being the density of mono- 
mers. Letting the electrostatic interaction between such volumes be at most of the 
thermal energy T (expressed in units of the Boltzmann constant k B )  leads to the con- 
dition (fpri)q2/(Er,) = T (where E denotes the dielectric constant of the solvent). 
Thus one finds r D  = d m ,  with lB = q21(ET) being the Bjerrum length. At 
length scales shorter than rD the thermal fluctuations dominate and the interaction 
between the monomers can be neglected. At length scales comparable to r, the 
monomers will arrange themselves such that monomer groups which have a positive 
excess charge are surrounded by groups with negative excess charge, and vice versa 
(screening). Thus one finds for the electrostatic free energy of densely packed 
groups F, = -(V/ri)T, which is the classical result of the Debye-Huckel approxima- 
tion4‘): 

(In Eq. (2) and in other similar expressions of this section we omit dimensionless 
constants of order unity.) 

The electrostatic part of the free energy, Eq. (2), induces a collapse; the size of the 
PA will be lowered until the monomers’ excluded volume balances the attractive 
forces”). The contribution F ,  of the excluded volume to the free energy of a poly- 
mer confined inside a volume V can be estimated using scaling arguments as fol- 
l o w ~ ~ ~ , ~ ~ ) :  The osmotic pressure n = 4 F l / 8 V  has the form n = (Tp/N)f(p/p*) 
wherefis a scaling function and p* is the critical monomer density at which the 
polymer occupies the whole volume, i.e., p* = N/(b3N3’). For p 4 p* (small con- 
centrations) f is a constant and one recovers the ideal gas law. In the semi-dilute 
regime (p* 4 p 4 b-3) which we are interested in, n has to be a function of p only 
and has to be independent of N .  This requirement leads tof(x) ax“ with m = 1/(3v - 
1). Thus n = ~b3113v-1) 3v/(3v-I) f rom which F ,  follows by integration: P 
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Note that for the 0-case (v = 112) F ,  represents the three-body collision term, i. e., 
F ,  = b6N3/V2. Minimizing F = F, + F ,  with respect to V) Higgs and Joanny12) find that 

for v = 1/2 (ideal chain) 
b 

b 3 N 7  

(4) 

N [ k )  for v = 3/5(swollen chain) 

Thus this Flory-type argument predicts a collapsed PA globule with a monomer 
density of p =.flBlb4 in a @solvent and of p = (jlB)2/b5 in a good solvent. Note, how- 
ever, that the argument used is only valid as long as the PA’s volume, Eq. (4), lies 
within the interval given by Eq. ( I ) .  This leads to the following condition: 

jlB 4 b 4 NI-Y, ( 5 )  

The first inequality is necessary for the Debye-Huckel approximation to hold4”, 
the second one means that the electrostatic interaction overcomes the thermal agita- 
tion of the chain (strong-coupling case). In the opposite case 

b > N‘-YB (6) 

the electrostatic interaction between the charges is less than the thermal effects 
(weak-coupling case) and the PA has the usual Gaussian (@solvent) or excluded 
volume (good solvent) conformation. In this weak coupling limit the behavior of a 
PA in external electrical fields can be treated ana ly t i~a l ly~~-~’)  (see section 3 for sta- 
tistical and section 5 for dynamical features). Condition (6) can be attained readily 
by taking a solxent with a large dielectric constant: one has for water at room tem- 
perature lB ~7 A so that for smallfEq. (6) is readily fulfilled. 

The strong-coupling case, i.e. when Eq. (5) is obeyed, can be visualized in terms 
of the following blob pictureI2): The electrostatic free energy is comparable to T for 
subchains of size r = r, (cf. Eq. (2)). These Debye blobs obey r = r,  = bgf;, where 
g, is the number of monomers per blob. This, together with r, =fgDIB gives gD = 
(b@’B)”(’-v). By assuming that the whole PA is densely packed with swollen (ideal) 
blobs, the volume of the PA is estimated as being V = (Wg,,) 2 ,  from which Eq. (4) 
again follows. 

Victor and Imbert16) and Wittmer, Johner and JoannyI8) considered also PAS 
where the positive and negative charges are placed in an alternating fashion. They 
showed that the Debye-Huckel approximation is inapplicable to such PAS. An alter- 
nating PA undergoes a collapse transition similar to that displayed by an uncharged 
polymer in a poor solvent; furthermore the collapsed chain behaves as a dielectric 
material (cf. also the experimental study by Neyret et aL4)). Another type of a non- 
random arrangement of charges, for which the Debye-Huckel treatment has been 
refined, is given by the symmetric diblock PA’’) where one half of the chain contains 
positively charged, the other half negatively charged monomers. 



Theory of dilute polyampholyte solutions in external electrical fields 107 

2.2 Effect of a net charge 

The Debye-Huckel argument given above is based on the strict electroneutrality 
of the system. The collapse mechanism of neutral PAS stems from the screening of 
the charges and does not hold for highly charged chains; for these the repelling force 
of the unscreenable excess charge Q,,, induces the stretching of the chain. Compar- 
ing the size of a Debye blob with the polyelectrolyte blob size Higgs and Joanny”) 
conclude that a PA with a sufficiently high net charge stretches out in a way similar 
to a p~lyelectrolyte~~).  In another approach (which is analogous to the renormaliza- 
tion treatment for polyele~trolytes~~)) Kantor and Kardar] find that due to typical 
charge fluctuations of order qm the PA extends. 

An important improvement in the understanding of the behavior of charged PAS is 
the realization that the surface tension of the globular state may play a dominant 
role. For a PA whose net charge exceeds a certain critical value Gutin and Shakhno- 
vich”) predict the elongation of the globule due to the competition between surface 
tension and the electrostatic repulsion. They find this effect to be drastic for PAS 
whose charge sequences are correlated over long ranges (such sequences have been 
found, for instance, in DNA47’). Using a two-parameter Flory theory Dobrynin and 
Rubinstein”) conclude that PAS with sufficiently high charge asymmetry show three 
characteristic regimes: at high temperatures there is a region where the charges are 
unimportant (unperturbed regime); this is followed at intermediate temperatures by 
a polyelectrolyte-type regime in which the chain is stretched into a string of blobs. 
At sufficiently small temperatures, however, the fluctuation induced attraction dom- 
inates and one finds”) an elongated globule, similar to ref.‘”. We note that these 
scaling approaches are focused on the overall shape of the elongated globule, i.e. its 
length and width. In refs.2oq22) Kantor and Kardar suggest that, in analogy to charged 
drops, a more refined analysis is needed; they conclude that the PA may stretch out 
in a necklace shape. The inhomogeneities of the charge distribution may perturb the 
geometry of an ordered necklace; thus a detailed study of the properties of the 
charge distribution is necessary25’. 

The critical value of the excess charge Q,,, which separates the regimes of 
stretched PAS from collapsed PAS can be roughly estimated by the following argu- 
ment given by Kantor and KardarZ2): Denote the charge of the n th bead by qn (n  = 0, 
1, ..., N - 1) and take it to be a quenched variable (i.e. the set {qn)  stays fixed for a 
given PA). Q,,, is evidently Q,,, = En qn. Consider now for fixed Q,,, the random 
{qn}  sets involved. Here each monomer is taken to be either positively or negatively 
charged, i. e. qk = q. Thus out of N monomers N+ carry the charge +q and N- mono- 
mers the charge -9; one has N = N+ + N- and N+- N- = Q,,,/q. For a random distribu- 
tion of such charges along the chain one has the following charge correlations: 

for i = j  f q2 
(7 )  
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Here the brackets (...) denote averages with respect to different realizations of the 
{qn}  sequences. At sufficiently high temperatures the geometry of the PA is only 
slightly perturbed and the PAS' radius of gyration obeys R, - N" . Using Eq. (7) and 
taking R, as a measure for the typical interparticle distances one finds for the elec- 
trostatic energy 

where the thermal average is denoted by the dash, .7. We note in Eq. (8) the 
appearance of a critical charge Q, G q fi connected - with a change of sign for cu,> 
as a function of Q,,, . We define now TQ,", = I (U,) I .  For T %- TQ,", the electrostatic 
interaction plays a minor role. Decreasing T below TQ,~,  the electrostatic interaction ~ 

induces a change of the PAS conformation: PAS with Q , ,  < Q, will lower (U,) by 
shrinking with decreasing temperature whereas chains with Q,, > Q, will expand 
when T is lowered. Note that for Q,, = 0 the condition for the unperturbed state, b > 
N'-"lB (cf. Eq. (6)),  is indeed equivalent to the condition TQ,~,=O > I(u,>l. Numerical 
simulations of PAS confirm these arguments22). 

The fi-dependence of the critical excess charge Q, has interesting consequences 
for random PAS where the charges are distributed uncorrelated along the chain, i. e., 
where the charge correlations obey 

This implies automatically that the average of the total charge vanishes, i.e., 
(Q,J = 0. A given chain, however, is not necessarily neutral and the mean-squared 
total charge is given by (Q;,) = q2N which is of same order as QZ. Thus for a given 
ensemble of random PAS one may find compact globules as well as highly stretched 
configurations. 

3. Conformational properties of PAS in external fields (weak coupling limit) 

This section is devoted to the equilibrium properties of single polyampholyte 
chains when the electrostatic interaction between charges can be neglected, i. e. 
when condition Eq. (6) is fulfilled. In this weak coupling limit and in the absence of 
an external electrical field the chain is practically unperturbed so that the PA takes 
the conformation of a Gaussian or an excluded volume coil depending on the sol- 
vent's quality. 

3.1. Gaussian chain 

Here we are interested in the linear response of PAS to electrical fields; this 
implies that the external fields and thus the deformations are not too large. In this 
subsection we assume the 8-condition and thus neglect the excluded volume effect. 
We relegate the discussion of the finite chain's extensibility under large deforma- 
tions to subsection 3.2 and consider swollen PAS in subsection 3.3. 
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We view the PA as a Gaussian chain, i.e. as consisting of N charged beads, con- 
nected into a linear chain by harmonic springs. The chain’s position is given by the 
set ( R , ] ,  where R ,  = (X, ,  Y,, 2,) is the position vector of the nth bead (n = 0, 1, ..., 
N - 1). In the absence of intramolecular electrostatic and of excluded volume inter- 
actions the potential energy U (  ( R , } )  of the PA chain contains only the elastic contri- 
butions of the neighbouring segments and the interactions with the external electric 
field E:  

In Eq. (10) K denotes the spring constant K = 3 Th2.  The third term is introduced 
mainly for technical reasons: it can be used (see below) to derive readily from the 
partition function the average distance between the ith and the j t h  monomer with 
0 I j  < i I N - 1. Alternatively the chain’s configuration can be represented by the 
set (r,)  of bond vectors r, = R, - R,-] (n= 1, ..., N - 1) from which the positions of 
the beads follow: 

Introducing further the cumulative charge variable Q k  = XEiI qj , the potential 
energy, Eq. (lo), can be reformulated as: 

N - 1  

In Eq. (12) Q,,, denotes the total charge, Q,, = QO. In the following we restrict 
first our considerations to neutral PAS for which the total charge Q,,, vanishes; we 
implement the extension to PAS with a non-vanishing net charge afterwards. For the 
partition function Z = ]drl.. .drN-l exp(-U/r) we find readily that 

3 N - 3  
(QnEI2b2 ) fi exp ( (Q,E +f)’b2 ) ‘=(Gb) ,= I  nexp( 6 ~ 2  n=]+l 6 T 2  

5 exp ( (QnE)2b2 ) 
6 T 2  n=i+l 

We proceed further by calculating the distance between a given pair of monomers 
i andj. In the following we take the Y-axis in the direction of the field E 

E = ( O , E , O )  (14) 
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and set further f = (0, 0). The thermally averaged mean-squared Y-component of 
the distance between the ith and j t h  monomer, Pij = Ri - Rj with i > j can be evalu- 
ated by differentiating 2 twice with respect t0.L i. e. 

Inserting Eq. (13) into Eq. (15) we find: 

i.e., 9 is the sum of the usual Gaussian term and a field induced stretching. Since 
for the Gaussian chain the different Euclidean coordinates decouple (cf. Eq. (12)) 
the bead - coordinates perpendicular to the field are not affected by the stretching and 
one has X i  = = b2(i - j) /3.  Setting in Eq. (16) i = N - 1 and j = 0 we find for 
the thermally averaged mean-squared Y-component of the end-to-end vector P = 

- R,: 

2 - 

3 P2y = 

Before considering different charge distributions we note first how to handle PAS 
whose total charge does not vanish. In this case the center of mass (CM) moves 
under the influence of the field. In section 5 we calculate for different charge distri- 
butions the CM’s drift motion under friction. Here, however, we are interested in the 
(internal) polymer conformations, which we relate to the position RCM of the CM, 
R ,  = Ro + Cri; ( N  - k ) r k / N .  The potential energy, Eq. (12) with f = 0, can be 
rewritten as: 

In Eq. (1 8) Q k  is a transformed charge variable defined by 

As usual the first term in Eq. (18) represents the total external force acting on the 
CM whereas the second and the third term are internal energy terms, which depend 
only on the internal coordinates ( rk]  . The thermal average over the internal confor- 
mations of a PA with Q,,-+ 0 may be computed following the lines for a neutral PA 
by changing from Q to Qk;  this corresponds to a change in the individual charges 
from qk to 
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( i k  = q k  - Q m / N  (20) 

We now turn to the study of PAS with prescribed distributions of charges. As a 
first example let us consider the case where only the end-beads are charged, namely 
go = -4, qN-, = q and qk = 0 otherwise. From this we have as cumulative charge vari- 
ables Qk = q for k = 1, ..., N - 1 and Qo = Q,,, = 0. From Eq. (17) we find for the 
end-to-end distance 

- b2(N - 1) b4q2E2(N - 1)2 
3 + 9 T 2  

Py' = 

i.e. @ is the sum of the usual Gaussian term and a field-induced stretching term 
proportional to N 2 .  Using Eq. (16) we find for the mean-squared distance between 
monomer i and j :  

- b2 b4q2E2 k2 y.2=- k + -  
" 3 9 T 2  

with k = i - j .  Hence, in the special case when the external forces act only on the 
ends of the chain the deformation is uniform: it depends only on the relative distance 
k, but it does not depend on the location (say (i + j)l2) along the chain. 

In general, however, this is not the case. We demonstrate this for a charge distribu- 
tion which mimics the classical tug of war, the symmetric diblock polyampholyte 
(SDP), namely q k  = -q for 0 I k < N12 and qk = q for N12 I k < N ( N  even). Hence 

for k < N / 2  
for k 2 N / 2  Q k =  { :i - k ) q  

From Eq. (16) we find for the local deformation of the segment between the 
monomers i - 1 and i 

for i < N / 2  b4q2E2 i 2  

K--={ b2 3 9 T 2  

9 T 2  
b4q2E2 ( N  - i)2 for i 2 N / 2  

(24) 

Thus from the ends to the middle of the chain the deformation increases. This can 
be understood as follows: The bond connecting the beads i - 1 and i subdivides the 
chain in two parts, one consisting of the beads n = 0, ..., i - 1 with total charge -Qi, 
the other one consisting of the beads n = i, ..., N - 1 with total charge Qj. The exter- 
nal field E acts on the net charges of these two parts, which are connected by a 
spring with spring constant K = 3T/b2, so that the deformation is given by QiE/K 
resulting in Eq. (24) where one has the maximal deformation qEN/(2K) at the middle 
of the chain. Further, using Eqs. (17) and (23) we find for the end-to-end distance 
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- b2(N - I )  b4q2E2N4 
3 + 144T2 

Py2 = 

i. e., a field-induced stretching proportional to N4.  
We turn now to PAS where the charges are randomly positioned along the chain. 

Then it is necessary to perform an average with respect of different realisations of 
the charge distribution (denoted by brackets, (...)). The mean-squared distance 
between two monomers, Eq. (16), takes then the form 

for i > j .  
We consider now random PAS with an uncorrelated distribution of charges, i.e. 

for which Eq. (9) holds. Since a given chain is not necessarily neutral one has to 
transform the charge distribution according to Eq. (20 ) ,  from which we find 

In ref.36) we have also investigated PAS whose charges are placed randomly along 
the chain, under the constraint of global neutrality Q,, 0. Then the charge correla- 
tions are given by Eq. (7) with Q,, = 0, i.e. these correlations are for large N 
approximately the same as the correlations (q& of Eq. (27) .  This means that the 
following considerations are also valid for neutral PAS. 

To evaluate (pr2> we need the correlations of the cumulative charge variables 0,. 
From Eq. (27 )  we find for k 2 1: 

Inserting Eq. (28 )  into Eq. (26) we find for the distance between two monomers 

1 __ b2k 9:;: [ 4 i 2  2 ( y l ) = - + -  - s ( N - 1 - s ) + - ( k - k 3 ) + 2 k 2  3 3 

with k = i - j and s = (i + j ) / 2 .  Especially for a subchain of length k centered around 
the middle of the PA (i. e. s = N/2)  we find the following stretching term for k + 1 : 

I -  __ 2 
3 ] Nk2 - -k3 b2k - b4q2E2 

(Y,?) - __ -___ 
3 - 3 6 T 2  [ 

I U U I  * 
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The case k 4 N follows simply from the fact that the typical excess charges of 
both halves of the chain are of order 4 7 7 1 2  (cf. Eq. (28) with k = 1 = N/2) .  The 
case k = N in Eq. (30) represents the mean-squared end-to-end distance, namely 

~ b2N + q2E2b4N3 
108 T2 (p; )  = -j- 

a result which we have first derived in in the framework of the Rouse 
model (cf. also section 5.1). Another interesting special case is the situation at the 
chain's ends: Thus we find from Eq. (29) for j = 0 and 1 4 i = k 4 N (i.e. s = i/2) 
for the deformation term (q2E2b4/27 T2)k3, i. e. a k3-dependence (Note that here only 
the local charge distribution matters, so that N does not enter). By setting k = 1 we 
obtain the local deformation of the chain: 

2 b2 q2E2b4 
(ys+1/2.~-1/2) - 3 = 

Hence for random PAS the mean-squared local deformation increases from the 
end to the middle of the chain. Let us finally calculate the mean-squared radius of 
gyration. Using Eq. (29) we find for N %I: 

i.e., we find up to numerical constants the same scaling as for the mean-squared 
end-to-end distance, Eq. (31). 

Sommer and Blumen4') considered also generalized Gaussian structures such as 
membranes, gels and polymer networks with randomly charged monomers in the 
weak coupling limit. As long as the structure forms an isotropic and locally homoge- 
neous fractal the radius of gyration (no interaction between the charges) scales in an 
external field as 

Here d, denotes the spectral dimension of the network49). In the case of regular 
lattices d, equals the Euclidean dimension d of the structure. Especially for a linear 
PA one has d = 1 and thus one recovers Eq. (33). Note that in the absence of an 
external field the structure collapses ford, 1 2 ,  the marginal dimension being d, = 2. 
The collapsed structure (d, > 2), however, will unfold again under the influence of 
an external field E, as long as d, < 4. 

Due to its linearity the Gaussian chain model is only reasonable as long as the 
stretching is sufficiently small. A global criterion for the one-dimensional chain fol- 
lows from the total deformation, by the requirement that the PA's mean-squared end- 
to-end distance in field direction, $, has to be much smaller than the end-to-end 
distance of a rodlike configuration, i.e. Py' 4 b2N2.  In the case of a random PA (cf. 
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Eq. (31)) this means that the external field E has to be restricted to the following 
range: 

E < l O T / ( q b f i )  (35) 

A refined criterion follows from a local consideration: the maximal local defor- 
mation should be much smaller than b. From Eq. (32) we find for a random PA that 
E has to be much smaller than 6 T / ( q b f i ) .  Hence in the case of a random PA both 
criteria give an upper bound for E of the same order. Note that in the case of general- 
ized Gaussian structures the range of allowed E-values may be much larger4'): 
Requiring that the stretching term in Eq. (34) is much smaller than the size L of the 
unfolded structure, L2 = b2N2ld7, one finds E + (T/qb)N(ds-2)/2dr. Thus fords > 2 the 
external field may be quite strong without contradicting the Gaussian assumption. 

3.2. Freely-jointed chain 

For larger external fields the finite extensibility of the chain comes into play; this 
aspect can be accounted for by modeling the PA as a freely-jointed chain. We have 
considered this model in ref.37) and we report here some of our main results. As in 
section 3. I we view the PA as consisting of N charged beads, connected into a chain 
by N - 1 links (bonds). Distinct from the Gaussian case these bonds have now a 
fixed length b. The PA is freely jointed5'), i.e. each bond is able to point in any 
direction, independently of the other bonds. The potential energy has the form 

where the quantities r k ,  0, etc. have the same meaning as in section 3.1. For simpli- 
city in Eq. (36) we restricted ourselves to the case in which the test force f acts on 
the chain's ends only. As before this allows to determine readily the end-to-end dis- 
tance. By integrating freely over the directions nk of the rk-vectors we find for the 
partition function 

where we let E and f point in the Y-direction (cf. Eq. (14)). 
Note that the partition function in Eq. (37) is identical to the partition function of 

N - 1 independent dipoles (with charges Qk and -& at a distance b) in an external 
electrical field E or, equivalently, to that of N - 1 magnetic dipoles in an external 
magnetic field; the later is a well-known problem in classical paramagnetism5'). 
This similarity follows from the fact that each bond (say the bond between k - 1 and 
k )  subdivides the chain in two parts, one consisting of the beads n = 0, ..., k - 1 with 
total charge --Qk, the other one consisting of the beads n = k, ..., N - I with total 
charge & .  The external field E acts on the net charges of this two parts, which are 
connected by a bond of fixed length b, hence displaying the effective dipole b e k .  
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Following the lines of section 3.1 we find the mean-squared end-to-end distance 
in field direction by differentiating the partition function, Eq. (37), with respect tof 
This results in 

In Eq. (38) L(x) = coth x - l/x is the Langevin function5'), which shows the fol- 
lowing approximate behavior: 

for 1 4 x 

for x 4 - 1 
L(x)  E x / 3  - x3/45 for - 1 4 x 4  1 (39) 

{:I 

Let us illustrate this again with the chain whose end-beads are charged, i.e. 
qo = -4, qn-l = q and qk = 0 otherwise. Hence Q k  = q for k = 1, ..., N - 1, and 
one finds for N + 1 from Eqs. (38) and (39) for the deformation 

For small fields we reproduce the Gaussian result, Eq. (21 ) ,  whereas in the case of 
large external fields the PA becomes fully stretched. The crossover from the regime 
of linear response to the fully stretched case is described by the Langevin function. 
This is a well-known result for the extension of a freely-jointed chain when forces 
act on its end-heads only (see, for instance, Eq. (65) in chapter VIII of ref.")). 

Another fixed charge distribution which we investigated is the alternating one. In 
the high field limit an alternating PA of an odd polymerisation degree N collapses, 
whereas for N even the PA becomes highly stretched. We refer the interested reader 
to ref.37). 

Let us now turn to random PAS. Then the mean-squared end-to-end distance py' 
has to be averaged with respect to the realisations of [ q k )  . Hence we have either to 
evaluate (ha (cf. Eq. (15 ) )  or forms such as (L(c1Qk) L(c2Q1)) (cf. Eq. (38)), both 
of which are difficult tasks. Thus we - use the approximate expressions for the Lange- 
vin function, Eq. (39), to calculate ( P ; )  from Eq. (38) in the limits of weak and of 
strong fields. Following this strategy we find for weak fields: 

Since usually the third term of Eq. (41) is of the order 1/N smaller than the second 
one we recover for small fields the behavior of the Gaussian model, Eq. (17). For 
strong fields we find from Eqs. (38) and (39): 

(42) 
- b2 
(P;> = -(no) + b2((n+ - n-)'> 3 
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Here n+, n- and no denote the number of Qk with Qk > 0, Qk < 0 and Qk = 0, 
respectively. 

Inserting the correlations of the cumulative charge variable, Eq. (28), into Eqs. 
(41) and (42), the mean-squared deformation for a PA with an uncorrelated charge 
distribution follows. In the limit of small fields, E + T / ( b q f i )  we recover for N + 
1 the result of the Gaussian chain, Eq. (31). For large external perturbations we have 
to know the probability distributions of n+,n- and no (cf. Eq. (42)). For large N 
these distributions can be deduced from results of random walk theory. Note that the 
set {&} can be interpreted as being the path of a Brownian particle starting at 
Go = 0 and arriving after N elementary steps ( j k  ( k  = 0, ..., N - 1) at QN-, = 0. For 
such Brownian bridges it is a well-known result that the sojourn times on the posi- 
tive side, i.e. n+, or on the negative side, i.e. n-, are equally distributed (cf. the equi- 
distribution theorem of section 111.9 of ref.52)). Ignoring (no) which is of order a, 
the probability p+@-) of having precisely n+(n-) steps on the positive (negative) side 
obeys very well p+ = p-  = N1. Hence from Eq. (42) the end-to-end distance in the 
case of large external fields, E $- T/(bq) follows: 

b2 b2N2 = ___ (p,2> S - x ( 2 k  - 3 k=O 
(43) 

Therefore the mean-squared end-to-end distance is a third of the squared length of 
a rodlike chain. This reflects the fact that typically some bonds are in the direction 
of the field (say n, ones) whereas n- bonds are directed opposite to the field, result- 
ing in a random, zigzag configuration. 

3.3. Excluded volume chain 

The models of PAS in the previous sections take no excluded volume effect into 
account; this limits their applicability to the 8-domain: In ref.”) we discussed swol- 
len PAS by using scaling arguments. Here we provide some additional results. 

We have to modify an approach going back to P i n c ~ s ~ ~ )  (cf. also ref.43)) which we 
briefly recall here. Pincus considered a single chain under traction where the forces 
F and -F are applied to the ends. This can, for instance, be realized for a chain with 
charged end-beads, qo = -9, qN-  I = q and q k  = 0 otherwise, so that F = qE. The 
elongation AL of the chain may be written as 

AL = L ( F )  - L = Lq - (3  (44) 

with a dimensionless function cp. Here L = L(0) denotes the end-to-end distance of 
the unperturbed chain L = bW (with v = 315 in a good solvent and v = 112 in a 8- 
solvent), and 6 = T/F with F = IF I .  Now 5 is a characteristic length of the problem: 
For small F, + 1, the response is linear in F, i. e. cp(x) a x, and thus AL a L2F/r, 
i.e., 

b2N2”F 
T 

A L =  ____ (45) 
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Thus in a good solvent the response for small external perturbations is non-linear 
in N .  For large F, VE, $- 1, the chain breaks up into a string of independent blobs, 
each of size 6 (cf. Fig. 1). Inside the blob the external force induces only a small 
perturbation so that one has a swollen (ideal) subchain consisting of g = (w)”” 
monomers. The elongation of the whole chain is then given by AL G ( N / g ) c ,  i. e., 

bF 
N b  - in a €)-solvent 

N b  __ in a good solvent 

bF (I-v)/v T 
bL-Nb(T) .( (:)2/3 (46) 

Note that in this regime the response of the excluded volume chain is linear in N 
but non-linear in the applied force. 

. ,  
F -F Fig. 1. Free polymer < 

under traction F. The 
chain breaks up into a 
string of Pincui blobs 
of equal sizes 5 = T/F -L- 

Let us now consider a PA with a given charge distribution { q k ) .  Then, distinct 
from the original Pincus problem we encounter here in general a situation where the 
force is non-uniform (n-dependent) along the chain: Following the discussion in sec- 
tion 3.1 the force acting on the segment between the monomers n and n + 1 is pro- 
portional to the (rescaled) cumulative charge variable Q,, and is given by F,, = Q,E. 
Thus we need in the following a generalization of Eqs. (45) and (46) for non-uni- 
form stretching. We follow here an argument given by Brochard-Wyart, who consid- 
ered the non-uniform deformation of tethered chains in strong external flowsS4’. We 
denote by 5, = T/F, the (n-dependent) blob sizes, by g, = (c,/b)”” the number of 
monomers of the blob to which n belongs and by I ,  the position of the n th monomer 
in the direction of the field. In the case of small fields (i.e. Ug,, 4 1 for all n) we 
find from Eq. (45) for the local behavior at monomer n 

b2 F,, 
dl, z ~ n2”-’dn 

T (47) 

On the other hand in the strong field regime the local behavior at n follows from 
Eq. (46): 

5, 
gn 

dl,, -dn 
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Let us illustrate this scaling picture for a SDP, where the cumulative charge vari- 
able is given by Eq. (23). For small deformations, i.e. E + T/(qbN'+"), one finds 
from Eq. (47) by integrating over n 

a result which is similar to the uniform deformation when one replaces F i n  Eq. (45) 
by an effective force qEN. Eq. (49) describes very small deformations where AL -G 
bN", i.e. one has a weakly perturbed swollen chain configuration; the case of large 
deformations follows from Eq. (48): 

where a = (qE/"('-")'Vb''V. By integrating we have from Eq. (50) I,, 9 an'" for 
n < N n  and 1, = 21N/2 - IN-,, for n 2 Nl2. Setting n = N we find for the total deforma- 
tion of the chain AL aN"", a result which can also be revealed by inserting in Eq. 
(46) the effective force Fef = qEN. Especially in the case v = 1/2 (0-solvent) the 
total deformation for large external fields obeys AL G (b2qE/"N2, a result which 
also holds in the limit of small fields, Eq. (49). Thus, in the absence of excluded 
volume effects, this argument predicts no crossover between different scaling 
regimes and one recovers (up to a numerical constant) the result of the exact calcula- 
tions, Eq. (25). 

The scaling picture for the highly deformed state contains much more information 
than the displacement of the monomers, 1,. It is also possible to derive the typical 
overall shape from the geometry of the Pincus blobs. For n < N12 (n 2 Nl2) we find 
E,,, a F;' a n-' (6, a ( N  ~ n)-'), i.e. we have a series of blobs whose sizes increase 
towards both ends as shown in Fig. 2. More precisely, making use of I,, a n"" we 
find that to the left of Fig. 2 the blob sizes increase with decreasing 1 as tncl, a n(l)-l 
a tV as indicated in the figure; the exponent equals -3/5 for a swollen chain and 
-1/2 for an ideal chain. The same argument holds for the other end of the chain, i.e., 
the conformation is symmetric around the middle blob. This shape can be compared 
with the typical conformation of a tethered chain in a strong There the 

Fig. 2. Equilibrium 
conformation of a sym- 
metric diblock polyam- 
pholyte (SDP) in an 
external electrical field 
(tug of war). The chain 
consists of a string of 
Pincus blobs of different 
sizes Snco and the global 
shape is trumpet-like at 
both ends 
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forces (blob sizes) decrease (increase) from the grafted site to the free end, so that 
the chain attains a trumpet-like shape. Thus a polymer exposed to a tug of the war 
shows a similar shape, having, however, two trumpet-like ends. 

Note that one has a here rather pronounced stretching of the PA with AL 0: N””. 
Due to their finite extensibility real PAS will show a crossover from this regime to 
stretched configurations, in which the bonds are directed parallel to the external 
field. The onset of this effect occurs in the middle of the chain when sNl2 = b so that 
there the Pincus-blob picture breaks down. This means that at a field strength of E = 
T/(qbN) a regime with a completely stretched middle chain portion sets in. At both 
ends of the chain, however, one still has a Pincus behavior. A similar coexistence 
feature was discussed by Brochard-Wyart for polymer chains under strong flows and 
was called the “stem and fl~wer”-regime~~).  Here, in the classical tug of war situa- 
tion, for sufficiently large E the PA’s conformation consists of two flowers connected 
by a stem. 

Let us now discuss random PAS in terms of this scaling approach. In order to sim- 
plify the calculations and to get a clearer picture we use in the following a preaver- 
aged charge distribution. From Eq. (28) we find for the mean-squared cumulative 
charge variable (Qt) G q$( 1 - n/N) . We use in the following 

I 

instead of Q, . For small external fields we find from Eq. (47) by integration 

with B being the incomplete beta function (cf. Eq. 58.3.1 of ref.56’). Setting n = N 
the total deformation follows: 

(cf. 43.13.2 of ref.56’ for the evaluation of the integral). The crossover to large ten- 
sions (Pincus regime) is given when the sizes of the Pincus blobs become compar- 
able to the radius of the unperturbed chain. Now, in the preaveraged picture the sizes 
of the Pincus blobs obey 

i. e., in this picture we have a series of blobs whose sizes increase towards both ends 
(cf. Fig. 3). Thus using the smallest blob as reference, the crossover to the Pincus 
regime sets in at tNf2 = bhlv. This translates into the following condition for the Pin- 
cus regime: 



120 H. Schiessel, A. Blumen 

For E < E l  the deformation of the chain is given by Eqs. (52) and (53). For 
E 9 El we have to insert Eq. (54) into Eq. (48) and to integrate from 0 to n; this 
results in 

with fj = bllv (,/fqE/T)(I-V)/V N(l+v)l(*v) . F rom Eq. (56) it follows that the deformation 
is symmetric with respect to the middle of the chain. The deformation around one of 
the chain's ends, say the end which contains the monomer k = 1 obeys 1, a n(1+v)1(2v) 
for n 4 N (cf. Eq. (56)), a result which we also found analytically for the Gaussian 
chain (v = 112; cf. the discussion after Eq. (31)). Thus to the left of Fig. 3 the blob 

Fig. 3.  Equilibrium 
conformation of a 
random PA in external 
fields. The PA's shape 
for the preaveraged 
charge distribution is 
shown (see text for 
details) 

sizes increase with decreasing 1 as cno) a n(1)-"* 0: rv/(l+v), which we indicated in the 
figure; the exponent equals -318 for a swollen chain and -113 for an ideal chain. The 
middle of the chain shows another scaling behavior: From Eq. (56) one finds for a 
subchain of length m (m 4 N): lN,2 - lN/2-m oc rnN('-v)'(2v) (cf. Eq. (30) for the 8-case). 
This is due to the typical charge fluctuations of both halves of the chain. Thus the 
chain's central part consists of equally sized Debye blobs with N"*P (cf. Eq. 
(54) and Fig. 3). 

To obtain the end-to-end distance we set in Eq. (56) n = Nand find 

i. e., explicitly 

bN -* in a 0-solvent 

hL= { bN( )u3 in a good solvent 
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For the &case we hence recover with Eq. (58) (up to a numerical constant) the 
result for Gaussian chains, Eq. (31). The excluded volume chain shows a similar 
non-linear response as in the case of a uniform deformation, cf. Eq. (46); one has 
simply to replace F by an effective force of the order Fefl = m q E .  This simplified 
picture of equally sized Pincus blobs is called monoblock ~pproximution~~) and will 
be used in section 5.2. 

Due to Eq. (58) we have here a rather pronounced stretching of the chain with AL 
a N(1+v)/(2v) .  Thus at a sufficiently large external field E = E2 we have a crossover 
from the Pincus regime to the stem and flower-regime with completely stretched 
portions of the chain (stems). In the preaveraged picture the onset of this effect is 
predicted to occur in the middle of the chain when sNl2 = b. This means that the field 
strength E2 with 

T 

marks the border between the Pincus regime, Eq. (58) (E < E2) and the regime of 
stretched chain configurations (E + E2). As shown in section 3.2 for the freely- 
jointed chain, in this regime one has L2 = b2N2/3 for the mean-squared end-to-end 
distance of the stretched chain configuration (cf. Eq. (43)). Note that for large N the 
Pincus regime occurs for a rather broad interval of E-values, namely 
E , < E < E 2 n N V E , .  

The scaling approach discussed in this section shows how a given charge distribu- 
tion translates into the PA's overall shape (i.e., a sequence of Pincus blobs as 
depicted, for instance, in Fig. 2) when the chain is exposed to an external field E. 
The other way around one may ask the following question: Suppose one aims to 
have a set of Pincus blobs whose sizes obey 

with 0 < 1 < L (cf. Fig. 4); how does one have to choose the sequence of charges qn 
such that Eq. (60) is fulfilled? To be more precise: Suppose that Eq. (60) is given 
together with E, 7: b and the solvent quality, i.e., v. As we will see the function f has 
to fulfil several conditions: (I) lim,&(l) = liml,lf(l) = 00, (1I)fhas to be continuous 
and piecewise differentiable, (III)f'-v)'v has to be integrable on the interval 0 5 15 
L, and (IV) evidently f(1) 1 0 for 0 < 1 < L, where the equality sign holds only at 
isolated values. Then the length of the PA, N, and its charge distribution can be 
evaluated as follows. One has to start from the relation F, = T/s, = T/f(l(n)) together 
with F, = Q,E = E J; dk q k  (from which automatically condition (I) follows, since 
Q o  = QN = 0). We find immediately 

1 
E an E f 2 ( 1 ( n ) )  

aF, - T f '(l(n))l'(n) - 9 n = - -  - 

(here we need condition (11)). Thus we have to determine now the function l(n). 
From Eq. (48) we find 
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dl bl/v ‘“ (1)  b l / V  ( J ( l ) ) ( l W V  (62) 
1 d 4 4  - 1 (1-v)/v - -- 

from which the inverse function of Z(n) follows by integration (with n(0) = 0) 

Fig. 4. Polyampholyte 
in an external field con- 
sisting of a string of 
Pincus blobs with given 
sizes cncl, =f(Z).  From 
this the sequence of 
charges which induce 
this shape can be deter- 
mined (see text) 

Due to the condition (111) the integral exists for the function f considered and the 
implicit relation for Eq. (63) can be inverted (due to condition (IV)), giving l(n).  
Furthermore from Eq. (63) N = n(L) follows. Using Eq. (62) together with 
n’(l(n)) = l/Z’(n), Eq. (61) can be reformulated as follows: 

b”” T f ’ ( l (n ) )  
(J(l(n)))(’+v)’v 

d n  = 7 

Thus we have found a receipt how to choose the charge distribution in order to 
obtain a sequence of Pincus blobs with preassigned sizes: First calculate Eq. (63) to 
get n(1) and thereby N = n(L) and Z(n); then qn (0 I n I N) follows from Eq. (64). 
Note that for an arbitrary constant c qn = qn + c is also a solution of the problem 
(leading to a PA with a total charge Q,, = cN; cf. also the discussion in section 3.1). 

To give an example consider a double trumpet-like shape with 

The conditions for f restrict the parameters to c > 0 and -v/( 1 - v) < y < 0. From 
Eq. (63) we find for 0 < 1 I W2 n(Z) = pl”yK with K = (1 - v)/v and p = (1 + y ~ ) - ’  

, for W2 < 1 < L we have n(1) = 2n(L/2) - n(L - I) and N is given by N = 
2n(L/2) . Inversion of n(l) results in 

c X / b  1 h. 

(n/p) ‘/(‘+YK) 

L - ( ( N  - n)/F)”(’+YK) 
for 0 5 n 5 N / 2  
for N/2  < n 5 N 

Z(n) = 



Theory of dilute polyampholyte solutions in external electrical fields 123 

Finally, we find from Eq. (64) for the distribution of charges: 

i.e., an algebraic n-dependence of q,, for each half of the polymer and a change of 
the sign in the middle of the chain. The special case y = -v corresponds to the SDP 
discussed above. 

4. Conformational properties of PAS in external fields (strong coupling) 

In this section we study the behavior of PAS in the case of strong interactions 
between the charges (strong coupling case), i.e., when Eq. (5) is fulfilled. In the 
absence of an external field, as discussed in subsection 2.1, neutral PAS form glo- 
bules of densely packed Debye blobs. As we have shown in ref.34' up to a critical 
field E, the PA's response to external fields E is controlled mainly by the surface 
tension; an instability is predicted for E = E,: For E > E, the PA is highly extended. 
We report in subsection 4.1 this surface controlled scenario and discuss the PA's con- 
formational properties of the extended state in subsection 4.2. 

4.1. Drop analogy 

From the discussion of the collapsed state in subsection 2.1 we inferred for the PA 
globule the fixed volume condition, Eq. (4). Thus we are concerned with incompres- 
sible PAS. Their shapes, however, are controlled by other mechanisms, such as the 
competition between the surface tension and the external perturbations. The free 
energy of the surface is of the form 

where S denotes the PA's surface and y the surface tension. Following Dobrynin and 
Rubinstein21) y can be estimated by noting that each thermal blob at the surface has 
(because of missing neighboring blobs) an additional energy of order T. Since the 
radius of these blobs is of the order of the screening length r, one finds for the sur- 
face tension 

In the absence of an external electrical field the PA minimizes its surface energy, 
Eq. (68) by taking a spherical shape - a situation which is reminiscent of a fluid 

Here we consider the case of a neutral PA in an external electrical field. Related 
situations obtain when one applies external electrical fields to dielectric or conduct- 

drop. 
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ing drops (see ref.58) and references therein). Thus a conducting, fluid drop of con- 
ductivity ol suspended in a fluid of conductivity 02, where o2 < o1 , shows the fol- 
lowing response to the external perturbations: Under small electrical fields the drop 
undergoes only a smooth deformation, under larger fields it takes a dumbbell-like 
shape. Under a further increase of the field the drop lengthens rapidly; it becomes 
divided into two blobs connected by a thin thread, before the final breakup occurs. 
For crI S- o2 the response to the external field is different: both ends of the drop 
become pointed and start to eject charged droplets. The ratio of conductivities divid- 
ing these two types of mechanisms lies around oI /02 =: 30. 

The situation of a neutral PA in an external field is related to the above. If one has 
an annealed charge distribution, i. e., if the charges can move freely along the chain 
and follow the field, a response similar to tip-formation mechanism may occur. Due 
to connectivity i t  is, however, not possible for a PA to eject droplets, but it can lower 
its energy by extruding charges along fingers at the two ends. A similar situation 
may also occur when the annealed PA carries a non-vanishing charge; the polymer 
can lower its energy by forming charged, protruding fingers22). 

Here we are, however, interested in the usual case of quenched charge distribu- 
tions. Due to the connectivity of the chain, the positive and the negative charges 
cannot be arbitrarily separated. The situation can be envisaged as follows: Consider 
that a neutral PA chain is divided into two halves; on the average they have excess 
charges of opposite sign, which are typically of the order q f l .  When a sufficiently 
large external field is applied we expect that these halves will rearrange themselves 
so as to minimize the free energy. A way to achieve this is through a deformation of 
the incompressible PA volume, similarly to the previously mentioned dumbbell. 
Note that the fixed volume (incompressibility) condition is not affected by the pre- 
sence of a not-too-strong external field: The major part of the monomers is still orga- 
nized in blobs according to the Debye-Huckel prescription. 

Here we use a simple liquid-like (fixed volume, see Eq. (4)) model for the PAS; 
then only the PAS’ shapes may vary. Furthermore we have to restrict the whole spec- 
trum of possible shapes to a reasonable small subclass. Since we expect that under 
external fields the PAS will follow similar deformation scenarios as conducting 
drops (especially the formation of a neck) we start from a dumbbell-like structure as 
shown in Fig. 5a. It consists of two spheres of equal size which overlap each other. 
We let one of them carry a total charge of q f l ,  so that the other one carries 
- q f l .  The dumbbell-structure takes implicitly into account that the charges are 

Fig. 5. Neck formation 
of a PA globule in an 
external electrical field. 
Here a simplified geome- 
trical shape is depicted: 
(a) charge distribution and 
(b) geometrical para- 
meters. The figures display 
cross-sections of the cylin- 
drically-symmetric dumb- 
bell 
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connected via the PA backbone. Our picture leads to an effective dipole, and to a 
one-parameter family of shapes which depend - for a fixed total volume V - only 
on the distance d between the centers of the spheres (see Fig. 5b). Due to its simple 
geometrical form this model has the advantage of being analytically tractable. We 
speculate that this class of shapes represents a good approximation to the equili- 
brium shapes of real PAS under moderately strong external fields; this holds good up 
to a critical electric field E, at which the whole structure breaks down, see below. 

Let us calculate now the potential (free) energy F,,, of the effective dipole and the 
surface free energy F,, Eq. (68) ,  as a function of the distance d between the centers. 
Fext has for an external field E the form: 

Fexr(d) = -qv‘@Ed (70) 

where we set, for simplicity, the dielectric constant E of the medium to be unity. To 
evaluate Fs we need to know the surface of the dumbbell as a function of d, i. e. S = 
S(d). The surface is simply given by the surface of the two intersecting spherical 
portions. We find by simple integration 

with R, being the radius of the spheres, and h = R ,  + d/2 the height of the portions 
(see Fig. 5b). Furthermore d has to be confined to the interval 0 I d I 2’I3R the 
lower limit corresponding to one (neutral) sphere, with radius R = (3V/(47~))”~, the 
upper limit to two smaller spheres of opposite charge, attached at one point. Now h 
has to be chosen such that the fixed volume condition is fulfilled. Hence, again 
through integration, we have 

(72) 
2K 
3 

--h*(3R, - h)  = v 

with V being given by Eq. (4). From Eq. (72) h = h(d) and then S = S(d) follows 
(see ref.34) for explicit formulas). Minimizing F’ = F,,, + F, with respect to d we 
find further d = d(E) and thus the increase of the PA-length L in field direction: 

5 5  1 1 
3 16 16 48 

L(E)  = 2 h ( d ( E ) )  E R  -+-(1 +aE)”2+-aE+-((1 +aE)’I2) (73) 

with a = 4 m q / ( n y R ) .  For Ea 4 1 the PA’s extension AL = L(E)  - L(0) is linear 
in the external field: 

The dumbbell shape is, however, stable only for external fields E below a critical 
value E, . At E = E, the neck has become so narrow that the PA can lengthen rapidly 
by forming a bridge between the two blobs. The critical value E, can be estimated as 
follows: The radius a of the neck is given by a2 = h(2R1 - h) = h(h - d )  (cf. 
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Fig. 5b). The dumbbell becomes unstable when the external electrical field is so 
large that there exists an infinitesimal deformation where the increase of the surface 
energy equals the decrease in the electrical potential. The ‘weak point’ of the dumb- 
bell is located at its neck. When there a cylindrical bridge of radius a and (infinitesi- 
mal) height dL is formed, the change in surface energy is given by dFs = 2nyadL, 
whereas we find for the electrical potential dF,,, = - f lqEdL.  Thus the dumbbell 
becomes unstable at E = E, with E, given by 

(see ref.34) for details). With this result we obtain for E = E, the geometrical para- 
meters which characterize the dumbbell: they are d I 1.25 R, a = 0.5 R, h = 1.43 R 
and R ,  G 0.81 R. 

E, the surface tension cannot counterbalance the electrical force anymore 
and the PA lengthens rapidly. The PA takes an extended configuration which we dis- 
cuss in the next section. 

At E 

4.2. The extended state 

In the following we use scaling arguments similar to section 3.3 to analyse the 
extended state of the PA in strong fields. First, let us mentally switch off the electro- 
static interaction between the charges; as we will see, the interaction can be incorpo- 
rated easily a posteriori. Without the coupling between the charges we have (in the 
preaveraged picture) the situation depicted in Fig. 3. Here the sizes of the Pincus 
blobs are given by Eq. (54), the positions of the monomers by Eq. (56) and the total 
elongation obeys Eq. (58). 

Let us now consider the role of the electrostatic interactions between the charges. 
Note that the critical electrical field E,, cf. Eq. (75), which is necessary to induce a 
breakup of the globule, is strong enough to fulfil condition ( 5 3 ,  since 
E,/E1 = (R/rD)(bN”/rD) is obviously much larger than unity. The blob picture 
given above remains unchanged for Pincus blobs with 6,  < r,. For such blobs the 
electrostatic energy, Eq. (2), is smaller than T so that the interaction between the 
charged monomers is only a small perturbation. For 5, > r ,  each Debye blob inside 
the Pincus blob contributes an electrostatic free energy of the order T, so that one 
has roughly Tg,/gD = T(<,/rD)”” for the electrostatic energy of the whole Pincus 
blob. Thus for these blobs the Debye-Huckel mechanism discussed in section 2.1 
comes into play and one has instead of such a Pincus blob a condensed set (conden- 
sate) of closely packed Debye blobs. 

In the preaveraged picture where the blob sizes are given by Eq. (54) the larger 
Pincus blobs are located at the ends of the chain. These are candidates to become 
condensates of Debye blobs. Consider the half chain containing the bead with n = 0. 
Here any given monomer n may belong to a condensate as long as 6,  > r,, 1.e. ‘ as 
long as n < n1 with n l ( E )  = ( T / ( 8 q E r D ) ) * .  This means, however, that immedi- 
ately after the breakup of the PA for E = E, only a very small amount of the material 
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is still found in such condensates, since 2nl(E,) /N = r i / R 2  4 1 holds. Thus Eq. 
(58) is also in the strong coupling case a good approximation for L. 

For a given realization ( 9,) of the charge distribution the extended conformation 
may deviate from this ‘typical’ picture. Instead of the preaveraged Eq. (54), the size 
of the Pincus blob around the nth monomer is given by 6, G T/(Q,E). Thus there 
may occur condensates of blobs along the chain at the positions (say n)  for which 
5, > r, holds. Especially, if the cumulative charge variable Q, changes its sign at the 
monomer position no then one has around no a condensate. A further effect which 
occurs at such changes of sign is that the external force acting on the segments 
before and after no changes its direction so that the PA may become folded. In Fig. 6 
we sketch such a conformation. 

E - 
condensate of Debye blobs 

Fig. 6. Configuration of a randomly charged PA for large field strength E > E,. Schema- 
tically depicted is a typical conformation above the instability range. The chain consists 
of strongly stretched portions (strings of Pincus blobs) and of condensates of Debye 
blobs; the latter are to be found at the ends and at turning points of the zig-zag conforma- 
tion (see text for details) 

In subsection 3.3 we have shown that the Pincus picture breaks down for field 
strengths E % E2 (cf. Eq. (59)) where one has stretched chain configurations (stem 
and flower-regime). In our problem the Pincus regime, Eq. (58), occurs only when 
E, < E2,  i.e. when b > 9JzB with 6 = 1/7 (good solvent) or 6 = 1/5 (@solvent). 
Together with condition (5) this means that N’fl~ < b < N ‘ - ” j l ~ .  On the other hand, 
in the strong coupling case, Jz ,  < b < N’jlB, the forces necessary to induce a 
breakup of the structure are so strong that one is for E 2 E, already beyond the Pin- 
cus regime. 

We note here that there are other systems in which strings and globules coexist: 
Especially polymers which are charged as a whole may take the form of necklaces; 
these may be ordered for uniformly charged polyelectrolytes in poor solvents59) or 
disordered for random PAS with an excess charge Q > Q,”). A coil-globule coexis- 
tence may also occur when a collapsed polymer in a poor solvent is deformed6036’). 

E, may be first order. Here we want to discuss a related, but 
distinct situation in which such a transition may be found: it concerns the deforma- 
tion of a collapsed polymer in a poor solvent, as studied by Halperin and Zhulina6’). 
Similar to our case for weak deformations AL the response of the polymer is con- 

’ 

The instability at E 
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trolled by the surface tension so that the restoring force f depends linearly on M: f 
a AL; this parallels Eq. (74) in the PA problem. On the other hand under strong 
deformations the chain breaks up in a series of equally sized (ideal) Pincus blobs, 
which again results in a linear relationship f a U; this corresponds in our problem 
to Eq. (58) (0-solvent). For intermediate deformations Halperin and Zhulina find 
from a scaling analysis of a hypothetical cylindrical phase a (AL)-”2-dependence of 
J i.e., they have a van der Waals-loop in the (f; M)-diagram, which is reminiscent 
of a first-order transition. Using the Maxwell equal area con~t ruc t ion~~)  they postu- 
late that in this regime f a (AL)’ and interpret this as a region where strings and 
globules coexist (for instance, a tadpole configuration). 

In our case, however, a PA globule behaves differently under a slowly increasing 
field; this is due to the fact that the field strength E D  which is necessary to unravel 
the PA globule (by pulling a Debye blob out of the condensate in order to generate a 
string) is much higher than the critical value E, (cf. Eq. (75)): E D  is given by 
&&DrD = T and thus ED/E, = (N/go)’I2rD/R S- 1. Here the globule does not 
increase its size through discharging Debye blobs, but by a sudden breakup at 
E % E, 4 ED. This is different from the situation in ref.60) and it is due to the charac- 
teristic way in which the PA is coupled to the external field: The force acting on a 
portion of the chain containing g monomers scales typically with g”2 so that small 
parts of the chain prefer to remain in the condensate. Thus the surface tension con- 
trols the scenario (necklace forming) until a relatively high field E = E, is reached, 
at which the PA changes abruptly its state. We note that the surface-controlled sce- 
nario may be circumvented when the procedure is inverted, i.e., when one starts 
from the highly extended state and then decreases the field strength moderately. 
Then the PA may pass through coil-globule states (hysteresis effect). Another possi- 
bility to circumvent the surface-controlled scenario may be to start with a PA having 
a sufficiently high charge asymmetry so that the PA globule is already highly 
deformed in the absence of an external field. Being beyond the scope of this paper 
these effects deserve further investigation. 

5. Dynamical properties 

Here we study the dynamical properties of PAS in external electrical fields. We 
restrict our considerations to the weak coupling limit. The PA is modeled as in sub- 
section 3.1 as a Gaussian chain. The dynamics is now incorporated via a Langevin- 
approach, i. e. one introduces Gaussian random forces which model the collisions of 
the solvent molecules with the monomers. As a first approximation we neglect the 
hydrodynamic interactions; this leads us to the exactly tractable Rouse model (cf. 
next subsection). Then we focus in subsection 5.2 on the hydrodynamic interaction 
which, as is known usually modifies the dynamics of polymers in dilute solutions 
drastically. As we show for small external fields this leads to the usual Zimm- 
dynamics, whereas a strongly deformed chain behaves like a rescaled Rouse chain, 
formed from Pincus blobs which now play the role of elementary units (‘‘mono- 
mers”). 
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5. I. Rouse dynamics 

As in section 3.1 we model the PA as a Gaussian chain consisting of N charged 
beads, connected by harmonic springs into a linear chain. In refs.35s36) we considered 
the dynamics of such a chain in terms of the Rouse and we recall here 
the basic results. The chain’s configuration is given by the set of vectors (Rn( t ) } ,  
where R,( t )  = ( X n ( t ) ,  Yn(t),Zn(t)) is the position vector of the nth bead at time t;  n 
= 0, 1, ..., N - 1. The potential energy U ( ( R , ( t ) ] )  corresponds to the potential energy 
of the Gaussian chain, i.e., Eq. (10) ( w i t h f e  0) so that we have 

The chain’s dynamics is described by N coupled Langevin equations63) 

where the hydrodynamic interaction is disregarded. In Eq. (77) 6 is the friction con- 
stant andfR(n, t )  is the random thermal-noise force which mimics the collisions of 
the nth bead of the PA with the solvent molecules. The thermal noise is Gaussian 
with zero mean so that one has 

In Eq. (78) i and j denote the components of the force vector, i. e. i, j = X ,  I: Z and 
the dash stands for thermal averaging, i.e. averaging over the realizations of the 
Langevin forcesf&, t). 

Regarding the suffix n as being continuous (i. e. considering the chain as an elastic 
string) and setting E = (0, E, 0) it follows from Eqs. (76) and (77) 

and 

At the chain’s ends one has the Rouse boundary conditions62363): 
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Since the X -  and Z-components of the R, are field-independent and follow the 
standard Rouse b e h a ~ i o r ~ ’ , ~ ~ )  we can restrict ourselves to the behavior of the Y-com- 
ponent, Eq. (79c). This equation contains two types of forces: the thermal noise term 
fy(n, t )  and a quenched force qnE. We note that configuration-dependent forces were 
also considered recently in other cases based on the Rouse model, namely polymers 
in steady 

The solution of Eq. (79) with the boundary conditions, Eq. (80), is given in the 
form of a Fourier series63) 

and in random layered 

m 

Y, ( t )  = Y ( 0 , t )  + 2 Z Y ( p , t )  c o s ( 5 )  
p= 1 

where Y ( p ,  t ) ,  p = 0, 1, ..., denote the normal coordinates: 

Y(P,t) =Fl I N  dn c o s ( F ) Y , ( t )  

In terms of the coordinates Y@, t )  Eq. (79) can be rewritten as 

Here zR is the Rouse time 

which is the longest internal relaxation time of the harmonic chain. The symbols op 
and (P&, t )  in Eq. (83) denote the Fourier transforms of the charge variable, 

l N  
op = 1 dn cos (F) qn 

and of the thermal noises, 

respectively. From Eq. (78) the Fourier transformed forces follow: 

(87) 
rT 

(PY (P, t )  = 0, (PY (P, t h y ( %  4 = 7 (%q + 6 p 0 ~ 9 0 )  w - t‘) 
We assume that the PA is at t = 0 in thermal equilibrium, i. e. that it has a Gaussian 

conformation. This can be accounted for automatically by stipulating the PA to have 
been subjected to the thermal forces since t = --oo. Furthermore, switching on the 
electric field at t = 0, the normal coordinates are given by 
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+ ? I ' d ?  exp(-p2(t - T ) / T R )  

From Eqs. (81) and (88) we obtain now readily the explicit time dependence of 
the mean-square displacement (MSD) of the chain's CM, the mean squared end-to- 
end distance and the MSD of a tagged bead. We begin the analysis with the CM's 
motion. The Y-component of the trajectory of the CM is given by the 0th normal 
coordinate, i.e., 

Using Eq. (88) with p = 0 and the properties of qr@, t) ,  Eq. (87), we obtain the 
following general result for the MSD of the CM in the Y-direction: 

Note that the MSD of the CM contains two independent contributions: the con- 
ventional Rouse diffusion term62363) which is proportional to t and a drift term due to 
the external electrical field proportional to ?. The drift results from the balance 
between the external force and the 

The Y-component of the end-to-end vector P(t) ,  P(t)  = R d t )  - Ro(t), follows from 
the Fourier series, Eq. (81), for Yo(t) and YN(~): 

-4 i: y(P, t) 
P 

Here the hat on the right-hand side of Eq. (91) designates that the summation 
extends over odd, positive numbers only. Using Eqs. (87), (88) and (91) the mean- 
squared end-to-end distance follows35s 36) 

Eq. (92) will be used below to calculate the short-time behavior t 4 zR.  The long- 
time behavior t + z R ,  when the end-to-end distance has reached its equilibrium, 
obtains from Eq. (92) by evaluating the integrals: 

b2N 16 E2b4N4 9; (opoq) 
+ 9n4T2 p2q2 <Py'(..)> = ~ 3 (93) 
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This result is identical to the corresponding expressions for the Gaussian chain, 
Eq. (17)., This follows from the equivalence between s:dk Qk and 

The behavior of a tagged bead, say one of the chain’s ends, is more complicated. 
( 4 ~ ~ 1 ~ ’ )  c, opip2  

Using Eq. (81) with n = 0, i.e. 
m 

together with Eqs. (87), (88) and (94)  we obtain for the MSD of the 0th bead35236): 

Let us now investigate given charge patterns. As a simple example consider the 
situation in which only one bead of the polymer is charged, say one of its ends. Such 
a situation was realized experimentally by Perkins et al.67-69) and Wirtz7’) who 
dragged individual DNAs with optical tweezers or magnetic beads at one of their 
ends. There are some interesting features which connect the motion of singly 
charged polymers to other physical systems. In refs.35771) we have shown that the 
dynamics of the charged bead is similar to the response of mechanical spring-dash- 
pot arrangements under stress, a class of models which obeys fractional rheological 
constitutive equations (see ref.72’ and references therein) and which we used for a 
mesoscopic picture of the sol-gel t r a n ~ i t i o n ~ ” ~ ~ ) .  Another related situation concerns 
the solid-on-solid description of wetting phenomena discussed by Abraham et 
Here the spreading of a liquid drop on a solid substrate was examined using a Lan- 
gevin equation approach similar to Eq. (79c). 

In the case that only the head-bead of the polymer is charged the (qn)  distribution 
obeys qn = qano and the Fourier transformed o,, Eq. (85) has the form o, = q/N for p 
= 0, 1,2, .... Inserting this into Eq. (90) leads to 

(96) 
2 2T q2E2 *2 

( Y C M ( 4  - YCM(0))  = -f + ~ 

&’ C2N2 

The MSD of the CM contains two independent contributions: the conventional 
Rouse diffusion term proportional to t and a drift term due to the external field, pro- 
portional to ?. One can understand the N-2-dependence of the drift term as follows: 
The electrical force acting on the chain, gE, is independent of N, whereas the friction 
is proportional to N. Under both forces the polymer moves ballistically, with a velo- 
city V a q E 0 .  
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From Eq. (92) we find the following short-time behavior t 4 zR for the Y-compo- 
nent of the end-to-end distance (see ref.36) for details): 

- b2N 4q2 E2b2 
+ 3nCT 

P; ( t )  = - 
3 (97) 

- 
Thus P ; ( t )  is the sum of two independent terms: the equilibrium end-to-end dis- 

tance of a Rouse (without external forces) and a term proportional to t as 
response to the external field. Using Eq. (93) we obtain for the equilibrium end-to- 
end distance at very long times, t + zR : 

b2N q2 E2 b4 N 2  
+ 3 6 p  

Py2(00) = ~ 

3 

The stretching of the chain in the Y-direction (the second term of Eq. (98)) is due 

We now turn to the dynamics of the charged end of the chain. The short time 
to the charged bead pulled by the external field and is proportional to N 2 .  

behavior t + zR follows from Eq. (95) (see again ref.36) for details) 

4q2E2b2 
3x  CT 

(Yo(t) - Y o ( O ) ) ~  = 4b (99) 

a result mentioned previously in ref.7s) The first term in Eq. (99) shows a subdiffu- 
sive behavior (which also governs the short-time behavior of a bead in the absence 
of external forces) and can be interpreted as being induced by thermal processes, in 
which some local “defects”, e.g., kinks, spread out diffusively along the length (bN) 
of the chain7@. Since the chain’s configuration in space is itself random-walk-like, 
so that in the absence of external forces P, a bN’”, these processes are spatially 
confined, which results in a subdiffusive behavior of single beads at short times. The 
second term describes the response of the charged monomer after switching on the 
electrical field E. This term is equal to the corresponding term of Eq. (97), which 
describes the short-time behavior of the end-to-end distance; the reason for this 
equality is that at short times the uncharged end of the chain is not affected by the 
external field. In the long-time regime, t + z R ,  the bead’s motion mirrors the motion 
of the CM of the chain. One finds from Eq. (95)36’ 

t2 (100) 
2T q2E2 

@’ C2N2 
(Yo(t) - Yo(0)) = -t + - 

Let us turn now to the dynamics of random for which the beads are 
either positively or negatively charged, qn = eq; the distribution is such that different 
charges are uncorrelated, i. e. one has Eq. (9)  which reads in the continuum limit 
(q,q,) = q26(n - m). For the Fourier transformed charge variables we find now 
((3;) = q2/N and (o,a,) = (q2/2N)6,, otherwise. 

Now we find from Eq. (90) for the MSD of the CM in the Y-direction: 
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The drift term shows here a "-dependence which is by a factor of N larger than 
in the case of one charged bead (cf. Eq. (96)). One can understand the N'-depen- 
dence of the drift term in the following way: due to the randomness of the qn. the 
total charge of a chain is of the order of N'". Hence the electric force acting on the 
chain goes as NIJ2, while the friction is proportional to N. Under both forces the CM 
moves ballistically, with a velocity V a qE/S&. 

Consider now the behavior of the PA's end-to-end distance for a random place- 
ment of charges. From Eq. (92) we obtain the following short-time behavior 
(t 4 ZR): 

The response of the end-to-end distance to the electrical field follows a t3I2-beha- 
vior which mirrors the behavior of the chain's ends (see below). The equilibrium 
end-to-end distance (t * z,) obeys 

b2N q2 E2 b4 N 3  
+ 108T2 (Py2(m)> = ~ 3 

which recovers the result of the Gaussian chain, Eq. (31). 

~ b t a i n ~ ~ . ~ ~ )  
Now we turn to the dynamics of the PA's end. Making use of Eqs. (95) we 

for t + T,. The $'2-subdrift-term is by a factor 112 smaller than the corresponding 
term describing the short-time dynamics of the end-to-end distance, Eq. (102). For t 
4 T~ one has 

2T q2E2 t2 
( (Yo(t)  - Yo(o))2> = - t  + - 

r /v i 2 N  

i.e. for long-times the bead follows the motion of the CM (cf. Eq. (101)). 
The dynamics of PAS for a variety of additional charge patterns (alternating 

charges, polyelectrolytes, neutral random PAS, correlated distributions of charges) 
can be found in ref.36). 

We close our discussion of the Rouse model by noting that the PAS dynamics can 
also be derived using scaling arguments. Let us demonstrate this for the field- 
induced motion of a single bead in the case of PAS with random, long-range corre- 
lated sequences of For such sequences the net charge of the PA is given 
by ( Q ~ , , )  G q2N2ywith 0 I y I 1. The case y = 112 corresponds to the uncorrelated 
case discussed above, whereas for y > 112 the charges are positively and for y < 112 
negatively correlated. The extreme cases y = 1 and y = 0 correspond to polyelectro- 
lytes and alternating PAS, respectively. Consider now a single bead. In the Rouse 
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picture, starting at t = 0, the total number g of neighboring monomers which are 
involved in a collective motion with this tagged bead grows for short times ( t  4 zR) 
as g(t) = Ct’”. When the Rouse time zR is reached, the PA moves as a whole, i.e. 
g(zR) G N ,  so that C G n/( f i b ) .  Thus for short times, t 4 z R ,  one finds: 

(106a) 

whereas at longer times, t + z R ,  one has 

g ( t )  N (106 b) 

The excess charge Q of the collectively moving set of beads grows with time; one 
has (Q2) G q2(g(t))2Y. The mobility of the set of beads decreases as p 3 ( ( (g( t ) ) - ’ .  
The average velocity of the,tagged monomer in the Y-direction, vy, is then given by 
the velocity of the collectively moving set around it. Thus it obeys 
(v”,g)) G p2(Q2)E2 3 q2E2(-2g2y-2 where g is given by Eq. (106a) for t 4 zR and 
by Eq. (106b) for t + T ~ .  The average displacement of a single bead can be esti- 
mated from the average displacement of the corresponding blob of g monomers, i. e. 
(Y2( t ) )  G (v$(g)) t2  G q2E2(-2g2y-2t2. Fort 4 zR one finds from Eq. (106a) 

For the uncorrelated case, y = 1/2, this reproduces (up to a numerical constant of 
order 1) the field induced short-time behavior of the exact calculations, i.e. Eq. 
(104). For longer times the PA drifts as a whole and we find from Eq. (106b) 
(Y2(t))  G (q2E2/(2N2-2y) t2 which corresponds for y = 1/2 to Eq. (105). Note that 
for polyelectrolytes, y = 1, the drift becomes independent of N36’ (see ref.77) for a 
detailed discussion of the mobility of polyelectrolytes). 

5.2. Hydrodynamic interactions 

In order to take the hydrodynamic interaction between the beads into account one 
has to extend Eq. (77). Introducing the mobility tensor H,,, the corresponding Lan- 
gevin equation has the form63) 

where the moments of the Gaussian random force obey the known, suitable rela- 
t i o n ~ ~ ~ ) .  In the &case the potential energy U is given by Eq. (76), whereas in the 
good solvent case one has in addition the excluded volume contribution 
U1 = (1/2)vT En,, 6(R, - Rm),  where v is the second virial coefficient. In the 
Rouse model the hydrodynamic interaction is disregarded and the mobility tensor is 



136 H. Schiessel, A. Blumen 

diagonal, H,,, = Zi3,,,/{ (with Z being the unit tensor, lap = i?iaP), so that one recovers 
Eq. (77). Now the hydrodynamic interaction between the beads can be incorporated 
by using as the mobility matrix the Oseen tensor63) 

(I09 a) 
Z 

H n n  = 

and 

for n =i= m (109b) 

Here P,,, = R,, - R,, p,,, = PS,,,! and qs denotes the viscosity of the solvent. 
Eq. (108) for n = 0, 1, ..., N - 1 with H,,, given by Eq. (109) represent the equations 
of motion of the Zimm which is in agreement with experimental results 
on dilute polymer solutions. 

Since the situation is now much more involved than in the Rouse case (subsection 
5.1) we do not consider here the transient behavior which develops after switching 
on the external field. We thus investigate the PAS dynamics for the case that the 
external field E acts on the chain since t = -00, i. e. that, as in section 3, the chain is 
already in equilibrium. As usual we proceed by using the preaveraged Oseen ten- 
 SO^^^,^'), i.e. we replace H,,, in Eq. (108) by a,,, , where the average is taken with 
respect to the PA's equilibrium distribution. Distinct from the original Zimm situa- 
tion63*78) where one has to average over the equilibrium distribution of the unper- 
turbed Gaussian or excluded volume coils we have now to take this average with 
respect to the deformed states. 

In order to simplify the averaging procedure we use the monoblock approxima- 
tion (cf. subsection 3.3), i.e. we disregard the inhomogeneity of the stretching and 
assume all Pincus blobs to be of equal size. Thus we approximate the deformed state 
by a cigar-like shape; we assume that an effective force Fe8 = QeffE acts on both 
ends of the chain. The monoblock approximation becomes exact when only the end 
beads are charged and one has Feff F = qE (cf. Eq. (46)). For the other charge 
distributions discussed above one finds Feff = NqE, i.e., Qeff =: N q  for the SDP (see 
the discussion after Eq. (50)) and Fe8 =: mqE, i.e., Qeff = mq for randomly 
charged PAS (cf. the discussion after Eq. (58)). 

Now we average the Oseen tensor with respect to the deformed state in the mono- 
block picture. Since in this approximation one has a homogeneous stretching of the 
chain the mean square distance between a given pair of monomers obeys 

(cf. Eq. (46)). This is consistent with the exact formula for the 8-case which is given 
in Eq. (22). From Eq. (110) we find two regimes for the distances between the beads, 
namely 
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where the crossover distance go is given by go = (bF,ff/T)-”V, i. e., by the number 
of monomers per Pincus blob. The preaveraging of the O s s t e n s o r  is now per- 
formed by replacing in Eq. (109b) lh’,,,,~ by l/!Pnml = l/!Pnml . Furthermore the 
average value of the tensor Z + p,,,p,,,, is given by 413 Z for In - rn1 6 and by 
Z + for In - rnl + go (&Y being the unit vector in the Y-, i. e. in the field direc- 
tion). Thus the preaveraged Oseen tensor is anisotropic for In - rnl S- go. Neglecting 
this anisotropy (i. e., setting I + &&y = Z )  p,,, takes the form 

In terms of this tensor we arrive at the Langevin equation 

Especially in the 8-case, i. e., in the absence of excluded volume effects, the pre- 
averaging procedure leads to linear equations for the R, and decouples the X-,  Y- 
and 2-components. 

Following now ref.63’ we transform Eq. (1 13) to the Rouse normal coordinates, as 
defined in Eq. (82). This leads to 

where oP and ( P R  are defined in Eqs. (85) and (86). Moreover hpq obeys 

hpq = 2 - 6 @  d n l  dm c o s ( F )  c o s ( F ) h ( n  - rn) 

and can be calculated similarly to ref.63) (cf. Eqs. (4.53)-(4.56) therein). Thus we 
find that hpq is approximately given by 

i. e., despite of the hydrodynamic interactions the Rouse normal coordinates are 
nearly decoupled. Now Eq. (1 16) can be approximated by 
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1 
PV-' SP, I qs b NV-' 

N 

go 
for p % - 

Furthermore hoo is calculated separately using Eq. (1 15) giving 

for go 4 N 

for go % N 

In Eq. (1 14) Kp follows directly in the @case to be Kp = 3 ~ ~ ( T / b ~ ) @ / A 9 ~ .  In the 
case of a good solvent the linear form of Eq. ( 1  14) is an approximation6": The strat- 
egy here is to choose the Kp such that the distribution of the R@, t) is consistent 
with the properties of the equilibrium conformation, Eq. (1 11). The behavior for 
short distances, In - ml 4 go,  corresponds to large p ,  p %- N/go. Following now the 
procedure described in section 4.2.2 in ref.63) one finds Kp z (Th2)@/N)2v+1 for p + 
N/go. On the other hand the Kp for p 4 N/go follow from the requirement that the 
thermally averaged equilibrium solutions of Eq. (1  14), i.e. 
Y ( p , t )  = Sf-mdzee-KP(t--T)/rp(Op/rp)E = (op /Kp)E  = ((-1)p - l ) F , f f / ( N K p )  with 
cp = MPp, lead to the homogeneous stretching of the PA (cf. Eq. ( 1 1 1 )  for In - ml%- 
N/go), i.e. Y ( p , t )  z - 1) bgz-' N / p 2 .  Thus we find: 

Now it can be seen from Eqs. (1 17) and (1 19) that the behavior for large p ,  p %- N/ 
go, is the usual Zimm behavior described by the Langevin equation63) 

Here zr qp3N3'/T is the rotational relaxation time of the unperturbed Zimm 
chain63'. On the other hand neglecting the logarithmic factors in Eqs. ( I  17) and 
(1 18) we find for p 4 N / g o  that hpp = F' = go/[ is p-independent. Thus for small 
p ,  p 4 N/go, the Langevin equation (for the Y-direction) obeys 
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Setting K p g o / c  = p2/ZR with 
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it can be seen that for p 6 N/go one has a rescaled Rouse behavior, where the Rouse 
time is given now by Eq. (122). 

These results for the dynamics of stretched polymer chains were already derived 
by P i n ~ u s ~ ~ )  using a slightly different approach. In ref.79) these results are also inter- 
preted in terms of Pincus blobs. As discussed in section 3.3 the homogeneously 
stretched chain (or an inhomogeneously stretched chain in the monoblock approxi- 
mation) can be described as a string of blobs of size 5 = 7”Feff consisting of go = (E/ 
b)”” monomers. Inside the blobs there is an unscreened hydrodynamic coupling 
between the monomers. Thus the PA’s dynamics for length scales smaller than c, 
i.e., for p S- N/go, are described by the usual Zimm model, Eq. (120). For length 
scales larger than 6,  i. e., for p 4 N/go, the stretched polymer behaves like a Rouse 
chain. The renormalized units are the N/go blobs, each having the friction constant 
of Stokes sphere, q,C, and a “spring constant” of K z T e 2  (cf. Eq. (45) with 
N = go). Thus the Rouse time is given by ZR c c 2 ( N / g o ) 2 / T  so that one recovers 
Eq. (122). 

Thus we have found that the PA’s dynamics shows two characteristic regimes 
which depend on the strength of the external fields. When E is sufficiently small so 
that go >> N ,  i.e., E 4 T / ( Q e f f b N v ) ,  the equilibrium conformation is only weakly 
perturbed and one has for all modes the ordinary Zimm dynamics, Eq. (120). If the 
external field is strong enough so that one has go 4 N ,  i.e. E S- T / ( Q e f b W ) ,  the PA 
behaves effectively as a Rouse chain. For the dependence of the rotational relaxation 
time z,. = c 1 / K 1  on the external field E follows: 

for E + T/(Q,@bN”) 

i.e., when the external field increases the dynamics is effectively slowed down. A 
similar effect occurs for the self diffusion constant of the CM63’, DG = T / ( N t 0 ) ,  
which obeys 

for E 4 T/(QefbNv) 

Another possibility to observe the dynamics of the PA may be to superimpose on 
the external field E a small oscillatory field E&) = Erneirnf with Em 4 E. Now the 
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response of the stretched PA to this perturbation follows from the considerations of 
subsection 5.1. In the monoblock picture the charge distributions of the Pincus blobs 
is given by { q f ) }  with qf )  being the charge of the iith Pincus blob 
(ii = 0, ..., N / g o ) .  The end-to-end distance P y ( t )  oscillates around the unperturbed 
end-to-end distance PY (i.e., the distance for E, = 0) as follows (cf. Eq. (91)): 

Especially for a PA with oppositely charged ends, i. e., qf) = -4, 
qf )  = 0 otherwise one has or) = ((- 1)” - l)q/(N/go). This results in 

= q and 

as long as O Z R  S- 1, a result which we already discussed for the ordinary Rouse 
This means that one has (independently of frequency) a phase angle d4 

between the oscillations of the field and the response of the conformation. 
In this section our considerations were based up-to-now on the monoblock 

approximation, where all Pincus blobs have the same size. As discussed in subsec- 
tion 3.3 one encounters in general a string of Pincus blobs of different sizes Cri, with 
ii = 1, ..., N / g o .  Thus the PA may be viewed as an inhomogeneous Rouse chain 
where the rigidity of the “springs” and the friction constants of the “beads” vary 
along the arclength of the chain, namely Kfi G T / c i  and c r i  %en. Taking such an 
inhomogeneity into account Marciano and Brochard- WyartgO) have determined the 
normal modes of a tethered polymer in a strong flow (trumpet). They show that the 
modes are given by zero-order Bessel functions, but which (in a good approxima- 
tion) lead again to the mode spectrum of the homogeneous Rouse chain. In ref.”’ 
the authors find for a small oscillatory force applied at the free end a relation similar 
to Eq. (126) (the oscillatory force may be realized by applying a magnetic field to a 
tethered DNA with a magnetic bead on its free end). In ref.*” we have calculated the 
response of an inhomogeneous ladder model to an applied force (this problem can 
be mapped directly on the Rouse chain35)). We showed that by a suitable choice of 
spring constants and viscosities one can attain more complex relations between force 
and deformation than the one given in Eq. (126); in particular the constant phase 
angle can lie anywhere within the interval from 0 to d 2 .  Thus the interesting ques- 
tion arises whether by a suitably chosen charge distribution the dynamics of 
stretched PAS may also show such a generalized behavior; this deserves further 
investigations which are now in progress. 

6. Conclusion 
In this work we have considered conformational and dynamical properties of PAS 

in external electrical fields. The electrostatic interaction between the charged mono- 
mers gives rise to different characteristic regimes, namely that the global electro- 
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static free energy is small or large compared to the thermal energy T (weak coupling 
limit or strong coupling case). We have considered here both regimes separately. In 
the weak coupling limit we have started by calculating analytically conformational 
properties of Gaussian chains. Then we have taken care of the finite extensibility of 
the polymer by modeling the PA as a freely-jointed chain. The role of the excluded 
volume was estimated in terms of a scaling approach: As we have shown, stretched 
PAS can be described by strings of Pincus blobs of different sizes where the PAS’ 
overall geometry is determined by their charge distribution. In the strong coupling 
case we studied PAS’ conformational properties and showed that PAS with a vanish- 
ing total charge collapse into spherical globules. Here the response of the PA to not- 
too-strong electrical fields is determined by the competition of the external perturba- 
tion and the surface tension. We predict an instability at a critical external field E,, 
above which the PA lengthens rapidly. Finally, we have investigated the dynamics of 
PAS in the weak coupling limit. In terms of the Rouse model the dynamics can be 
calculated exactly. We further studied the role of hydrodynamic interactions and 
found that with increasing field-strength one has a crossover from the Zimm- to the 
Rouse-dynamics. 
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