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SUMMARY: 
In the present work we study the dynamics and conformational properties of 

polyampholytes (PAS, polymers containing positive and negative charges) in the presence 
of external electrical fields. In terms of the Rouse model of polymer dynamics we obtain 
for PAS in the so-called weak coupling limit explicitly the mean square displacement both 
of the center of mass and of individual beads, and the PAS’ end-to-end distance. We study 
both ordered and also random charge distributions along the chains; in the latter case we 
also consider the role of different correlation lengths. 

1. Introduction 

Heteropolymer chains can be viewed as prototypes for biological macromolecules. 
Studying their behavior helps to understand basic biological processes such as protein- 
folding Recently, polyampholytes (PAS), i. e. polymer chains which carry both 
positive and negative charges, have received much attention5-’”. The main emphasis 
of this research concerned the role of the mutual interaction of charges on the PA’s 
conformational properties. Depending on the physical parameters (i. e., random or 
regular placements of charges, the presence of a net charge, the temperature and/or the 
quality of the solvent) PAS may collapse or, conversely, may stretch to extended 
configurations ’-19). 

In this work we examine the behavior of PAS in external electrical fields. We propose 
a model which is valid in the weak coupling limit 18,20,21), i. e. roughly speaking for the 
regime l , / b  a 1 where 1, = e 2 / ( & T )  denotes the Bjerrum length and b is the 
monomer size (with e being the electron charge, E the dielectric constant of the solvent 
and T the temperature in units of the Boltzmann constant k,). In this limit the 
thermal fluctuations dominate the electrical interaction between charged monomers so 
that the PA has a Gaussian conformation. Using a Flory-type approach Dobrynin and 
Rubinstein have specified this, so called unperturbed, regime more precisely. They 
showed that this situation is realized in a 8-solvent for 

T > p T  (1 1 
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Here N is the number of monomers and T is the reduced temperature defined by 

where p denotes the fraction of charged monomers. The weak-coupling condition, Eq. 
(l), may be fulfilled experimentally when one has a solvent with a large dielectric 
constant (e. g. I ,  = 7 A in water at room temperature) and when the concentration p 
of the charges along the backbone of the PA is sufficiently small. Due to the fact that 
in such a situation the intramolecular electrical interactions are of marginal importance 
we are led here to a model which, as we proceed to show, allows a rigorous analytical 
treatment. 

Thus we study the dynamics and the conformational properties of PAS in external 
electrical fields. We solve the equations of motion of the PA in the conventional Rouse 
m ~ d e l ~ ~ s ~ ~ ) ,  i.e. when the chain is regarded as being a collection of charged beads 
connected by harmonic springs, and when the hydrodynamically mediated interactions 
between beads are neglected. Depending on the details of the charge distributions one 
finds a great variety of responses to an applied external field. We calculate exactly the 
mean-square displacement (MSD) of the center of mass (CM) of the PA, its mean- 
square end-to-end distance as well as the MSD of a tagged monomer of the PA. The 
dynamics of a PA whose charges are placed randomly and in an uncorrelated manner 
along the chain has been already treated by us in ref.24) Here we analyse the PAS 
behavior for different random and non-random charge distributions. 

The paper is structured as follows: In section 2 we define the model and derive several 
general expressions for which the detailed properties of the charge distributions need 
not be yet specified. In section 3 we study non-random charge distributions: the 
situation when only one bead is charged, the case of alternating charges along the chain 
and also a homogeneous distribution of charges (polyelectrolytic case). Section 4 is 
devoted to random charge distributions: we consider the charges to be distributed (i) 
in an uncorrelated fashion, (ii) such that the total charge on the chain vanishes, and 
(iii) being strongly correlated. The latter case interpolates between the uncorrelated and 
the polyelectrolytic case. Finally, we give a conclusion in section 5. 

2. Charged Rouse polymer in an external field 

We view the PA as consisting of N charged beads, connected by harmonic springs 
to a linear chain. The chain’s position is given by the set of vectors ( R , ( f ) ) ,  where 
R,(t) = (X , ( t ) ,  Y , ( t ) ,  Z , ( t ) )  is the position vector of the nth bead (n = 0, 1, . . . , N 
- 1) at time 1. We denote the charge of the nth bead by q, and take it to be a variable 
which we will specify later. 

Focusing here on the field-induced behavior of the PA we skip from our considera- 
tions the electrostatic interactions between the beads, i .  e. we calculate the behavior in 
the weak coupling limit (cf. above and ref. I s ) ) .  In this case we have to account through 
the potential energy Lr((R,(t))) of the PA chain only for the elastic contributions and 
for the influence of the external electric field E: 
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In Eq. (3) K is the (entropic) spring constant K = 3 T/b2, where T denotes the tem- 
perature in units of the Boltzmann constant k,  and b the mean distance between 
beads (in the absence of an external field). The electrical field points along the Y-axis, 
so that 

E = (0, E, 0) (4) 

holds. Eq. (3) turns into the Rouse model when excluded volume effects and hydro- 
dynamic interactions are disregarded; then the chain's dynamics is described by N 
coupled Langevin equations 22, 23) 

In Eq. ( 5 )  < is the friction constant and fR(n ,  t )  is the random thermal-noise force 
(which is due to the molecules of the surrounding solvent), acting on the nth bead of 
the PA. As usual, we take the Langevin forces to be Gaussian, with moments 

f j ( n , t )  = 0 (6 a) 

and 

f j ( n , t ) f , ( n ' ,  f) = 2<TS,S,, , ,S(t  - f) (6 b) 

Here i and j denote the components of the force vector, i. e., i, j = X ,  I: 2 and the 
dash stands for thermal averaging, i. e. averaging over the realizations of the Langevin 
forces fR(n,  t ) .  

Eq. ( 5 )  with the potential (3) describes the Rouse dynamics of a harmonic chain with 
charged beads in an external field. Regarding the suffix n as being continuous (i. e. 
considering the chain as an elastic string) it follows from Eqs. (3) to ( 5 )  

and 

ax (0 a2x ( t )  
a t  a n  

<& = K" + f x ( n , t )  

a Yn ( t )  a 2 y  ( t )  
a t  an 

<- = K+ + qnE + f r ( n , t )  

(7) 

(9) 

Eqs. (7) to (9) are to be solved subject to the Rouse boundary conditions at the chain 
ends 22.23): 

(10) 
a x m  1 aYn( t )  I - 

an n=O,N a n  n=O,N an n=O,N 
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The X- and Z-components of the R, are field-independent and follow the standard 
Rouse b e h a ~ i o r ~ ~ * * ~ ) .  We can hence restrict ourselves to the behavior of the Y- 
component, which is described by Eq. (9). This equation contains two types of forces: 
the ordinary thermal noisef,(n, t )  and a quenched force qnE. We note that the case 
of configuration-dependent forces was considered recently in a related context, where 
the motion of polymers in random layered flows was investigated 2 5 3  26). 

The formal solution of Eq. (9) with the boundary conditions, Eq. (lo), is given in 
the form of a Fourier series23) 

m 

Y , ( t )  = Y(0, t )  + 2 c Y@, t )  cos - 
p= I ( p Y )  

Here the Y@, t ) ,  p = 0, 1 ,  . . . , denote the normal coordinates: 

In terms of the normal coordinates Eq. (9) can be rewritten as 

In Eq. (13) 7, denotes the Rouse time 

( b 2 N 2  
3n2T 

TR = ~ 

which is the largest internal relaxation time of the harmonic chain. The symbols Gp 
and fy@, t )  on the rhs of Eq. (13) denote the Fourier transforms of the charge 
variable, 

and of the thermal noises, 

respectively. Thus the Fourier transformed forces fulfill 

?y@,tt) = 0 

and 

At t = 0 the PA is assumed to be in thermal equilibrium, i.e. to have a Gaussian 
conformation. This can be accounted for automatically by stipulating the PA to have 
been subjected to the thermal forces since t = - 00. Furthermore, switching on the 
electric field at t = 0, Y@, t )  reads: 
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G E '  + 1 drexp(-p2(t - r ) / r R )  
c o  

From Eqs. (1 1) and (18) we now obtain readily the explicit time dependence of the 
MSD of the chain's CM, the mean square end-to-end distance and the MSD of a tagged 
bead. We begin the analysis with the CM's motion. The Y-component of the trajectory 
of the CM is given by the normal coordinate with p = 0, i. e., 

(19) 

Using Eq. (18) withp = 0 we obtain the following general result for the MSD of the 

l N  

N O  
YcM( t )  = - 5 dn Y n ( t )  = Y ( 0 , t )  

CM in the Y-direction: 

2 T  E 2  

YN r ( (YCM(t )  - YC,(O))2> = - t + 2 <GI> t Z  

In Eq. (20) (6,') is the pair correlation function of the charge variable and the 
brackets denote averages with respect to the realizations of qn;  furthermore use was 
made of the properties ofF,@,t), i.e., Eqs. (17a) and (17b). 

The Y-component of the end-to-end vector P ( t ) ,  P ( t )  = R N ( t )  - Ro(t) ,  follows 
from the Fourier series, Eq. (1 l) ,  for Yo( t )  and YN(t):  

m 

P y ( t )  = y N ( t )  - ~ o ( t )  = -2 c (1 - ( - 1 ~ )  Y ( p , t )  = -4 C Y@,t) (21) 
p =  1 P 

The hat on the rhs of Eq. (21) designates that the summation extends over odd, 
positive numbers only. Hence the double average of Py obeys 

Averaging the product of the normal coordinates on the rhs of Eq. (22) is 
straightforward. Using the explicit form of the normal coordinates, Eq. (18), and the 
properties of the Fourier transformed forces, Eqs. (17a) and (17b), we obtain 

Eq. (23 a) will be used below to calculate the short-time behavior t 4 sR . The long- 
time behavior t s r R ,  when the end-to-end distance has reached its equilibrium, 
follows from Eq. (23 a) by evaluating the integrals: 
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The behavior of a tagged bead, say one of the chain’s ends, is more complicated. 
Using Eq. (1 1) with n = 0, i. e., 

m 

% ( t )  - YO(0) = Y(O,t)  - Y(0,O) + 2 c (Y01,t)  - Y@,ON (24) 
p= I 

we obtain by inserting the explicit solution Eq. (18) into Eq. (24): 

1 ‘  2 - l  

6 0  

Yo( t )  - Yo(0) = - j drj,(O,r) + - c 
GoE 2E * 

drf,@,.r) exp(-p2(t - r ) / r R )  

(25) 
6 p=l  

6 6 p=l  0 
+ - t + - c GP j dr exp(-p2(t - r ) / rR)  

Hence, using the properties of the Fourier transformed Langevin forces, Eq. (17a) 
and (17b), we arrive at 

3. Fixed charge patterns 

This section is devoted to polymers whose charges are distributed according to a fixed 
pattern, say, having only a single charged bead, having alternating charges or having 
polyelectrolytes. We calculate explicitly the MSD of the CM, the mean-squared end- 
to-end distance and the MSD of a single bead. 

3.1. A single charged bead 

Let us first consider the situation in which only one bead of the polymer is charged, 
say one of its ends. Such a situation was realized experimentally by Perkins et al. 2 7 9 2 8 )  

who dragged individual DNAs with optical tweezers at one of their ends. There are 
some interesting relations of such single charged polymers to other physical systems. 
In refs. 24,29) we have shown that the dynamics of the charged bead can be mapped on 
the response of mechanical spring-dashpot arrangements which we have proposed as 
mechanical analogues to fractional rheological constitutive equations 30, 31) and as 
mesoscopic pictures of the sol-gel transition 32). Another relevant situation concerns 
the solid-on-solid-model description of wetting phenomena discussed by Abraham et 
al. 33) Here the spreading of a liquid drop on a solid substrate, induced by capillary 
forces acting near the contact line, was examined using a Langevin equation approach 
similar to Eq. (9). 

In the case that only the head-bead of the polymer is charged the charge distribution 
obeys 
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and the Fourier transformed ijp has the form 

Gp = q/N (28) 

for p = 0, 1, 2, . . . . Inserting this into Eq. (20) leads to 

The MSD of the CM contains two independent contributions: a conventional Rouse 
diffusion term proportional to t 22,23) and a drift term due to the external field, 
proportional to t Z .  One can understand the N-2-dependence of the drift term as 
follows: The electrical force acting on the chain, qE, does not depend on N, whereas 
the friction is proportional to N. Under both forces the polymer moves ballistically, 
with a velocity Y - qE/(<N). 

Using Eq. (23a) together with Eq. (28) and evaluating the sums over p and q by 
converting them to integrals, we obtain the following short-time behavior t Q 7,  for 
the Y-component of the end-to-end distance: 

- b2N 4q2E2b2  
P ? ( t )  = - + 

3 3nCT 

The rhs of Eq. (30) is a sum of two independent terms: the equilibrium end-to-end 
distance of a Rouse chain (without external  force^)^^^^^) and a term proportional to t 
as response to the external field. 

Using Eq. (23 b) we obtain for the equilibrium end-to-end distance for very large t, 
t s 7,:  

_? . b2N 16ci2E2b4N2 /A 1 \ 2  b2N a2E2b4N2 
3 \ - - I  ~ 9n4T2 \ $  

The value of the infinite sum is given in Eq. (0.234(2.)) of ref. 34): p -2  = n2/8. 

Due to the charged bead which is pulled by the external field, the second term describes 
an elongation of the chain in the Y-direction. We note that the linear model is physically 
only useful as long the stretching is much smaller than the rodlike state2'), i. e. as long 
as 

P 

q E b4N2 
36 T 2  

4 b2N2 

holds, which restricts the external fields to values smaller than 6 T/(q b) .  

behavior t 
one obtains 

We now turn to the dynamics of the charged end of the chain. The short time 
7, follows from Eq. (26) by converting the sums into integrals so that 

2T 4 q 2 E 2 b  t 3 / 2  (Yo(t) - Y,(0))2 = < N [ 3'2 F N  
( 3 3 )  

t*  
4q ' E 2  b2 q2EZ 

3n<T p N z  
+ t + -  
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Neglecting the second term (which is of order 
and the third and fifth term (which are of order 
fourth term) we arrive at 

smaller than the first term) 
and t h ,  smaller than the 

i.e. a result mentioned previously in ref.35) The first term in Eq. (34) shows a 
subdiffusive behavior (which also governs the short-time behavior of a bead in the 
absence of external forces) and can be interpreted as being induced by thermal 
processes, in which some local “defects”, e. g., kinks, spread out diffusively along the 
length (bN) of the chain36). Since the chain’s configuration in space is itself random- 
walk-like, so that in the absence of external forces P, - (bN)’I2, these processes are 
spatially confined, which results in a subdiffusive behavior of single beads at short 
times. 

The second term on the rhs of Eq. (34) describes the response of the charged 
monomer to the electrical field after switching on the field E. This term is equal to the 
corresponding term of Eq. (30) describing the short-time behavior of the end-to-end 
distance, since the uncharged end of the chain is not affected by the external field at 
short times. 

In the long-time regime, t *. rx, the bead’s motion mirrors the motion of the CM 
of the chain. This can be seen by evaluating the sums in Eq. (26) so that one has 

b2N 2 T  2 q 2 E 2 b 2  I ~ q 2 E 2 b 4 N 2  q 2 E 2  + - - - t  + + - t 2  ( 3 5 )  (Yo(t)  - Y0(W2 = - 
9 5N 9CT 81 T z  (2N2 

where the value of the infinite sums is given by Eq. (0.233(3.)) of ref. 34): 

c p - 2  = 7r2/6. Now, the first term is of order r,/t smaller than the second term and 

the third and fourth term are of order r,/t and ( t R / t ) 2  smaller than the fifth term so 
that one finally arrives at 

P 

2 T  q 2 E 2  
CN C2N2 

(Yo(t)  - YO(O))2 = - t  + - t 2  

3.2. Alternating charges 

Let us now turn to PAS whose charges are distributed in alternating fashion, i. e. 

q n  = (-1)’’ 4 (37) 

This case is discussed theoretically in refs. ‘ I ,  12) We note that the mathematical 
treatment is rendered awkward by the discrete character of Eq. (37). In order to simplify 
the procedure, while still accounting for the basic feature of the alternating model we 
focus on the following continuous description for the charge distribution 

7 l  (38) qn = - sin(rrn)q 
2 
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where now n is a real variable. Since this transformation only smears out the local 
charges, we expect the global properties of the chain to stay unaffected and we restrict 
the considerations to the long-time behavior. For the Fourier transform of the charge 
variable we obtain 

for N even 
= q/N for N odd 

and 

1 
(1 - ( - l ) N + p )  

4 (ip = - 
2 N  1 - ( P / N ) ~  

(39) 

for p = 1, 2, . . . . Inserting Eq. (39) into Eq. (20) we obtain for the MSD of the CM 

A drift occurs only when there is an excess charge, i. e. when the chain has an odd 
number of monomers. In this case the excess charge equals q, as in the case of one 
charged bead, resulting in the same behavior of the CM (cf. Eq. (29)). Clearly, Eq. (41) 
also describes the long-time behavior of a single bead. 

The equilibrium end-to-end distance (i. e., t + T ~ )  can be evaluated by inserting the 
Fourier transformed charge variable, Eq. (40), into the general expression, Eq. (23 b). 
We find: 

r b2N a 2 E 2 b 4 N 2  

If N is odd ijp vanishes for all odd p; hence the sums in Eq. (23 b) vanish, since they 
extend over odd p only. In the case of an even number of monomers we have used the 
approximation 

which is correct to order I/N. 
Eq. (42) can be interpreted as follows: Due to the external field the chain takes for 

Nodd a zigzag configuration. Only in the case where charges of the ends have opposite 
signs (i. e., N even), we obtain a small net effect. One may note that the value of the 
mean-squared end-to-end distance is identical to that of a polymer with only one 
charged bead (cf. Eq. (31)). 
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3.3. Polyeiectrolytes 

Now we turn to polyelectrolytes, i. e. homogeneously charged chains, for which 

q n  = 4 (44) 

holds. In this case the formulas become simple, since the Fourier transformed charge 
distribution fulfills 

3 p  = 4 6 p o  (45) 

From Eq. (20) we have for the MSD of the CM 

The drift term is independent of N since the overall charge of the chain is equal to 
q N  and therefore the electrical force acting on it (as well as the friction force) is 
proportional to N. A detailed discussion of the mobility of polyelectrolytes is given by 
Muthukumar 37) who also takes into account the hydrodynamic and electrostatic 
forces between the beads. 

Due to the fact that the field acts on each monomer in the same way, the chain moves 
ballistically, without being deformed by the external field. The end-to-end distance is 
not affected by the external field so that one has for all times 

- b2N 
P:( t )  = - (47) 3 

i.e. the chain's shape is Gaussian, as it is also the case in the absence of charges. 
However this result does not correspond to the experimental situation: due to the strong 
electrostatic repulsions (which we neglect here) the typical shape of a polyelectrolyte 
is mostly rodlike (so that P: - N2)2 ' ) .  Nonetheless, since the electrical field acts on 
all beads in the same way the chain moves as a whole, without being deformed by the 
external forces, regardless of its true shape. For the MSD of a single bead this fact 
results in an additional drift term so that one has from Eq. (26): 

4 T  2 T  q 2 E 2  
( Y o ( t )  - YO(O))* = - f i drexp(-2p2s/r,) + ---t + - t 2  (48) 

" p = t  5N r 2  

4. Random charge distributions 

This section is devoted to PAS, whose charges are randomly distributed along the 
chain. Note first that a situation in which the charges are totally uncorrelated does not 
guarantee charge neutrality, since then the total charge is itself random (binomial). As- 
king for the chain to be electrically neutral as a whole poses an additional constraint. 
Furthermore, the distribution of charges along the chain may be strongly correlated, 
as was for instance attained experimentally in ref.3E) Here we examine first the 
uncorrelated case (section 4. l), then chains which are globally electrically neutral 
(section 4.2) and end with the analysis of correlated charge distributions (section 4.3). 
The latter case interpolates between the uncorrelated charge distribution and the poly- 
electrolytes (section 3.3), and displays a great variety of dynamical scaling laws. 
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4.1. Uncorrelated distribution of charges 

In this section we calculate the behavior of PAS, for which the beads are either 
positively or negatively charged, qn = fq ;  the distribution is such that different 
beads are uncorrelated, i. e. one has (qnqm) = q26,, . This reads in the continuum 
limit: 

Eq. (49) implies automatically that the average charge equals zero, (9,) = 0. Note, 
however, that the latter condition does not imply that each chain is electrically neutral. 
For the Fourier transform of the charge variables we find now 

q2 
<$) = - 

N 
and 

otherwise. 
Inserting Eq. (50a) into Eq. (20) we obtain for the MSD of the CM in the Y-direction: 

The drift term shows here a N-'-dependence which is by a factor of N larger than 
in the case of one charged bead (section 3.1) and by a factor of 1/N smaller than in 
the polyelectrolyte case (section 3.3). One can understand the N -'-dependence of the 
drift term in the following way: due to the randomness of the qn,  the total charge of 
a chain is of the order of "I2. Hence the electric force acting on the chain goes as 
N''2, while the friction is proportional to N. Under both forces the CM moves 
ballistically, with a velocity V - q E / ( < f l ) .  

Consider now the behavior of the PA's end-to-end distance for a random placement 
of charges. Inserting Eqs. (50) into Eq. (23a) we obtain the following short-time 
behavior 

b2N 16bq2E2(fl - 1) t3 ,2  + 
3 p  p z T  ( P : ( t ) )  = - 

3 

for t 4 'sR. The response of the end-to-end distance to the electrical field follows a t 3/2 

behavior which mirrors the behavior of the chain ends (see below). 
Inserting Eq. (50) into Eq. (23 b) we obtain for the equilibrium end-to-end distance 

(t %- TR): 

b2N 8q2E2b4N3 ~ 1 b2N q2E2b4N3 
3 9n4T2 p4 3 108 T 2  + c-=- + (53) (P:<..>> = - 
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The value of the infinite sum is given by p -4  = n4/96 (Eq. (0.234 (5.)) of 
P 

ref. 34). Besides the usual term proportional to N, we find an additional field-induced 
stretching characterized by a N3-dependence. This scaling behavior emerges from the 
fact that the charge distribution shows fluctuations, whose magnitude grows with the 
number of beads. In ref. 24) we give also a Flory-type argument for this pronounced 
stretching. Note, however, that our linear model is physically only useful as long as the 
stretching is much smaller than the end-to-end distance of the rodlike state, i. e. as long 
as 

q 2E b4N3 
108 T 2  

Q b2N2 (54) 

holds, which means that the external field E has to be much smaller than 10 T / ( q b f l ) .  
Now we turn to the dynamics of the PA’s end. Making use of Eqs. (26) and (50) we get 

for t Q T, . Only the first and the fourth term of Eq. (26) contribute to the short-time 
behavior, whereas (in a fashion similar to Eq. (33)) the other terms are much smaller. 
The t 3 / 2  subdrift-term is by a factor 1/2 smaller than the corresponding term 
describing the short-time dynamics of the end-to-end distance, Eq. (52). 

For t %- T, , similarly to Eq. (39, the second and the fifth term dominate, and thus 

i. e., for long times the beads follow the motion of the CM (cf. Eq. (51)). 
The field-induced motion of a single bead, Eqs. (55) and (56), can be also understood 

by the following scaling argument. Consider a single bead at t = 0. In the Rouse 
dynamics the total number g of neighboring monomers which are involved in a 
collective motion with this tagged bead grows as g( t )  = Ct ‘ I2  for short times ( t  Q 5,). 

When the Rouse time T, is reached, the PA moves as a whole, i. e., g(7,) s N, so that 
C = p / ( f l b ) .  Thus for short times, t 4 T,, one finds 

whereas at longer times, t %- T,, one has 

g ( t )  = N (57b) 

The excess charge Q of the collectively moving set of beads grows with time; one has 
(Q2> P q 2 g ( t )  3 q 2 m b - 1 t 1 ’ 2 .  The mobility of the set of beads decreases as 
p K ( [ g ( t ) ) - l  = ( b / p )  t The average velocity of the tagged monomer in Y-di- 
rection, v y ,  is then given by the velocity of the collectively moving set around it. Thus 
it obeys (v$(g)> P p2(QZ)E2 = q 2 E 2 [ - 2 g - ’  where g is given by Eq. (57a) for t a T, 
and by Eq. (57 b) for t %- 7,. The average displacement of a single bead can be 
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estimated from the average displacement of the corresponding blob of g monomers, 
i.e. ( Y 2 ( t ) )  B ( v : (g )> t2  a q 2 E 2 [ - 2 g - ' t 2 .  For t + 7R one finds from Eq. (57a) 
( Y 2 ( t ) >  P (bq2E2/(c3l2 T' l2)) t3/* which reproduces (up to a numerical constant of 
order 1 )  the field induced short-time behavior of our model, i. e. Eq. ( 5 5 ) .  For longer 
times the PA drifts as a whole and one finds from Eq. (57b) ( Y 2 ( t ) >  = ( q 2 E 2 /  
(C2N)) t2  which corresponds to Eq. (56). Clearly the scaling argument, Eq. (57), holds 
also for other charge distributions and can be used to determine the time-dependence 
of the dynamics of a tagged monomer. However, for the precise determination of the 
numerical coefficients in our model one has to carry out the exact calculations. 

4.2. Neutral chains 

We now consider globally neutral PAS. For these each bead is still positively or 
negatively charged, qn = kq, but the total charge of the chain is zero. Such PAS were 
discussed in  ref^.',^,^^). To have a vanishing net charge the number of charged 
monomers, N, must be even and one has exactly N / 2  positively charged and N / 2  
negatively charged beads. A random placement of charges under this restriction can 
be realized by picking randomly N/2  monomers (the positive ones) out of N ,  and taking 
the remaining monomers to be negative. Then the charge correlations obey 

(9;) = q 2  (58 a)  

and 

Eq. (58 b) can be obtained as follows: Assume first that the n th bead may have the 
charge + q  (-4). Due to the condition that the whole chain is neutral, the remaining 
N - 1 beads have a total charge of - q (  +q ) .  Hence averaging over all realization leads 
to Eq. (58 b). 

In the continuum limit Eqs. (58a) and (58b) can be combined as follows 

(59) 
q 2  

(qnqrn) = - - + q 2 6 ( n  - m )  
N 

Using Eq. (59) we find for the Fourier transformed quantities 

<ii;> = 0 (60 a) 

and 

otherwise. 
Eq. (60 b) parallels Eq. (50 b) for an uncorrelated distribution of charges, whereas 

due to the vanishing total charge Eq. (60a) differs from Eq. (50a). Therefore, except 
for the drift term, which vanishes for globally neutral chains, the behavior of the 
neutral chain mirrors the behavior of PA with uncorrelated charge distributions. 
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Especially, Eqs. (52), (53) and (55) hold without any changes. The CM shows only a 
diffusive behavior (it obeys Eq. (51) without the drift term); the diffusive term also 
governs the long-time behavior of a single bead, i. e. one has Eq. (56) without the drift 
term. 

4.3. Correlated distribution of charges 

Let us now turn to the case of a PA, for which the distribution of charges along the 
chain displays correlations. This situation is realized when during polymerization the 
reaction rates for the addition of different types of monomers depend on the monomers 
already present at the chain ends. Such correlations were investigated by McCormick 
and Johnson 38) for suitably prepared polyampholytes. Here we assume correlations 
which decay exponentially along the length of the chain7), i.e. which obey: 

(qnqm) = q 2 c s e x p ( - v  I n - m I )  (61) 

In Eq. (61) q-’  is the correlation length and cs is chosen in such a way that 
n+1/2 

dn’(qnqn.) = q2 holds. Hence 
n - 1 / 2  

Eq. (61) interpolates between the uncorrelated case (q  + w), i. e. Eq. (49), and the 
strictly correlated case (q + 0), resulting in (qnqm) = q2.  which corresponds to the 
polyelectrolyte situation (see section 3.3). 

The calculations in the presence of charge correlations are rather cumbersome and 
are relegated to the Appendix. The results are given in Eq. (63) (MSD of the CM), Tab. 1 
(mean-square end-to-end distance) and Tab. 2 (MSD of a single bead). 

Inserting Eq. (A2) into the general expression, Eq. (20) we obtain 

t 2  
2 T  q2E2 

( ( Y c M ( ~ )  - Y c M ( ~ ) ) ~ )  = - t  + c,f(t]N)- 
YN T 2  

which for the different regimes of the correlation length yields: 

for 1 a t] 

Except for negligible correction terms we obtain for 1 4 v the same behavior as in 
the uncorrelated case, Eq. (51). For intermediate correlation lengths, N-I Q tl 4 1, 
one has typically N/L homogeneously charged domains of average length L, where L 
is given by 



Dynamics and conformational properties of polyampholytes in . . . 59 

1 4 q s 0 3  

Thus, typical charge fluctuations are of the order of q L w  - qm, resul- 
ting in a drift velocity of V - q/(<m). 

If the correlation length is much larger than the length of the polymer, i. e., r]  d 

N - l ,  the chains carry mostly only one charge type: one has mainly polyelectrolytes, 
Eq. (46). The correction term in Eq. (64) can be understood as follows: Due to Eq. (65), 
the probability to have both types of charges on the same chain is roughly 
N/L = 9 N / 2 .  Since q N Q 1, such a chain is mostly composed only of two parts, one 
of length N+ with positively charged beads and one of length N- with negatively 
charged beads; the total charge on the chain is then Q = q(N+ - N-) = q(2N+ - 
N ) .  The mean square total charge 3 for chains with both types of charges is thus 

given by Q 2 =  ( q 2 / N )  

charge (Q2) is approximately given by 

- N 
( 2 n  - N ) 2  3 q 2 N 2 / 3 .  Hence the mean square total 

n= 1 

see text a2q E b4 N 3  

resulting in the drift behavior described by Eq. (64). 
We now display in Tab. 1 the behavior of the end-to-end distance in the different 

regimes. The detailed calculations can be found in Appendix A.2. The expressions for 
1 6 q are identical to those which describe the short- and long-time behavior in the 
uncorrelated case, Eqs.  (52) and (53) ,  as long as t 9 rR/ (qN)2 .  The regime of very 
short times t Q rR / ( q  N ) 2  is, however, not very illuminating, since in this regime the 
fine details of the local structure and charge distribution matter much. Therefore we 
dispense with giving this very short-time behavior in Tab. 1 .  

For intermediate correlation lengths, N-’ 4 q 4 1, one has a situation reminiscent 
of an uncorrelated charge distribution: The chain may be viewed as consisting of 

Tab. 1 .  Correction terms to the mean squared end-to-end distance, given as (P:(t))  - 
b2N/3, for a correlated charge distribution (see text). The coefficients are a,  = 8(f l  - 

1 ) / ( 3 m ) ,  a, = 1/(108 T 2 )  and a3 = 1/(270T2). The lower limit of the intermediate 
time-regime has only to be considered for N-I Q 9 

I f Q rR/(qN)’ [ rR / (qN)2  4 ] t  4 tR c 9 ?R 

4 bq2EZ 2 

9 r 3 1 2  9 
t 2  - a ,  ~ t 3 / 2  - a2q2E2b4N3 N - ’  Q q Q 1 

(T) a3q2E2b4N4 
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subchains of mean length N/L = q N/2 ,  such that the subchains carry only one type 
of charge each. Because of the length fluctuations one may roughly relate this situation 
by rescaling to an uncorrelated charge distribution. The transformation is: 

N-+qN/2  q + 2 q / q  c + 2 c / q  b - m b  (67) 

One may verify easily that this procedure leads from the expressions for 1 Q q (first 
line of Tab. 1) to the results for N - '  Q q + 1 (second line of Tab. 1). For 
t a T , / ( ~ N ) ~  the correction term is proportional to tZ ,  a term which arises from a 
drift-type relative motion of oppositely charged segments. 

In the case q + N - I  the chains carry mostly only one type of charge. Only a small 
fraction of polymer (around qN/2)  carries both types of charges, a fact which leads 
for short-times, t Q T ~ ,  to the appearance of a correction term proportional to t 2  (cf. 
Tab. 1) .  For t % tR the correction term to the usual b2N/3  expression for the equili- 
brium end-to-end distance stems from the fraction of polymers of order q N / 2  which 
is highly stretched (cf. Tab. 1). For q -+ 0 this fraction vanishes and one is led to the 
polyelectrolyte case (cf. Eq. (47)). 

Finally, we discuss the motion of a single bead (see Appendix A.3 for the derivation 
and Tab. 2 for the results). The Y-component of the MSD of an end-bead is for 1 4 
q and T , / ( ~ N ) ~  t < tR the sum of a subdiffusive and a subdrift term, similar to 
the results for an uncorrelated charge distribution, cf. Eq. ( 5 5 )  and Tab. 2. For long 
times the bead follows, as usual, the motion of the CM (cf. Eq. (64) and Tab. 2). 

Rescaling following Eq. (67) we shift from the case 1 -% q to the case N - '  + q Q 
1, as may be easily seen by comparing the first line of Tab. 2 with the second line. The 
behavior for very short times, t 6 T , / ( ~ N ) ~ ,  is the sum of a subdiffusive behavior 
and a drift term, which may be visualized as being due to the collective motion of q - '  
equally charged beads located at the end of the chain. For q N - '  this behavior 
extends to times t 4 rR . Here again the long-time behavior is governed by the motion 
of the CM. 

5. Conclusion 

In conclusion, we have studied the influence of electrical fields on the dynamics of 
PAS both for non-randomly and for randomly placed charges, and we have obtained 
a series of analytical, closed-form results. At long times both the chain's CM and the 
individual beads move ballistically; here the average velocity depends on the net charge 
on the PA. On the other hand, for t 6 p R  the motion of the individual beads shows 
a subdrift t n  behavior; the exponent equals a = 1 if only one bead is charged, a = 
3/2 if the charges are distributed in an uncorrelated fashion, and a = 2 if the 
correlation length is large or if the charges have all the same sign (polyelectrolytes). 
Furthermore the PAS stretch in an external field: The equilibrium mean square end- 
to-end distance shows an additional elongation, which goes as NB; the exponent 
equals /3 = 2 if only one bead is charged or if the charges are distributed in an 
alternating fashion, /3 = 3 if the charges are distributed in an uncorrelated fashion, and 

= 4 if the correlation length of the charge distribution is large. We close by noticing 
that the Rouse model used in the present work is simplified due to the neglect of 
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hydrodynamic interactions. A way to introduce such interactions is to  use the 
correspondence between the equations of motion in the Rouse and in the standard 
Zimm model with a preaveraged Oseen tensor. In the problem discussed here, however, 
much care has to be exercised, since the polymer shape changes much in even 
moderately strong external fields; this effect influences the PAS motion strongly and 
we defer its study to  a further work. 

Appendix. Calculations for a correlated charge distribution 

A.1. Fourier transformed charge distribution 

We determine first (G,,G,), the average of the Fourier transformed charges. Using 
Eq. (61) the calculation of (6;) is straightforward 

N N  

(4;) = - q2cq 1 dn dn' exp(-q I n - n' I ) 
N 2  0 0 

where on the rhs of Eq. (Al) we have made use of the symmetry of the correlation 
function. 

Hence we obtain 

2 (4,") = 42cq- (e-qN - 1 + q N )  = q 2 c ,  f ( q N )  
q2N2 

where f ( x )  denotes the Debye function23) defined by 

L 
f ( x )  = -(e-' - 1 + x )  

X 2  

The correlation (G,G,,) for p = 1, 2, . . . can be determined as follows: 

N plTfl' 
(GOi jp)  = "-[ i d n  dn' e-q(n-n') cos (?) 

N 2  0 n 

0 0  

= (1 + (-1)p) 2 7  q 2 c  dn e-Vf l i  dn' eq", cos 
N 2  0 0 

('44) 

where we have used the substitutions n'+ N - n' and n - N - n on the rhs of Eq. (A4). 
Evaluating the integral we arrive at 

1 + (-1y 
q 2 c q  (e-vN - 1)  (404p.,> = - 
q ' N 2  1 + (PR/(vN))2 

( ' 45 )  



Dynamics and conformational properties of polyampholytes in . . . 63 

Finally, we have to determine the correlations (GPGr) for p, r = 1, 2, . . . . Similarly 
to Eq. (A4) we get 

cos 0, x n / N )  cos (q x n'/N) e-q(n-n') (A6) (GPGr) = ( 1  + ( -1 )P 'q )  L T d n j d n '  q2c 
N 2  0 0 

After a few additional steps we obtain finally 

which can be simplified for the case q 4 N-' to 

A.2. End-to-end distance 

To calculate the behavior of the end-to-end distance we have to insert expression Eq. 
(A7) into the general formulas (23). Let us first consider the case when the correlation 
length is much smaller than the length of the chain, i.e., N-' Q q. As usual, the 
short-time behavior can be calculated from Eq. (23a) by converting the discrete sums 
into integrals so that one has 

Carrying out the integrations over p (see for instance Eq. (7.4.11) of ref.39)) one 
arrives at 

This rather complex expression can be evaluated for different time regimes using the 
behavior of the function exp(x)erfc(p) for small and for large x. For x 4 1 one has 

( ' 4 1  1) 

(see, for instance, Eq. (41.6.1) of ref. ''"), where one can find an extensive discussion of 
this special function). On the other hand, x large, x %- 1, the function obeys 

exp(x) erfc(fi) = I/@ ( A 1 3  

exp(x) erfc(6) = 1 - 2 
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(see Eq. (41.6.4) of ref.40)). The behavior of the end-to-end distance for very short 
times, t 4 T ~ / ( ~ N ) ~ ,  can be derived from Eq. (A10) using Eq. (All) ,  and the result, 
given in Tab. 1, is discussed in section 4.3. There one can also find the behavior for the 
intermediate time regime f R  / ( a  N ) 2  t 4 tR ; we have determined this behavior using 
the appropriate approximation, Eq. (A1 2). 

The PA's equilibrium end-to-end distance (t & r R )  for the case N - '  4 q follows 
directly from Eq. (23 b) and the approximate expression 

" 1  1 " 1  
(A13) 

valid for k = 2, 3, . . . up to terms of order l / (qN) .  Hence one has 

b2N c q 2 E 2 b 4 N 3  
3 ?I 54T2  

( P ; ( w ) )  = - + 2 

Let us now turn to the case q 4 N-I .  The short-time behavior t Q tR follows by 
inserting Eq. (A8) into Eq. (23a): 

1 b2N 16qq2E2N ' ' 
P 2  

+ - 
3 

The second term in the brackets on the rhs of Eq. (A15) can be neglected so that one 
immediately obtains the corresponding expression in Tab. 1. The long-time behavior 
t & 'sR follows from Eq. (23b) together with Eq. (A8) by making use of 

l / p 6  = n6/960 (see Eq. (0.233(5.)) with n = 3 in ref.34)). 
U 

A.3. Motion of a single bead 

Let us now turn to the behavior of one end of the PA. Inserting the charge 
correlations, Eqs. (A2), (A5) and (A7), into the general expression, Eq. (26), and 
converting the sums into integrals we obtain similarly to the derivation of Eq. (A10) 
the following expression for the case N - ' 4 q and t -e tR : 

(A1 6: 
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Using the approximate forms for exp(x)erfc(fi) valid for small x, Eq. (A1 I), and 
for large x, Eq. (A12), we obtain immediately the MSD of a single bead, namely 

for t B T ~ / ( ~ N ) ~  (here we have neglected the second and fifth term of Eq. (A16) 
which are of order l / ( q N )  smaller than the third and fourth term) and 

for 7R / ( v N ) ~  4 t B 7R (here we have neglected the second, fourth and fifth terms of 
Eq. (A16) which are of order l/(qN), i m a n d  m s m a l l e r  than the 
third term), respectively. These results are discussed in section 4.3. 

Inserting the corresponding charge correlations into Eq. (26) and using the 
approximation (A13) we obtain, as usual, that for t s 7R a single bead follows the 
motion of the CM (cf. Tab. 2 and Eq. (64)). 

Finally, we have to calculate the displacement for the case q << N - i .  For t B rR one 
has from Eqs. (26), (A2) ,  (AS) and (A8): 

1 '  
( (Yo(t)  - Yo(0))2)  = 4 4 x f 1 1 2  - q N E  t c - [ dTeXp(-p2T/TR) 

6nC <2n2 p = 2 , 4 ,  . . .  P 2  0 
('419) 

-k qN------ 4 q 2 E 2  c 7 1 id7 jd? exp(-p2(s + T ' ) / T ~ )  + -(1 q 2 E 2  
- ? ) f 2  C2n2 p=1 P 0 0 c 2  

8q2E2 1 '  
V N -  t c - [ dTeXp(-p2T/TR) 

<2n2 p = 2 , 4 ,  . . .  P 2  0 
('419) 

4 q 2 E 2  1 + -(1 q 2 E 2  - ? ) f 2  
-k qN------ c 7 id7 jd? exp(-p2(s + T ' ) / T ~ )  C2n2 p=1 P 0 0 c 2  
The second and third term of the rhs of Eq. (A19) can be calculated analogously to 

Eq. (A15) and one obtains 

+ i.(l q 2 E 2  - + ) f 2  

Thus the second and third term cancel the correction term in the expression for the 
drift of the CM (cf. Eq. (64)) and we obtain 

For t s r R  the first, third and fourth terms of Eq. (26) can be neglected, so that the 
bead's motion follows that of the CM, i. e., Eq. (64). 
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