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ABSTRACT: Dilute or semidilute solutions of polyelectrolytes show below a critical temperature the
phenomenon of counterion condensation. This effect leads (a) to a decrease of the effective total charge
of the macroion and (b) to a counterion-induced attraction between different parts of the chain. In this
paper we provide simple scaling arguments that allow one to calculate the chain size and the effective
total charge as a function of temperature, solvent quality etc. Especially we show that effect (a) alone
leads to a continuous reduction of the chain size with decreasing temperature. Due to a feedback-type
mechanism effect (b) amplifies this collapse process in such a way that it is reminiscent of a first-order
phase transition.

I. Introduction

Despite their fundamental importance in biology
(DNA, proteins, ...) as well as in technological applica-
tions (hydrosolubility, solution thickening, ...) charged
polymers, called polyelectrolytes, are still much less
understood systems than their neutral counterparts.1,2

This is due to the fact that in charged systems one has
to deal with the long-ranged Coulombic interaction
between the charges. Nevertheless, for the “academic”
case of a single polyelectrolyte chain (infinite dilution)
its conformational properties can be understood using
simple scaling arguments.1,3 The stretching of the chain
due to the electrostatic repulsion is predicted; with
decreasing temperature, this effect is more and more
enhanced since the effect of chain entropy becomes less
important.

It is important to note that these approaches do not
account for the presence of counterions. In any realistic
situation one has a finite concentration of chains ands
due to the overall electroneutrality of the solutionsalso
a finite number of small counterions. At high temper-
atures the translational entropy of the counterions
dominates and their interaction with the macroions can
be neglected. At lower temperatures, however, the
counterions are drawn more and more toward the
oppositely charged chains leading to counterion con-
densation.1,4 The presence of the condensed counterions
affects the single chain properties drastically: With
decreasing temperature the macroions begin to collapse,
a fact which is observed in computer simulations.5-7

Similarly, multichain effects come into play. Thus it
was demonstrated theoretically and by computer simu-
lations that two parallel like-charged rods begin to
attract.8,9 Furthermore, experimentally the precipita-
tion of a highly charged polyelectrolyte solution is
observed upon adding multivalent salt.10 This is also
in accordance with a theoretical study by González-
Mozuelos and Olvera de la Cruz11 where it is shown that
polyelectrolytes are stretched at higher temperatures
and collapsed at low temperatures.

It is the purpose of the present work to give a simple
scaling approach that allows one to derive the different
scaling regimes of the single chain properties of a dilute
solution of highly charged polyelectrolytes. In the next
section we combine the single chain theories1,3,12 and
the idea of charge renormalization due to counterion
condensation13 in a self-consistent manner. This ap-
proach is oversimplified in so far as it does not account
for an additional counterion-mediated short-range in-
teraction. In section 3 we take this effect into account
and find again simple scaling relations which, however,
depend on microscopic properties of the system.

II. Effect of the Charge Renormalization

Consider a dilute solution of polyelectrolytes; assume
the solvent to be a Θ-solvent for the uncharged back-
bones. Denote by c the concentration of the chains. The
chains are assumed to be ideally flexible in the absence
of electrostatic interaction; their degree of polymeriza-
tion is N . 1, the size of the monomers is b, and the
fraction of charged monomers is f. The total charge of
each chain is then Z ) fN (in units of the electronic
charge e). In the current study we assume that f is of
order unity (highly charged polyelectrolytes). Due to
electroneutrality, one has fN counterions per chain, each
carrying the charge -e. Furthermore we focus here on
the influence of the long-range electrostatic interaction
between charged monomers (and counterions) on the
chain conformation; we thus assume in the following
the absence of excess ions (added salt) which lead to a
screening of the electrostatic interaction between charges.

At sufficiently high temperatures, the interaction
between the polyelectrolytes and the counterions is
weak so that the counterions are distributed nearly
homogeneously in the solution. Thus only a negligibly
small fraction of the counterions are near the chains
and their influence on chain properties may be ne-
glected. The conformation of the polyelectrolyte is then
determined by the competition between the chain
entropy and the electrostatic repulsion of the charged
monomers. As a result the chain becomes stretched into
a globally rodlike shape; on smaller length scales,
however, the entropy dominates the behavior and suf-
ficiently small parts are unperturbed by the electrostat-
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ics. This can be envisaged by the following blob picture:3
The chain consists of a string of electrostatic blobs where
each blob has the size êel and consists of gel monomers.
êel and gel can be determined from the following two
relationships: (i) The electrostatic energy per blob is
on the order of the thermal energy, i.e. (fgel)2lB/êel = 1
where lB denotes the Bjerrum length lB ) e2/εT (here T
is the temperature in units of the Boltzmann constant
and ε denotes the dielectric constant of the solvent). (ii)
Due to point i the blob is only slightly perturbed by the
electrostatic repulsion and thus obeys Gaussian chain
statistics, i.e. êel = bgel

1/2. From these two relationships
one finds for the electrostatic blob size êel = b4/3/lB

1/3f 2/3.
The length of the polyelectrolyte is then given by L =
(N/gel)êel which leads to the well-known result1

In the high temperature limit, namely for lB < lHT )
b/(f 2N3/2), the chain is unperturbed by the electrostatics
and one has L = bN1/2.

However this picture breaks down for sufficiently
large values of the Bjerrum length. There are two
different mechanisms that may lead to this break-
down: (i) the finite extensibility of the chain and (ii)
counterion condensation. The finite extensibility comes
into play when the length of the macroion is of the order
bN or equivalently gel ≈ 1; this is the case when lB is on
the order of b/f 2. Since the counterion condensation sets
in at Bjerrum length of the same order (see below) we
will not further discuss this effect in the current study.

The phenomenon of counterion (or Manning) conden-
sation4 is due to the fact that with increasing lB the
counterions become more and more drawn toward the
macroions, and beyond a critical value lc some of the
counterions are bound to them. This leads then ef-
fectively to a renormalized total charge Z̃ < Z. A simple
estimation of Z̃ can be achieved by comparing the
chemical potentials of the free and the bound counte-
rions.13,14 The chemical potential µf of the free ions is
governed by their configurational entropy, i.e. µf = T
ln(φ) where φ denotes the volume fraction of the coun-
terions of volume υc, i.e. φ = cυcZ̃. Note that ln (φ) is
slowly varying with Z̃ and c so that we treat this term
in following discussion as a constant: ln (φ) ) -k. On
the other hand the chemical potential µc of the con-
densed counterions arises from the electrostatic interac-
tion between the counterions and the polyelectrolytes.
For the case of a counterion at the surface of a spherical
macroion of radius L (with condensed counterions), one
finds µc = -TZ̃lB/L; in the case of a cylindrical macroion
one has an additional factor on the order of (1 + ln(L/
êel)) which we neglect in the following. Equating µf and
µc, one finds for the renormalized total charge of the
macroion

a relation which holds as long as Z̃ < Z. Consider now
the chain for small values of lB (high temperatures)
where one has no counterion condensation. Here eq 2
is not valid since it predicts Z̃ > Z. Due to L ∝ lB

1/3 (cf.
eq 1) it is, however, clear that with increasing lB one
will finally reach the critical Bjerrum length lc for which
Z̃ ) Z. One finds lc = k3/2b/f 1/2. Then, for lB > lc one
has condensed counterions.

This regime can also be treated within the blob
picture. Compared to the picture discussed above one
has to replace the fraction of charged monomers, f )
Z/N, by the effective fraction f̃ which is given by f̃ ) Z̃/N.
Thus the condition is now (f̃gel)2lB/êel = 1. This, together
with êel = bgel

1/2 leads to the electrostatic blob size êel =
lB/k2 and to the following size of the total chain:

From eq 3 follows that with increasing Bjerrum length
(decreasing temperature) the size of the chain decreases
which follows from the fact that the effective charge of
the macroion becomes renormalized. At very low tem-
peratures, namely for lB > lLT ) k2bN1/2, Z̃ is so small
that the chain conformation is again governed by the
configurational entropy, L = bN1/2. In Figure 1a we
depict the size L of the macroion as function of the
inverse Bjerrum length. Note that the size shows a
nonmonotonic dependence on lB

-1.
The case of a good solvent can be treated similarly.1

Compared to the Θ-case each electrostatic blob is now
swollen and obeys êel = (υb2)1/5gel

3/5 where υ denotes the
excluded volume per monomer. This scaling relation
follows from the statistics of a self-avoiding walk where
the elementary building blocks are thermal blobs of size
êT that consist of gT monomers so that êel = êT(gel/gT)3/5.
Here êT and gT are related by υgT

2/êT
3 = 1 (the excluded

volume interaction equals the thermal energy) and êT
= bgT

1/2 (ideal chain statistics). This leads to êT = b4/υ.

Figure 1. Dependence of the size of a polyelectrolyte chain
on the inverse Bjerrum length lB

-1 ) εT/e2 in a Θ-solvent (a),
in a good solvent (b), and in a poor solvent (c). The dependence
of the crossover lengths on N and r ) b3/υ . 1 is depicted.
The solid lines are the predictions when only the chain
renormalization is taken into account (cf. section 2); the dashed
line accounts for the counterion-induced attraction (see section
3).

L =
k2b2N

lB
(3)

L = f 2/3b2/3lB
1/3N (1)

Z̃ = kL
lB

(2)
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Now using (fgel)2lB/êel = 1 (electrical energy per blob
equals thermal energy) and êel = (υb2)1/5gel

3/5 (self-
avoiding walk) one finds êel = (υb2)2/7/lB

3/7f 6/7 and

This picture is valid as long as the size of the electro-
static blobs is larger than the thermal blob size, i.e. as
long as êel > êT. This leads to the condition lB < l1 =
f -2(υ/b3)3b. For lB > l1 each blob obeys ideal chain
statistics so that eq 1 holds.

At lB = lc > l1 counterion condensation sets in. For
values of lB beyond the condensation threshold, lB > lc,
the size of the chain is given by eq 3 as long as êel < êT.
This leads to the condition lB < l2 ) k2b4/υ. Then, for
lB > l2 we find by combining (f̃gel)2lB/êel = 1 (electrostatic
energy per blob) and êel = (υb2)1/5gel

3/5 (excluded volume
statistics) êel = lB/k2 (as in the Θ-case) and

We note further that the crossover to the high temper-
ature and low temperature limits takes place at lB =
lHT = (υb2)1/5/f 2N7/5 and lB = lLT = k2(υb2)1/5N3/5, respec-
tively. For lB < lHT and for lB > lLT the chain obeys
excluded volume statistics; i.e., L = (υb2)1/5N3/5. The
different scaling regimes can be seen in Figure 1b where
we depict L as a function of lB

-1.
Thus we find in both cases (Θ-solvent as well as good

solvent) that due to charge renormalization the chain
size decreases with increasing lB > lc. We note, how-
ever, that due to the presence of condensed counterions,
one has an additional counterion-induced attraction that
may lead effectively to poor solvent conditions, as
discussed in the next section. As we will see, this effect
induces a rapid collapse of the chain, reminiscent of a
first-order phase transition. In order to understand this
phenomenon we discuss in the following text the case
of a polyelectrolyte in a poor solvent and investigate the
behavior of the chain as a function of lB, assuming fixed
quality of the solvent.

Consider first an uncharged chain with a negative
second virial coefficient -υ with |υ| , b3. Then the
polymer may be considered as being a densely packed
array of thermal blobs. As in the good solvent case the
blob size êT and the number of monomers gT is related
by |υ|gT

2/êT
3 = 1 and êT = bgT

1/2. Thus the thermal blob
size is again given by êT = b4/|υ|. Due to missing
thermal blobs at the surface the globule has a surface
tension γ ) T/êT

2 and assumes a spherical shape with
diameter L = êT(N/gT)1/3, i.e.

Consider now a charged chain at high temperatures
(no counterion condensation). Again, as in the good and
in the Θ-solvent cases, the chain can be considered as
being a sequence of electrostatic blobs. Now, however,
each blob is collapsed and its size follows from the
competition between the electrostatic repulsion and the
surface tension,12 i.e. (fgel)2lB/êel = êel

2/êT
2. This together

with êel = b2gel
1/3/|υ|1/3 (cf. eq 6) leads to êel = b4/3/lB

1/3f 2/3

and

Note that the electrostatic blob size êel shows the same
scaling as in the Θ-case; since each blob comprises more
monomers, the size L of the chain is smaller. At very
small values of lB, namely for lB < lHT = |υ|/f 2b2N, we
are in the high temperature limit where L = R.

This picture also breaks down at sufficiently large
values of lB when the electrostatic blob size becomes
smaller than the size of the thermal blobs, i.e. when êel
< êT. In this regime, namely for lB > l1 = |υ|3/b8f 2, each
electrostatic blob obeys ideal chain statistics so that for
l1 < lB < lc the length of the macroion is given by eq 1.
For values of lB beyond the condensation threshold, lB
> lc, the size of the chain is given by eq 3 as long as êel
< êT. This leads to the condition lB < l2 ) k2b4/|υ|.

In order to describe the behavior for lB > l2, we may
tentatively use again the concept of collapsed electro-
static blobs (with condensed counterions). By equating
the electrostatic energy and the surface tension, i.e.
(f̃gel)2lB/êel = êel

2/êT
2, we find êel = k2b8/υ2lB and L = êelN/

gel = |υ|3lB
2N/k4b10. Thus this argument predicts that

the size of the chain increases with increasing lB, a
result which is counterintuitive. We show now that
indeed another state, namely that of a (nearly) spherical
globule with a size given by eq 6 is energetically more
favorable. Note first, that both the globular state and
the extended state may only exist for sufficiently large
values of lB, namely lB > lg ) k2b6/|υ|5/3N1/3. In the
globular case, this follows from the requirement that
the electrostatic repulsion is smaller than the surface
tension, i.e. (f̃N)2lB/R < R2/êT

2, and for the stretched
state the same condition follows simply from the re-
quirement L > R. Now compare the free energies of
both states. In both cases the nonextensive part of the
free energy ∆F (in units of T) is given by the sum of the
surface tension S/êT

2 (here S denotes the surface of the
macroion which is given by R2 for the globular and Lêel
for the stretched state), the electrostatic energy Z̃2lB/L,
and the contribution of the translational entropy of the
free counterions -kZ̃. Using eq 2, one finds for the
globular state ∆Fglob/T = R2/êT

2 - k2R/lB and for the
stretched state ∆Fstr/T = Lêel/êT

2 - k2L/lB. Now the
globular state is more favorable than the stretched one
when ∆Fglob < ∆Fstr. This leads to the condition lB >
lg, which is exactly the validity condition of both models.
This means that a string of electrostatic blobs with
charge renormalization does not exist since the collapsed
state is more favorable.

We show now that the stretched states with ideal blob
statistics in the regimes without counterion condensa-
tion lg < lB < lc and with condensed counterions lc < lB
< l2 are energetically more favorable than the globular
state. In order to decide which state represents the
global minimum we compare the free energies of the
stretched states and of the globular state. The free
energy FΘ of the stretched state without counterion
condensation has three contributions: the stretching
term, the electrostatic interaction, and the translational
entropy of the counterions, i.e. FΘ/T = L2/b2N + f 2N2lB/
L - kfN = f 4/3NlB

2/3/b2/3 - kfN. On the other hand the
free energy Fglob of the globular state is governed by the
condensation energy, i.e. Fglob/T = -υ2N/b6. Note that
Fblob/T , kfN so that the stretched state is favored (FΘ
< Fglob) when f 4/3NlB

2/3/b2/3 < kfN. This leads to the
condition lB < lc which is in fact the condition for validity

L = f 4/7(υb2)1/7lB
2/7N (4)

L =
k4/3(υb2)1/3N

lB
2/3

(5)

L = R =
b2N1/3

|υ|1/3
(6)

L =
f 4/3b10/3lB

2/3N
|υ| (7)
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of the stretched state (without condensed counterions).
The free energy F̃Θ of the stretched state with Manning
condensation is given by F̃Θ/T = L2/b2N + Z̃2lB/L - kZ̃
= -k4b2N/lB

2, which is smaller than Fglob/T as long as
lB < l2 = k2b4/|υ|. Again this means that the stretched
state is favored in its whole range of validity.

Summarizing, we find for a polyelectrolyte in a poor
solvent the following behavior (cf. Figure 1c). When we
start at very small values of lB, lB < lHT, the thermal
agitation dominates and the chain is in the globular
state with L = R unperturbed by the electrostatic
interaction. Then for lHT < lB < l1 the chain size
increases with lB as L ∼ lB

2/3; cf. eq 7. In the regime l1
< lB < lc the length of the macroion grows as L ∼ lB

1/3,
cf. eq 1. At lB = lc counterion condensation sets in, and
for lc < lB < l2, the chain size is given by L ∼ lB

-1 (cf. eq
3). At lB = l2 the stretched state of the macroion
becomes unstable and it collapses into a globular state
with L = R. Due to Z̃ ∼ L this collapse is accompanied
(and indeed induced) by a strong onset of counterion
condensation. Whereas the stretched macroion carries
the total charge Z̃ ) k-1(υ/b3)2N (at lB ) l2) in the
collapsed state one has Z̃ = k-1(|υ|/b3)2/3N1/3, i.e. nearly
all counterions are condensed. Khokhlov12 already
predicted a first-order type collapse of polyelectrolytes
in poor solvents and called this effect avalanche-type
counterion condensation (cf. also ref 15).

The complete diagram of states of a dilute solution of
polyelectrolyte chains in υ, lB

-1 coordinates is shown in
Figure 2. Phases I-III correspond the high tempera-
ture limit where the chains are unperturbed by the
electrostatics. The boundary between the phases I and
II as well as between I and III follows from the condition
êT ) bN1/2. Then at lower temperatures one has
stretched chains and free counterions (regimes IV-
VI).16 When the temperature is lowered further, coun-
terion condensation sets in. In a good solvent and
around the Θ-case we still have stretched chains (regime
VII and VIII) whereas under poor solvent conditions one
has a collapsed globule (regime IX). The crossover
between regimes VI and IX as well as between VII and
IX occurs in a first-order type fashion. Finally, in the
low temperature limit the chains in the Θ-solvent and
in the good solvent are unperturbed by electrostatics
(regime X and XI).

We note that this phase diagram was constructed
using two rough approximations: (i) We assumed that
we can neglect the discreteness of the charges. In the
case of condensed counterions one has, however, dipole-
monopole and dipole-dipole interactions; we will ad-
dress this effect in the next section. (ii) We assumed a
cylindrical shape of the stretched state in a poor solvent
(regime VI). Dobrynin, Rubinstein, and Obukhov17 have
shown that this shape does not correspond to the global
minimum of the free energy. They demonstrated that
a necklace shape where one has beads of size êel
connected by strings of diameter êT are energetically
more favorable. We stress that this does not affect the
main points of our argument.18

III. Effect of the Counterion-Induced Attraction

In the last section we discussed the influence of the
charge renormalization on the conformation of polyelec-
trolytes. We showed that in Θ-solvents and in good
solvents this effect leads to a moderate shrinking of
macroions; in the poor solvent case, however, a rapid
first-order-type collapse is predicted. In this section we

will show that this picture is not complete; as we will
see the presence of condensed counterions leads to an
additional electrostatic short-range interaction (this is
also pointed out in refs 10 and 11). This interaction
effectively changes the solvent quality so that the
solvent becomes poorer. As a result, at suffiently small
temperatures polyelectrolytes in Θ-solvents and even
in good solvents are in collapsed conformations, a fact
which is observed in computer simulations; cf. refs 6
and 7. As we will show, the transition to the collapsed
state may occur in a first-order- or second-order-type
type fashion.

Let us first estimate how condensed counterions
modify the second virial coefficient of a polyelectrolyte.
The typical situation is that the condensed ions ap-
proach the macroion very closely and form together with
oppositely charged monomers dipole-type configura-
tions. Snapshots from molecular-dynamics simulations
of charged chains with counterions indeed confirm this
picture (cf., for instance, Figure 24b of ref 6). We give
now a simple estimate of the second virial coefficient of
a chain that carries electrical dipoles. Let us first
assume that each monomer represents a dipole (com-
plete counterion condensation). Denote by r0 the dis-
tance between the charge of the condensed counterion
and the charge of the corresponding monomer; then the
dipole moment is p ) er0. The interaction energy w(r)
between two dipoles at a distance r can be calculated
by averaging over all the orientations of the dipoles
(assuming that the dipoles can rotate freely, i.e., that
w(r) < T). One finds w(r)/T = -lB

2r0
4/3r6.19 Now

usually the non-electric part of the monomer-monomer
interaction is of the form u(r) ) ucore(r) + uattr(r) where
ucore(r) denotes a hard core potential and uattr(r) is a
weak attractive potential.20 The presence of the con-
densed counterions which are usually much smaller
than the monomer units may only slightly perturb
ucore(r) and uattr(r) so that the interaction potential
between monomers with condensed counterions is of the
form u(r) = ucore(r) + uattr(r) + w(r). The second virial
coefficient can then be estimated from υ′ ) 4π∫dr r2(1
- exp(-u(r)/T)) which leads to

Here υ denotes the second virial coefficient between
monomers in the absence of counterions (i.e. for w(r) ≡
0). The dipole-dipole interaction leads to a shift of the
coefficient toward a somewhat smaller value υ′ = υ -
∆υ. Note that the shift, ∆υ, depends on the lower cutoff
of the integral which leads to the dependence on υcore,
the volume of the hard core.

Up to now we estimated the shift of the excluded
volume parameter assuming complete counterion con-
densation. If only a part of the counterions are con-
densed, say (fN - Z̃)/N ) f - f̃, the shift due to dipole-
dipole interactions is smaller, namely ∆υ = -(f -
f̃)2lB

2r0
4/υcore. Furthermore, one has also to take the

much stronger monopole-dipole interaction w′(r) =
-lB

2r0
2/6r4 into account which is on the order of (r/r0)2

larger than w(r).19 The contribution ∆υ′ of this interac-
tion to the second virial coefficient can be calculated in
a similar way. Taking into account the densities of the
monopoles, f̃, and of the dipoles, f - f̃, one finds ∆υ′ =

υ′ = 4π∫dr r2[1 - e-ucore(r)/T(1 -
uattr (r)

T
-

w(r)
T )] =

υ - 16π2

3υcore
lB

2r0
4 (8)
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-2πf̃(f - f̃)lB
2r0

2/3rcore where rcore denotes the radius of
the hard core. Putting all these contributions together,
we find the following second virial coefficient for a chain
of monopoles and dipoles (neglecting numerical prefac-
tors):

This effect comes only into play in the case when
condensed counterions are present; i.e., we have to
reconsider the regimes VII-XI of the diagram of states,
Figure 2. Consider regime VII where one has a string
of electrostatic blobs that obey ideal chain statistics. The
change in the solvent quality due to counterion conden-
sation affects the chain conformation when the size of
the thermal blobs êT = b4/|υ′| becomes of the same order
as the electrostatic blob size êel = lB/k2 (see above, eq
3). From b4/|υ′| ) lB/k2 and eq 9, we find that the line
in the phase diagram at which this effect comes into
play is given by

This expression shows a strong dependence on the
microscopic properties of the system, i.e. on r0, rcore, and
b. Let us now assume that r0 = rcore = b, i.e., that the
minimal distance between the counterions and the
charged monomers is of the same order as the monomer
size. In this case eq 10 simplifies significantly:

The corresponding line is depicted schematically in the
phase diagram, Figure 2, as the dashed line A. The line
starts at the point where regimes IV, VI, VII, and IX
come together. It crosses the υ ) 0-line (Θ-solvent)
when lB fulfills the condition lB

3 - k3b2lB/f ) k3b3/f 2.
For sufficiently low concentrations k, so that, e.g., k >

Figure 2. Diagram of states of a dilute solution of polyelectrolytes. For each regime a characteristic conformation of a single
chain is depicted together with its length L. Furthermore the equations for the phase boundaries are given. The length a is given
by (υb2)1/5. Regimes I-VI correspond to states where all counterions are released; in regimes VII-XI condensed counterions are
present (schematically depicted as dots). In regimes I, IV, VII, and X one has the statistics of an ideal chain within the electrostatic
blob size; regimes II, V, VIII, and XI correspond to swollen blobs whereas in regimes III, VI, and IX the blobs are collapsed. This
picture corresponds to the simplified approach of section 2 that only accounts for the charge renormalization. The presence of
condensed counterions in regimes VII-XI leads to an additional attractive interaction that modifies the phase diagram at low
values of lB

-1 (cf. section 3). Regime VII, for instance, is now confined between the dashed lines A and B; i.e., it is bended toward
larger values of υ as described in detail in section 3.

υ′ = υ - (f - f̃)2lB
2r0

4/rcore
3 - f̃(f - f̃)lB

2r0
2/rcore (9)

-υ =
b4k2

lB
+

fk3r0
2b2

rcore ( 2r0
2

rcore
2

- 1) +

k6b4r0
2

rcorelB
2(1 -

r0
2

rcore
2) -

f 2r0
4lB

2

rcore
3

(10)

-υ =
b4k2

lB
+ fk3b3 - f 2blB

2 (11)
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10, the terms on the left-hand side dominate, which
leads in a first approximation to the condition lB < k3/2b/
f 1/2 = lc. Due to the term on the right-hand side, the
Bjerrum length at which the change of the solvent
quality comes into play is somewhat above lc.

In the good solvent case (υ > 0), line A is still given
by eq 11 even when it crosses into regime VIII. This
regime becomes strongly modified by the counterion-
induced attraction. For large values of υ > k1/2f 1/2b3

and lB
-1 < f 3/5/k7/5(υb2)1/5 there remains a small section

in the phase diagram where one still has swollen
electrostatic blobs with condensed counterions. The
functional dependence of the chain size L, eq 5, is now
more complicated since L depends on υ′ which decreases
with an increasing fraction of condensed ions; it is given
self-consistently by L = k4/3(υ′(L)b2)1/3N/lB

2/3 where
υ′(L) follows from eq 9. Note, however, that the elec-
trostatic blob size is still given by êel = lB/k2 (see above
eq 5). Therefore one can determine the line where the
electrostatic blobs start to obey Gaussian statistics by
comparing êel and êT. This leads to

which is depicted in Figure 2 as line B. In the regime
between line A and line B the size of the chain is given
by eq 3.

At larger values of lB, when one is beyond line A (in
the regimes VII and VIII), we have effectively a mac-
roion in a poor solvent. As we have shown in the last
section such a chain becomes unstable and collapses as
soon as counterion condensation sets in. Since the
decrease of the chain size is accompanied by an increase
of the number of condensed counterions (cf. eq 2), which
at the same time leads to a decrease of the solvent
quality (cf. eq 9), this collapse is even more enhanced
than in the case discussed in the last section. Thus we
expect that by crossing line A in the phase diagram the
macroion collapses into a globular shape in a first-order
fashion.

The size of the collapsed chain in a Θ-solvent can be
calculated as follows: Since the majority of the coun-
terions is condensed one has f̃ , f and we find from eq
9 (with υ ) 0) υ′ = -f 2lB

2r0
4/υcore ≈ -f 2lB

2b. The size
of the globule follows then from eq 6 (setting υ ) υ′)

(cf. also the dashed line in Figure 1a). Thus the chain
size shows an N1/3-dependence which is characteristic
for a collapsed globule. Interestingly eq 13 is also a good
approximation for nonvanishing values of υ , b3; this
is the case since υ , f 2lB

2b for all lB > lc ) k3/2b/f 1/2.
Therefore even in the case of a good solvent one finds a
collapsed state for sufficiently large values of lB. The
consequence is that the chain size in the low tempera-
ture limit, eq 13, is significantly smaller than in the high
temperature regime where one has excluded volume
statistics L = (υb2)1/5N3/5 (cf. the dashed line in Figure
1b). This fact is indeed observed in computer simula-
tions.6,7 So it was found in ref 7 that L ∝ NR with R ≈
0.3 for large values of lB, R ≈ 1 for intermediate values,
and R ≈ 0.6 for small ones. The authors observe that R
changes its value continously with changing lB; this

observation may be an artifact induced by finite size
and crossover effects that may disappear for larger
systems.

From our theoretical considerations, it follows that
the counterion-induced attraction strongly affects the
phase diagram for larger values of lB. Regimes VII,
VIII, and IX are bent toward higher values of υ (cf.
Figure 2) and are separated by the lines A and B that
are given by eqs 11 and 12; furthermore, regimes X and
XI vanish.

Note, however, that the A- and B-lines show a strong
dependence on the microscopic properties of the chains
and counterions. We illustrate this by assuming now
another relation between the microscopic length scales,
namely r0 , rcore ≈ b which correspond to the case of
counterions that are small compared to the monomers.
In this case we find from eq 10 that

Now line A crosses the line υ ) 0 at a much smaller
value of lB

-1. One finds the following equation from eq
14 by equating the first and the fourth term on the
right-hand side (the other terms are negligible): lB

-1 ≈
f 2/3r0

4/3/k2/3b7/3. This is indeed much smaller than lc
-1

= f 1/2/k3/2b. Thus for this set of microscopic parameters
line A (and similarly line B) are shifted toward much
smaller values of lB

-1. It is then even possible that for
not too long chains line A crosses the line which
separates regimes VII and X. In this case the first-
order-like collapse vanishes at this boundary. The
computer simulations in refs 6 and 7 do not show any
significance for a discontinuous phase transition; at the
present stage, it is not possible to decide whether this
follows from the fact that the simulated systems are
very small or if the microscopic parameters of the
systems are chosen in such a way that the transition is
continuous. Our scaling theory allows no definite
conclusion and would be consistent with both cases.

IV. Conclusion
In this paper, we discussed the behavior of dilute

solutions of highly charged polyelectrolytes. Using a
scaling approach, we derived simple scaling relations
for the single chain properties. At high temperature the
presence of counterions can be neglected and we find
the well-known picture of chains stretched out into
strings of electrostatic blobs. The blobs obey ideal chain
statistics (sufficiently near to the Θ-point) or excluded
volume statistics (good solvent), or they are collapsed
(poor solvent; here the picture may be more refined by
the necklace model that, however, does not affect the
main conclusions of this paper). At lower temperatures
when the Bjerrum length is of the order of the segment
size, counterion condensation sets in. The scaling
picture follows now from a self-consistent calculation
of the charge renormalization. It turns out that the
chains in a Θ-solvent and in a good solvent are still
strings of electrostatic blobs; however, the length of the
macroions decreases now with decreasing temperature.
In the poor solvent case the chain collapses into a
globular shape in a first-order-type fashion. In any case,
the presence of counterions leads effectively to a de-
crease of the solvent quality; this follows from short-
ranged dipole-monomer and dipole-dipole interactions.
Thus a Θ-solvent and even a good solvent becomes

-υ ) b4k2

lB
- fk3br0

2 +
k6b3r0

2

lB
2

-
f 2r0

4lB
2

b3
(14)

υ =
b4k2

lB
- fk3b3 + f 2blB

2 (12)

L =
b5/3N1/3

f 2/3lB
2/3

(13)
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effectively poor at sufficiently low temperatures. De-
pending on the microscopic properties of the system, the
chain collapses in a first-order- or second-order-type
fashion into a collapsed state where nearly all counte-
rions are condensed.

Additional Remark: During the writing of this
paper, we became aware of a preprint by Brilliantov,
Kuznetsov, and Klein21 in which a similar idea is
considered. Taking counterion condensation into ac-
count, the authors calculate the behavior of a polyelec-
trolyte in a good solvent; the occurrence of a first-order-
type phase transition due to counterion condensation
is also predicted.
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