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ABSTRACT: The complexation between a semiflexible polyelectrolyte and an oppositely charged macroion
leads to a multitude of structures ranging from tight complexes with the chain wrapped around the
macroion to open multileafed rosettelike complexes. Rosette structures, expected to occur for short-ranged
attractions between the macroion and the chain, have now also been seen in recent Monte Carlo
simulations with long-range (unscreened) interactions (Macromolecules 2002, 35, 5183). The current study
provides scaling theories for both cases and shows that rosette structures are indeed quite robust against
changes in the ionic strength. However, the transition from the wrapped to the rosette configuration has
a dramatically different characteristics: The short-range case leads to a sharp transition into a rosette
with large leaves whereas the long-range case occurs in a continuous fashion. We provide the complete
diagram of states for both cases.

1. Introduction

Many biological processes involve the complexation
between a charged macroion and an oppositely charged
chain. A prominent example is the complexation of DNA
with histone proteins which is the basic step of DNA
compaction into chromatin in the cells of animals and
plants.1 Complexation between macroions and synthetic
polymers is also encountered in many technological
applications as a means to modify macroion solution
behavior; examples are the complexation of polymers
with charged colloidal particles2,3 and charged micelles.4

There is now a large body of theoretical studies on
this set of problems, most of them have appeared within
the last three years5-16 (cf. also earlier related stud-
ies17-20). They vary widely with respect to the methods
and the level of approximations used and also with
respect to the physical properties assumed for the chain
and the macroionsthe latter usually being modeled as
a charged sphere. Some studies5,13,14 assume the chain
to be so highly charged that counterion release is the
dominant mechanism for the sphere-chain complex-
ation, whereas most of the other studies assume weakly
charged components attracted via standard electrostat-
ics. In some cases the ball-chain complexes interact via
a short-range attraction10,15,16,19 corresponding to high
ionic strengths.8 The investigated systems also vary
with respect to the chain flexibility: semiflexible chains
are considered in refs 5, 8-10, 14-16, and 19 whereas
the other studies assume flexible polymers. References
15 and 16 were devoted to the diffusion (repositioning)
of the complexed sphere along the chain. And, finally,
complexes between a chain and several spheres have
been considered.12,14 The space available here does not
allow one to give a detailed account of the different
approaches as well as of the phenomenons predicted like
overcharging, conformational symmetries of the ad-
sorbed chain etc. A critical survey will be provided in a
topical review.21

Sphere-chain complexes have also been investigated
in several computer simulations.22-32 Wallin and Linse
studied the effect of chain flexibility,22 line charge
density,23 and sphere radius24 on the geometry of a
complex between a charged sphere and a polyelectrolyte
in a Monte Carlo simulation that took counterions

explicitly into account; they also considered the case
when there are many chains present.25 Chodanowski
and Stoll27 investigated the adsorption of a flexible chain
on a sphere assuming Debye-Hückel interaction. The
case of multisphere adsorption on flexible28 and semi-
flexible chains29 was studied by Jonsson and Linse.
Messina, Holm, and Kremer30,31 demonstrated that in
the case of strong electrostatic coupling it is even
possible that a polyelectrolyte chain forms a complex
with a sphere that carries a charge of the same signsa
phenomenon made possible by correlation effects due
to neutralizing counterions. Finally, a recent systematic
study by Akinchina and Linse32 focused again on the
role of chain flexibility on the structure of the sphere-
chain complex.

The overall picture emerging from this multitude of
theoretical and simulation studies is still not very clear.
Partly this has to be attributed to the fact that there
are many free parameters determining the properties
of the sphere-chain complex, especially the length of
the chain, its linear charge density and persistence
length, the macroion radius and charge, and the screen-
ing length of the salt solution. This makes it difficult to
develop a theory that covers the whole range of possible
structures. The current study is an attempt to give a
scaling theory that allows an approximate treatment of
the chain-sphere complex over the whole range of
parameters and that especially fills the gaps that were
left open by the existing theories and simulations. It
allows to identify the few independent scaling param-
eters in this system and leads to the construction of two-
dimensional phase diagrams (one for short and one for
large screening lengths) that cover the whole range of
all the other parameters.

This paper has been induced by a comparison of refs
10 and 32. In the former paper we studied the complex-
ation behavior of a semiflexible chain and a “sticky”
sphere. In the context of electrostatics this corresponds
to high salt concentrations where the Debye screening
length is much shorter than the sphere radius. In that
paper, we calculated the zero-temperature configura-
tions modeling the polymer by the wormlike chain. We
found two typical structures that occur in this system.
If the sphere is sticky enough, i.e., if the chain adsorp-
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tion energy per length is large, the chain wraps around
the spheresas long as there is enough surface available.
When the adsorption energy is decreased there is a point
at which the bent chain unwraps in a sharp fashion.
The new structure that emerges has multiple point
contacts between the sphere and the chain and large
low-curvature loops connecting them. We called this
class of structures the rosette configurations.

On the other hand, the latter work, ref 32, presented
a Monte Carlo study of the complexation of a semiflex-
ible charged chain with an oppositely charged ball that
carries the same absolute charge as the chain (isoelectric
complex). No small ions were present so that the
charged monomers were attracted to the sphere via an
unscreened long-range 1/r interaction. The authors
simulated systems with different persistence lengths,
linear charge densities of the chain and ball radii.
Depending on the choice of parameters, they encoun-
tered a multitude of structuressranging from collapsed
structures with a “tennisball seam pattern” or solenoid
arrangement of the wrapped chain9 to open multileafed
structures very much resembling the ones found in ref
10. Their rosette structures occur for stiffer chains on
smaller spheres.

That work demonstrates that the rosette structure is
quite robust with respect to the range of interaction.
At the same time it also hints toward major differences
between these two cases: The short-ranged case pre-
dicts clearly a sharp unwrapping transition into large-
leafed rosettes when the adsorption energy is decreased
or the chain stiffness is increased.10 In the simulation,32

however, the rosette evolved continuously with increas-
ing chain stiffness from a tightly wrapped state via
slightly more open structures with many small loops to
large-leafed rosettes.

How can one reconcile these findings? For that
purpose we reconsider in section 2 the chain-sphere
complexation for the case of short-ranged attraction,10

formulating now the interaction in the language of
strongly screened electrostatics instead of some short-
ranged stickiness. Then, in section 3, we give the scaling
description in the case of weak screening. By focusing
on the unwrapping transition we contrast the two cases
in section 4. In the final section we compare our findings
to computer simulations and experimental observations
on the DNA-histone complex.

2. Charged Rosettes at High Ionic Strength

Consider a polymer chain of length L, radius r, and
persistence length lP. The chain carries negative charges
on its backbonesa distance b apartswhich leads to a
linear charge densityse/b. The macroion is modeled as
a sphere of radius R that carries a positive charge Z.
The reduced electrostatic potential is assumed to be
smaller than unity everywhere so that the electrostatic
interaction can be described by standard Debye-Hückel
theory: Two elementary charges at distance r interact
via the potential eφ/kT ) (lBe-κr/r with lB ) e2/εkBT
(ε, dielectric constant of the solvent; kBT, thermal
energy), the Bjerrum length, and κ-1 ) (8πlBcs)-1/2, the
Debye screening length for monovalent salt of concen-
tration cs. lB is on the order of 7 Å in water at room
temperature. Note that the applicability of the standard
Debye-Hückel theory is restricted to weakly charged
components (with b > lB and Z < R/lB) where nonlinear
effects like counterion condensation are not present. We
shortly comment on the nonlinear case in section 4.

In this section, we assume strong screening such that
the screening length is much smaller than the radius
of the ball, κR . 1. We will assume throughout the chain
to be so thin that r is the smallest length scale in our
system, especially that always κr , 1. The adsorption
energy per length can then be estimated from the
Debye-Hückel electrostatic potential close to the sur-
face of the sphere which mimics for κR . 1 that of a
plane with a surface charge density σ ) Z/(4πR2). One
has then eφ/kT ) lBZe-κz/2κR2 where z is the distance
from the surface (cf., for instance, ref 8). This leads to
the following adsorption energy per length (in units
of kBT)

Now the chain will only wrap on the sphere when λ is
large enough, namely so large that it exceeds lP/2R2, the
bending energy per length.33 The (free) energy of the
wrapped chain-sphere complex is then given by

This leads to the prediction of an unwrapping transition
at λ ) lP/R2 when the chain stiffness

is reached. Since the wrapping path of the chain on the
sphere can be quite intricate (cf. ref 9) the local radius
of curvature is not always precisely R (but on the order
of R). Thus, we dropped from eq 2 on all numerical
prefactors and will also do so in the rest of the paper
(for similar reasons). Such an unwrapping transition
has been first discussed by Marky and Manning19 using
some unspecified short-range attraction and by Netz
and Joanny8 for the electrostatic case (in fact, their eq
35 coincides with eq 3).

For larger persistence lengths than the one given in
eq 3 the chain has to completely unwrap from the
sphere. This led the authors of ref 19 to the prediction
of an “all-or-nothing” picture: either the chain is
wrapped or it is unwrappedswith a single adsorption
point or even completely desorbed. We showed, however,
in a later study that the chain can lower its energy
considerably by having multiple point contacts to the
sphere which leads to the rosette structures.10 Let us
call µ the energy per contact point (in units of kBT). Its
value

follows from the length xRκ
-1 of a chain portion

around a point contact that is located within the
distance κ-1 from the sphere. The free energy of an
N-leafed rosette has then approximately the following
form

λ =
lBZ

bκR2
(1)

Fwrap

kBT
=

lPL

R2
- λL ) ( lP

R2
- λ)L (2)

lP =
lBZ
bκ

(3)

µ = λxRκ
-1 =

lBZ

b(κR)3/2
(4)

Frosette

kBT
=

lP

L
N2 - µ(N + 1) (5)
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The first term describes the energy required to bend the
N chain pieces between the point contacts, each of
length L/N, into leaves with typical curvature L/N, the
second term accounts for the N + 1 point contacts. We
do not include here the entropy of the chain configura-
tions that can be safely neglected for large point contact
energies µ . 1. Note that µ can be quite large even for
weakly charged components, b > lB and Z < R/lB, and
strong screening, κR . 1sas assumed here. In fact,
using eq 4 and assuming the sphere and chain to be
just at the onset of counterion condensation, i.e., b ≈ lB
and Z ≈ R/lB one finds a large range of κ values which
is consistent with our assumptions µ . 1 and κR . 1,
namely lB

2/3R1/3 , κ-1 , R. The optimal number of
leaves follows then from the minimization of the (free)
energy to be

which leads to leaves of size

As already pointed out in ref 10 each leaf minimizes its
bending energy by assuming the shape of a so-called
Yamakawa-Stockmayer (YS) loop, namely a lemnis-
cate-shaped loop with an 81° apex angle34 (cf. also ref
16 for an approximate derivation of the YS loop). As a
cautionary remark we mention that the bending energy
of YS loops leads to the numerical prefactor 14.04 for
the first term in eq 534sclearly demonstrating that one
should not extract from this theory any numbers but
just scaling relations. The leaves show negligible shape
fluctuations for lleaf , lP, i.e., for µ . 1. Then N*, eq 6,
is essentially fixed, i.e., the rosette has a well-defined
leaf numbersas implicitely assumed here.

In Figure 1, we summarize our results in a “phase
diagram” of total chain length L vs lP/µ (which is in the
case of rosettes nothing but the leaf size, cf. eq 7). Both
axes are arbitrarily given in units of liso, a choice that
will turn out to be convenient for the long-ranged case
discussed below. For small values of lP/µ we have
wrapped structures, for large values rosette conforma-

tions. The sharp unwrapping transition occurs at
lP/µ = RxκR (cf. eqs 3 and 4) and is indicated by a
thick vertical line. The other lines indicate transitions
between different ground states, namely rosettes with
different numbers of leaves.

Additional features arise from the fact that the sphere
surface is finite. This can lead to the formation of tails
for the case of wrapped structures and to the melting
of rosettes. Consider first a wrapped chain configura-
tion, i.e., assume some fixed value for lP/µ < RxκR,
and increase L, i.e., go along a vertical line in the
diagram, Figure 1. It is clear that at a certain point the
wrapping has to stop. Locally the wrapped chain forms
a nearly planar lamellar phase with a distance d
between neighboring chain sections. This distance fol-
lows from the competition between the chain-sphere
attraction and the repulsion between neighboring chain
segments8,35,36

This leads to a wrapping length l = R2/d = bZ = liso
which is just the isoelectric wrapping length, the length
at which the wrapped chain portion just compensates
the sphere charge. Chains that are shorter than this
length, L < liso, will be completely wrapped, chains that
are longer, L > liso, will have their extra length L - liso
dangling from the complex in the form of one or two
tails. The tail formation at L ) liso has been indicated
in Figure 1 by a horizontal dashed line. We hasten to
note that the onset of tail formation is only taking place
around this line for sufficiently tight wrapping and not
too strong screening such that liso . R(κR).21 Otherwise
the wrapping length can be much larger: If d > κ-1 in
eq 8, i.e., if Z < R2κ/b (large sphere), the lamellar
spacing is reduced to the value κ-1 as pointed out by
Netz and Joanny.8 Then the wrapping length is on the
order of R2κ which is much larger than liso and tail
formation sets in only for much longer chains. Ad-
ditional effects come from the chain stiffness that in all
the above cases reduce the amount of wrapping; a
detailed analysis will be given elsewhere.21

Now let us consider the rosettes. Choose some arbi-
trary value for lP/µ > RxκR and increase L. Then each
time when the chain length is increased by an amount
lP/µ, an additional leaf is formed. However, packing
constraints imply an upper limit for the number of loops

on the order of Nmax ≈ liso/xRκ
-1; this is the maximum

number of contacts, each excluding an area ≈ dxRκ
-1,

which can be closely packed on the surface of the sphere.
For a rosette with the maximum number of leaves (in
Figure 1 we chose arbitrarily Nmax ) 5) an increase in
L leads to an increase of the leaf size. lleaf reaches the
persistence length when L = NmaxlP. At that point
melting of the rosette takes place, i.e., for larger values
of L the leaf size distribution is heterogeneous, the YS
loops show shape fluctuations and also the tails start
to grow. Entropic effects are then important. The ther-
modynamics of this melting process is quite intricate
and can be calculated by mapping this problem on an
exactly solvable one-dimensional many body prob-
lem.10,21 In the current study we will not discuss the
rosette melting further and merely indicate it in Figure
1 by an arrow pointing toward the direction of the L
axis. Also shown in this figure is the direction where

Figure 1. Sphere chain complex at high ionic strength,
κR . 1. Depicted is the “phase” diagram as a function of the
total length L of the chain and of its persistence length lP
divided by the point contact energy µ (both axes are in units
of the isoelectric wrapping length liso). The thick vertical bar
denotes the sharp unwrapping transition. To the left are the
wrapped complexes; to the right are the rosettes. Wrapped
complexes show tails for sufficiently long chains (cf. main text
for details).

N* = µL
lP

(6)

lleaf =
L

N*
=

lP

µ
(7)

d =
1

bσ
=

R2

bZ
(8)
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the chain desorption is to be expected. It should occur
when the complexation free energy of the rosette, eq 5,
becomes smaller than kBT, i.e., for lP/µ > xlPL.

3. The Rosette State at Low Ionic Strength
The rosette configurations discussed in the last sec-

tion occur for chains that are so stiff that wrapping
would be too costly. It allows a small fraction of the
chain to be close to the sphere in the form of point
contacts. The majority of the monomers resides in the
loops that do not “feel” the presence of the sphere but
are needed to connect the point contacts via low
curvature sections. At first sight, one might thus expect
the rosette configurations to be a special feature for
chain-sphere complexes with a short ranged mutual
attraction.

That this is not true has already been pointed out in
the Introduction. As observed in the simulations by
Akinchina and Linse,32 rosettes are in fact quite robust
and occur also in systems with a much larger range of
interaction. We shall give now a scaling theory that
provides us with a diagram of states for the chain-
sphere complex for the case of weak screening, κR , 1.
We will first treat the case of short chains L ) bN e
bZ ) liso where the chain charge is smaller than (or
equals) the sphere charge. The free energy of the rosette
with N leaves is then approximately given by

The first term is the bending energy of N leaves as
already discussed after eq 5. The second term accounts
for the attraction between the ball charge Z and the
chain charge L/b over the typical distance L/N. All other
contributions to the electrostatics like the monomer-
monomer repulsion are smaller and neglected in eq 9.
Remarkably this free energy has the same form as the
free energy 5 of the rosette for short-ranged interaction.
We just have to identify the point contact energy µ (for
the strong screening case) with the single leaf-sphere
interaction

for the unscreened case. The optimal leaf number is thus
again given by eq 6 and the leaf size by eq 7 but now
with µ given by eq 10. Note that these scaling results
remain even true if the leaves grow so large that their
outer sections do not interact with the sphere due to
screening, κlleaf > 1. This is so because the electrostatic
rosette-sphere attraction still scales like - lBZN/b: a
fraction κ-1/(L/N) (i.e., κ-1/b charges) of each of the
N leaves interacts with the sphere at a typical dis-
tance κ-1.

The rosette state competes with the wrapped state.
We expect that the rosette state is continuously trans-
formed into the wrapped state when lleaf = R; then, the
leaves become so small that they touch with their
contour the surface of the sphere. Indeed, by setting
N ) L/R in eq 9, one finds

which can be considered as the free energy of the

wrapped state: The first term is the bending energy
required to wrap the chain around the sphere and the
second accounts for the electrostatic attraction between
the wrapped chain and the sphere. All other electro-
static contributions (as discussed in detail by Nguyen
and Shklovskii11) are less important and do not occur
on this level of approximation. On the right-hand side
of eq 11, we arranged the terms in such way that one
can deduce directly an unwrapping transition, namely
at lP/R2 ) lBZ/bR which can be rewritten as

Comparing eqs 2 and 11, one might expect that the
chain unwraps in a strongly discontinuous fashion as
discussed in the previous section. However, this “un-
wrapping point” corresponds just to the point lleaf = R
when small loops start to grow on the sphere; we thus
expect the transition to be continuous as pointed out
before eq 11. That the unwrapping transition occurs
rather smooth at low ionic strength and sharp at high
ionic strength has been predicted by Netz and Joanny;8
however, in that study the authors did not allow for
rosette structures.

To complete the picture, we finally have to consider
chains that are longer than the isoelectric length,
L > liso. We need then at least three terms to capture
the essential physics of the rosette state:

Here we “allow” the monomers to distribute between
the rosette of length l and a tail of length L - l. The
first two terms in eq 13 are then as above, eq 9, the
last term describes the repulsion of the monomers that
constitute the rosette. The contributions from the tail
can be neglected. Minimization with respect to l leads
to the optimal rosette length

The free energy, eq 13, with the optimal length l*,
eq 14, is minimized for the following number of leaves:

Henceson this level of approximationsl* = bxlPN*/lB
= liso; i.e., the rosette monomers just compensate the
central ball charge; the rest of the monomers extend
away from the rosette in one or two tails of total length
L - liso. Each leaf is of size

The rosette disappears at liso/N* ) R, i.e., when eq 12
is fulfilled. It is then replaced by a wrapped structure
of length liso and one or two tails having the total length
L - liso.

In Figure 2, we depict the complete diagram of the
sphere-stiff chain complexes to be expected in the
unscreened case. We again plot L vs lP/µ, the leaf sizes
both in units of liso. When one starts in this diagram at

Frosette

kBT
=

lP

L
N2 -

lBZ
b

N (9)

µ =
lBZ
b

(10)

Fwrap

kBT
=

lPL

R2
-

lBZL
bR

) ( lP

R2
-

lBZ
bR) L (11)

lP = µR =
lBZR

b
(12)

Frosette

kBT
=

lP

l
N2 -

lBZ
b

N +
lBl

b2
N (13)

l* = b xlPN
lB

(14)

N* ) µ
liso

lP
(15)

lleaf =
lP

µ
(16)
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a large value of lP/µ and goes toward smaller values of
(with some arbitrarily fixed value L < liso) then all leaves
shrink and more and more leaves can form. At lP/µ ) R
the maximum number of leaves (for that given value of
L) is reached, and at the same time the leaves disappear
simultaneously in a continuous fashion. For lP/µ < R
the chain wraps around the sphere. For long chains,
L > liso, the excess charges are accommodated in tails
and all rosettes have the same length liso. The border-
lines between different rosette ground states are then
independent of the total length of the chain and thus
appear in Figure 2 as vertical lines. Wrapped complexes
with long chains L > liso also show tails of length L -
liso; correction terms on the order of R (small compared
to liso for multiple turns) have been extensively dis-
cussed in the literature (cf., for instance, ref 11).

Desorption occurs when the free energies, eqs 9 and
13, equal the thermal energy kBT. This point is reached
when lP/µ = xlPL for short chain, L e liso, and when
lP/µ = xlPliso for long chains, L > liso. We indicate in
Figure 2 the direction where desorption occurs by an
arrow.

4. Unwrapping at High and Low Ionic Strength

We take now a closer look at the unwrapping transi-
tion, contrasting the short-range case and the long-
range case. The former case, κR . 1, is depicted in
Figure 3a. As discussed in section 2, we expect the
unwrapping transition to occur at λ = lP/R2 which leads
to eq 3. At this point the structure jumps in a dramatic
fashion into a large-leafed rosette with leaves of size
lP/µ; cf. eq 7. Combining eqs 3, 4, and 7, we find indeed

As discussed in section 2 each leaf has the shape of a
YS loop34 with an 81° apex angle. This means that
neighboring leaves have a relative orientation θ ) 180°
- 81° ) 99°, cf. Figure 3a. In addition, the leaves have
to be slightly twisted (like propeller blades) to account
for the mutual excluded volume.

The unwrapping at low ionic strength is depicted in
Figure 3b and goes as follows (we discuss here the case
L e liso; in the opposite case, one has just to replace L
by liso). When the chain becomes so stiff that lP/R2 >
lBZ/(bR) the wrapped state is not stable anymore (cf.
eq 11). At that point many small leaves (N* ) L/R ones)
form simultaneously in a continuous fashion. Their size
scales as lleaf = R, the precise prefactor being not
accessible to our scaling argument. The number of
windings around the ball scales as L/R (but note that
the geometry of the wrapped path can be actually quite
intricate as demonstrated in ref 9) and the typical
opening angle γ of each loop at the point of its formation
scales as (L/R)/N* ≈ 1, again with an unknown numer-
ical value. A multileafed configuration slightly above the
unwrapping point is depicted schematically on the right-
hand side of Figure 3b.

Additional insight can be gained by generalizing the
attractive force between a given chain charge and the
sphere by a power law -AZ/rR with an arbitrary
exponent R > 0. An integer value R ) D - 2 with D )
3, 4, ..., can be interpreted as a charged chain that
adsorbs on an oppositely charged D-dimensional ball in
D dimensions. The electrostatic term for the rosette in
eq 9 takes then the form -AZNR/(bLR-1) and the one
for the wrapped state scales as -AZL/bRR. Unwrapping
takes place at lP* = AZ/(bRR-2). At this critical value
the free energy of the rosette Frosette(lP ) lP*) has (as a
function of N) a minimum at N* = L/R for R < 2 (D <
4), suggesting a rather smooth unwrapping transition
similar to the one depicted in Figure 3b. This minimum
turns into a maximum at R ) 2 (D ) 4). For larger
values of R we find N* ) 0; i.e., the unwrapping
transition is sharp, similar to the short-ranged case
discussed in the previous section.

Finally, we note that in the case of very highly
charged chains and spheres the Debye-Hückel ap-
proximation breaks down and nonlinear phenomenons
like counterion condensation become important.37,38 The
dominant contribution to the complexation energy is
then the release of counterions that were condensed on
the sphere and on the chain before complexation. This
is a short-ranged interaction and consequently the
unwrapping transition is expected to be sharpseven at
low ionic strength. Following ref 14, the free energy of
the wrapped state can be written as

where Ω is the free energy gain (in units of kBT) per
adsorbed chain charge which follows from the entropy
gain due to counterion release (Ω is a number of order
one; for details cf. ref 14). Unwrapping into the rosette
takes place at lP = ΩR2/b. The point contact energy is
on the order of (Ω/b)xRλGC where the so-called Gouy-
Chapman length λGC = 1/(σlB) is the thickness of the
layer of condensed counterions around the sphere
(which is always much smaller than R when there is

Figure 2. Diagram of states for the case of low ionic strength,
κR , 1. The axes are chosen similar to Figure 1 with µ now
being the leaf-sphere attraction in the rosette structures. The
unwrapping is here rather smooth (dashed vertical line).
Complexes with long chains, L > liso, show tails.

Figure 3. Unwrapping transition (a) at high ionic strength,
κR . 1 and (b) at low ionic strength, κR , 1. In the former
case, the transition is sharp and large Yamakawa-Stockmayer
loops are formed; in the latter case, the rosette structures
evolves continuously.

lleaf = RxκR . R (17)

Fwrap

kBT
= ( lP

R2
- Ω

b )L (18)
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strong counterion condensation on the sphere, i.e., for
Z . R/lB). The leaf size at the unwrapping point is then
given by

which indeed indicates a sharp unwrapping transition.

5. Discussion and Conclusion
We compare now our results with Monte Carlo

simulations by Akinchina and Linse32 and then with the
behavior of a biological chain-macroion complex, the
nucleosome.1 The simulated systems32 were always at
the isoelectric point, i.e., the chain length was given by
L ) bZ ) liso. Furthermore, the charges in the simula-
tion interacted via a nonscreened Colombic 1/r potential.
The simulation results have thus to be compared with
Figure 2. Four systems have been considered, each
having having a fixed set of parameters b, Z, and R but
with seven different values of lP. This means that for
each case the systems were located on the dashed
horizontal line at L/liso ) 1 in Figure 2.

In one system (called system II in ref 32) the continu-
ous development from a wrapped to the rosette configu-
rations has been seen most clearly. Example configu-
rations are shown in Figure 1, system II in that paper
(that these are representative can be seen by inspecting
the adsorption probability of monomers as a function
of the monomer index, cf. Figure 3 in 32). For lP ) 7 Å,
the chain is wrapped; at lP ) 60 Å, there is already a
slight indication of very small loops (N ) 4 or 5, cf. the
small oscillations in Figure 3, systems II, open squares).
The next system depicted has already a much stiffer
chain, lP ) 250 Å, and shows very clearly three leaves,
then two leaves at lP ) 500 Å, and one leaf for the
stiffest chain, lP ) 1000 Å. In Figure 2, we have chosen
the parameters such that Nmax = liso/R equals 4 so that
this corresponds roughly to system II in 32. To compare
with the simulations we have to follow the L ) liso-line
in Figure 2: One starts with wrapped structures for
lP/µ < R and finds then the continuous evolution of
rosettes when the line lP/µ ) R is crossed. The leaves
grow at the expense of their number (first four, then
three, and two leaves), just as it has been observed in
the simulations.

In another system (system I), all parameters were
kept the same except the sphere radius that was now
twice as large. This system shows three small loops
when lP ) 250 Å is reached and one loops for lP ) 500
and 1000 Å. In our “phase diagram” the transformation
R f 2R means that the vertical unwrapping transition
line (lP/µ ) R) moves to the right and consequently the
maximum number of loops goes down by a factor of 2:
Nmax f Nmax/2 which is in satisfactory agreement with
the finding in 32. Going from our reference system (II)
to another case (system IV) means to go to a higher line
charge density of the chain, i.e., the transformation
b f b/2 (and thus liso f liso/2). In that case the
unwrapping transition line moves again to a larger
value leading to Nmax f Nmax/2. The complex in ref 32
shows an unwrapping only for lP > 500 Å and has
already a well-pronounced loop at lP ) 1000 Å. Appar-
ently, the wrapped state is more stable in this system
than in system I - and the scaling argument predicts
indeed the critical persistence length to scale as 1/b, cf.
eq 12. The last system (III) finally combines a large

sphere, R f 2R, with a short chain, b f b/2. In that
case no indication of loops has been observed. Even at
the largest persistence length the chain is touching the
sphere over some finite section (similarly to the geom-
etry discussed by Netz and Joanny8). In fact, we predict
Nmax f Nmax/4 by going from the reference system (II)
to this case. Altogether, our scaling approach is in quite
satisfactory agreement with the observations made in
the Monte Carlo simulations.32 It would be interesting
to test our predictions also for chains that are shorter
or longer than the isoelectric length. Corresponding
simulations are already on the way.39

Now we compare our scaling results with an experi-
mental system, the nucleosome.1 The DNA in the nuclei
of plant and animal cells forms together with so-called
histone proteins the dense chromatin complex. The basic
step is the wrapping of DNA around protein spools, each
made from eight histones. The repeating unit of this
complex, wrapped DNA, histone octamer and a stretch
of linker DNA (connecting to the next such protein spool)
is called nucleosome. When the linker is digested away
the remaining complex, the so-called nucleosome core
particle, consists of 147 basepairs (≈500 Å) DNA
wrapped in 13/4 left-handed superhelical turns around
the octamer. The core particle which has a radius of ∼50
Å and a height of ∼60 Å is documented in great detail
on the basis of high-resolution X-ray analyses.40 The
histone octamer contains 220 basic side chains (arginine
and lysine).41 From these are about 103 located in
flexible histone tails that dangle of the core particle and/
or are complexed with the wrapped DNA.42 The rest,
117 residues, are in the globular part of the octamer, of
which 31 are exposed to the solvent, the rest being
involved in intra- and interprotein ionic interactions.
On the other hand, one has 147 bps of DNA wrapped
around the octamer, each contributing two phosphate
groups. Hence there are 294 negative charges from the
DNA vs 220 positive charges of the octamer, i.e., the
nucleosomal complex is overcharged by the DNA.

Yager, McMurray, and van Holde43 characterized the
stability of the nucleosome core particle as a function
of the salt concentration (NaCl). Using a variety of
experimental methods (e.g., gel electrophoresis) they
arrived at the following main conclusions: The core
particle is stable for ionic strengths ranging from 2 mM
to 750 mM (this includes physiological relevant salt
concentrations around 100 mM). For slighly higher salt
concentrations the DNA is partially dissociated; an
equilibrium between histones, free DNA and core par-
ticles is observed. At salt concentrations beyond 1.5 M
the core particle is completely dissociated into histone
oligomers and free DNA. On the other end, for very low
salt concentration j1 mM one finds an “expanded” state
of the nucleosome. Khrapunov et al.41 came via fluores-
cence measurements to similar conclusions: For ionic
strengths between 5 and 600 mM the core particle is
intact. At larger ionic strength (≈1.2 M) the terminal
regions of the DNA unwrap and two histone dimers are
dissociated and at a even larger value (≈1.5 M) the
remaining tetramer leaves the DNA. Finally, at low salt
concentrations one encounters an open state: the
dimers break their contact with the tetramer and the
DNA termini unwrap.

The key features of the behavior of core particle DNA
(neglecting the substructure of the octamer) were re-
covered in a numerical study by Kunze and Netz.9 They
considered the complexation of a charged, semiflexible

lleaf = x R
λGC

R . R (19)
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chain with an oppositely charged sphere, interacting via
a screened Debye-Hückel potential. The optimal DNA
configuration was derived numerically from the mini-
mization of the energy. For a reasonable set of param-
eters (comparable to the one of the core particle) they
found for vanishing ionic strength (κ-1 f ∞) an open,
planar configuration where only a small fraction of the
chain is wrapped whereas the two tails (of equal length)
are extended into roughly opposite directions. This is
reminiscent of the open structures reported in the
experimental studies.41,43 Upon addition of salt the
structure goes from a two- to a one-tail configuration
and the chain begins to wrap more and more. Already
well below physiological ionic strengths the chain is
almost completely wrapped. The chain stays in this
wrapped state up to very high salt concentrations. Only
then does the chain unwrap in a sharp fashion when
the chain-sphere attraction is sufficiently screened.
Also these features of the complex (a wrapped compact
state in a wide range around physiological conditions
and unwrapping at high salt content) reflect the experi-
mental finding in refs 41 and 43.

How are these findings related to our scaling study?
Let us start at physiological salt concentrations around
100 mM. Then κ-1 = 10 Å is much smaller than the
particle size ≈100 Å and we have the short-range case.
Since r = 10 Å, i.e., κr ≈ 1 for physiological conditions,
and since the binding sites between DNA and the
histones are quite specific,40 the estimation of λ in eq 1
is not reliable. λ can be derived instead experimentally
from competitive protein binding to nucleosomal DNA44

to be on the order of (1/5)kBT/Å which is roughly 10 times
smaller than what eq 1 would predict (but note also that
contact is made mainly between DNA minor grooves
which are 10 basepairs apart!). This short-range attrac-
tion is largely balanced by the strong bending contribu-
tion (lP ) 500 Å for DNA and hence lP/(2R2) = 1/6 -
1/7kBT/Å). In any case, eq 3 predicts an unwrapping for
sufficiently small values of κ-1 but the numbers are not
reliable. The more interesting case is that of the core
particle at low ionic strength around 1 mM (κ-1 = 100
Å). At that salt concentration 2κR ≈ 1 and we enter the
long-range case. Apparently, the completely wrapped
configuration is not stable at this point anymore. This
is not surprising since the nucleosomal DNA over-
charges the protein octamer by at least 74 negative
charges (if not by ≈160 charges since 86 charged
residues are buried inside the octamer). We thus expect
a considerable part of the terminal DNA to unwrap and
to be part of one or two tails. In Figure 2, this
corresponds to the wrapped chain structures with tail
that are found for small values of lP/µ, lP/µ < R, and
large values of L, L > liso.

It would be interesting to redo the experiments with
DNA pieces that are longer than 147 basepairs. For
sufficiently large salt concentrations there might be
then the occurrence of rosettes (if there is no interfer-
ence with the partial disintegration of the octamer). For
the other limit, it might be appropriate to use the
argument for highly charged chains and spheres as
given at the end of the previous section. The linear
charge density of DNA is very high (two phosphate
groups per base pair, i.e., per 3.4 Å). Manning theory38

indeed predicts that counterion condensation reduces
the linear charge density to - e/lB with lB ) 7 Å. Also
the charge of the histone octamer is so high that
counterion condensation is important. For that case, we

predicted above the unwrapping to take place around
lP ) ΩR2/b. However, since the DNA persistence length
is smaller than R2/b ≈ (50 Å)2/1.7 Å ≈ 1500 Å, we expect
the wrapped state to be stable at low ionic strength, and
no rosettes should occur in this limit.

Concluding, we have presented a scaling theory for
the complexation between a charged chain and an
oppositely charged sphere for the two limits of high and
low ionic strength. For strong screening one encounters
with increasing chain stiffness a sharp transition from
a wrapped to an open multileafed rosette structure as
already predicted in ref 10. In the case of weak screening
one has again wrapped structures for sufficiently flex-
ible chains and rosettes for stiffer chains. The unwrap-
ping transition, however, is rather smooth in this case.
That this is a characteristic of a system with long-
ranged interaction has been further supported by
extending this theory to power law attraction with
arbitrary exponents and to the nonlinear limit of highly
charged systems. We hope that the presented “phase
diagrams” for the two cases are helpful for further
theoretical and experimental studies.
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Caruso, F.; Popov, Vi. I.; Möhwald, H. Polym. Adv. Technol.
1998, 9, 759.

(4) McQuigg, D. W.; Kaplan, J. I.; Dubin, P. L. J. Phys. Chem.
1992, 96, 1973 and references therein.

(5) Park, S. Y.; Bruinsma, R. F.; Gelbart, W. M. Europhys. Lett.
1999, 46, 454.

(6) Mateescu, E. M.; Jeppesen, C.; Pincus, P. Europhys. Lett.
1999, 46, 493.

(7) Gurovitch, E.; Sens, P. Phys. Rev. Lett. 1999, 82, 339.
(8) Netz, R. R.; Joanny, J.-F. Macromolecules 1999, 32, 9026.
(9) Kunze, K.-K.; Netz, R. R. Phys. Rev. Lett. 2000, 85, 4389.

(10) Schiessel, H.; Rudnick, J.; Bruinsma, R.; Gelbart, W. M.
Europhys. Lett. 2000, 51, 237.

(11) Nguyen, T. T.; Shklovskii, B. I. Physica A 2001, 293, 324.
(12) Nguyen, T. T.; Shklovskii, B. I. J. Chem. Phys. 2001, 114,

5905.
(13) Nguyen, T. T.; Shklovskii, B. I. J. Chem. Phys. 2001, 115,

7298.
(14) Schiessel, H.; Bruinsma, R. F.; Gelbart, W. M. J. Chem. Phys.

2001, 115, 7245.
(15) Schiessel, H.; Widom, J.; Bruinsma, R. F.; Gelbart, W. M.

Phys. Rev. Lett. 2001, 86, 4414; Phys. Rev. Lett. 2002, 88,
129902.

(16) Kulić, I.; Schiessel, H. Biophys. J., in press.
(17) Odijk, T. Macromolecules 1980, 13, 1542.
(18) Pincus, P. A.; Sandroff, C. J.; Witten, T. A. J. Phys. (Paris)

1984, 45, 725.
(19) Marky, N. L.; Manning, G. S. Biopolymers 1991, 31, 1543.
(20) von Goeler, F.; Muthukumar, M. J. Chem. Phys. 1994, 100,

7796.
(21) Schiessel, H. J. Phys.: Condens. Matter, in press.
(22) Wallin, T.; Linse, P. Langmuir 1996, 12, 305.
(23) Wallin, T.; Linse, P. J. Phys. Chem. 1996, 100, 17873.
(24) Wallin, T.; Linse, P. J. Phys. Chem. B 1997, 101, 5506.
(25) Wallin, T.; Linse, P. J. Chem. Phys. 1998, 109, 5089.
(26) Haronska, P.; Vilgis, T. A.; Grottenmüller, R.; Schmidt, M.

Macrom. Theory Simul. 1998, 7, 241.
(27) Chodanowski, P.; Stoll, S. Macromolecules 2001, 34, 2320.
(28) Jonsson, M.; Linse, P. J. Chem. Phys. 2001, 115, 3406.
(29) Jonsson, M.; Linse, P. J. Chem. Phys. 2001, 115, 10975.
(30) Messina, R.; Holm, C.; Kremer, K. Phys. Rev. E 2001, 65,

041805.

3430 Schiessel Macromolecules, Vol. 36, No. 9, 2003



(31) Messina, R.; Holm, C.; Kremer, K. J. Chem. Phys. 2002, 117,
2947.

(32) Akinchina, A.; Linse, P. Macromolecules 2002, 35, 5183.
(33) Harries, R. A.; Hearst, J. E. J. Chem. Phys. 1966, 44, 2595.
(34) Yamakawa, H.; Stockmayer, W. J. Chem. Phys. 1972, 57,

2843.
(35) Netz, R. R.; Joanny, J.-F. Macromolecules 1999, 32, 9013.
(36) Schiessel, H.; Aranda-Espinoza, H. Eur. Phys. J. E 2001, 5,

499.
(37) Oosawa, F. Polyelectrolytes; Decker: New York, 1971.
(38) Manning, G. S. Q. Rev. Biophys. 1978, 11, 179.
(39) Akinchina, A. Private communication.

(40) Luger, K.; Mäder, A. W.; Richmond, R. K.; Sargent, D. F.;
Richmond, T. J. Nature, 1997, 389, 251.

(41) Khrapunov, S. N.; Dragan, A. I.; Sivolob, A. V.; Zagariya, A.
M. Biochim. Biophys. Acta 1997, 1351, 213.

(42) Mangenot, S.; Raspaud, E.; Tribet, C.; Belloni, L.; Livolant,
F. Eur. Phys. J. E 2002, 7, 221.

(43) Yager, T. D.; McMurray, C. T.; van Holde, K. E. Biochemistry
1989, 28, 2271.

(44) Polach, K. J.; Widom, J. J. Mol. Biol. 1995, 254, 130; 1996,
258, 800.

MA0213910

Macromolecules, Vol. 36, No. 9, 2003 Charged Rosettes 3431


