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S1 Formal formulation of the theory

S1.1 Uni-directional motion of RNAP along DNA chains

We here describe the formal formulation of our model in a self-contained manner. Some part
of this section thus duplicates with the description in sec. 2 of the main article. Transcription
is initiated when an RNAP binds to a non-coding DNA sequence, called promoter, by specific
interactions and changes its conformation. The enzyme then moves uni-directionally towards
another non-coding sequence, called terminator, base-by-base, while synthesizing a chain of
RNA. When the RNAP reaches the terminator, it is released from the DNA. We treat cases
where each DNA chain has a promoter at its free end and a terminator at its grafted end.
For the case that the occupancy of RNAP on DNA chain segments is relatively small (and
thus that the RNAPs do not produce a traffic jam on the DNA molecules), the dynamics of

the occupancy npmp(ss,t) of RNAP is given by the following rate equations:
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We here assume that the promoter and terminator regions are not occupied by nucleosomes
due to the specific sequence of the promoters and terminators. sg labels the binding sites of
a DNA chain from the free end to the grafted end and 3 runs from 1 to Ny — 1. s, (= so)
and s; (= sy,) indicate the promoter and the terminator, respectively.

The first term of eq. (S1) is the binding rate of RNAP to the promoter due to specific
interactions, where \ is the rate constant that accounts for the binding. p(z,t) is the local

concentration of RNAP in the solution of the brush region (which is derived by using eq.



(S5)) and h is the height of the brush, see fig. 1 in the main article. We neglected the
dissociation rate of RNAP from the promoters because RNAP firmly grips DNA chains once
it changes its conformation. The second term of eq. (S1) is the rate at which RNAP moves
to the next binding site. The motion of RNAP is suppressed when the next binding site is
already occupied by nucleosomes. nyis(sg,t) is the occupancy of nucleosomes on the site sg
(B=1,2,---, Ny—1). £ is the rate constant that accounts for the motion of RNAP. Fueled
by RNA polymerization, RNAP moves uni-directionally site-by-site towards the terminators
with the same rate, see eq. (S2). RNAP is a processive motor and thus once RNAP binds to
the promoter, it is not dissociated from the DNA molecule before it reaches the terminator.
The second term of eq. (S3) is the dissociation rate of RNAP from the terminators, where

the rate constant k_; accounts for the dissociation.

S1.2 Assembly and dissociation of nucleosomes

The dynamics of the assembly of nuclesomes is treated by using a rate equation of the form
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where sg labels the binding sites of a DNA chain from the free end to the grafted end and
f runs from 1 to Ny — 1. The first term of eq. (S4) is the rate of the nucleosome assembly
on the S-th DNA chain segment and k2 is the rate constant that accounts for this process.
2 is the height of the S-th chain segment above the surface (8 =1, 2, ---, Ny — 1), and
¢(z,t) is the local concentration of histone proteins in the solution of the brush region. The
second term of eq. (S4) accounts for nucleosome dissociation by thermal excitation with
rate constant kN, The spontaneous dissociation of nucleosomes due to thermal excitation

is a very slow process because relatively large free energy costs (> 15 kpT') are necessary

to dissociate nucleosomes even when the dissociation is not suppressed by the attractive



interactions between nucleosomes. Henceforth, we thus neglect this process, k¥ ~ 0. The
third term of eq. (S4) is the dissociation rate of nucleosomes due to the collision between
nucleosomes and RNAP during transcription and ( is the associated rate constant.

We neglected a couple of molecular details involved in the assembly of nucleosomes: 1)
the fact that nucleosomes are assembled from 8 histone proteins (and thus the assembly rate
is ~ c®(z,t) in a more precise treatment), ii) the specific chemistry of four types of core
histone proteins (H2A, H2B, H3, and H4), and iii) the fact that the assembly of nucleosomes
is guided by chaperones. With the treatment ii), four different types of histone proteins
are treated as one type of molecule by using the local density c(z,t) for the cases that the

solution includes H2A, H2B, H3, and H4 with equal concentrations.

S1.3 Diffusion of RNA polymerase in solutions

The local concentrations p(z,t) of RNAP in the solution of the brush region are derived by

using the diffusion equation that has the form
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where the first term is due to the flux Ji,,(2,¢) of RNAP in the solution of the brush region,
the second term accounts for the binding of RNAP to the promoters, and the third term for
the unbinding of RNAP from the terminators. A is the rate constant that accounts for the
binding of RNAP to the promoters, see also eq. (S1). g,(%), the local concentration of the
promoters, is given by g¢,(z) = 0d(z — h) because with the Alexander approximation, the
promoters of all the DNA chains in the brush are located at the top of the brush. k¢°(z,?)
is the rate constant that accounts for the release of RNAP from the terminators. There is no
general form of this rate constant because the releasing rate of RNAP from the terminator

of a DNA chain depends on the binding rate of RNAP at the promoters of the same chain



(see also sec. S1.6).

The flux Jinp(2,t) has the form
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where the first term is the flux due to the thermal diffusion and the second term is the flux
due to the non-specific interactions between nucleosomes and RNAP. D,,, is the diffusion
constant of RNAP. ®,,(2) is the local concentrations of nucleosomes and v is the 2nd virial
coefficient that accounts for the non-specific interactions between nucleosomes and RNAP
in the solution. Without changing the physics, we neglect the non-specific interactions
between vacant DNA chain segments and RNAP in the solution. We treat cases, in which
the local concentration of RNAP in the solution of the brush region is very small and thus
the interactions between RNAP molecules (and also the interactions between RNAP and

histone proteins) are negligible.

S1.4 Diffusion of histone proteins in solutions

The local concentrations ¢(z,t) of histones are derived by using the diffusion equation that

has the form
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where the first term is due to the flux Jys(z,¢) of histone proteins, the second term is the
assembling rate of nucleosomes at the binding sites of DNA chains, and the third term is the
dissociation rate of nucleosomes from the binding sites of DNA chains. kM is the rate con-
stant that accounts for the assembly of nucleosomes and ®.¢(2,t) is the local concentration
of vacant DNA chain segments (which are not occupied by nucleosomes). The dissociation
rate Soe(2,t) of nucleosomes has the form (P (z,t), where @ (z, 1) is the local concentra-

tions of nucleosomes that are colliding with RNAP during transcription, see also the third
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term of eq. (S4).
The flux Juis(z, t) has the form
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The first term of eq. (S8) is the flux due to the thermal diffusion and the second term
of this equation is the flux due to the non-specific interactions between nucleosomes and
histone proteins in the solution. Dy;s is the diffusion constant of histone proteins in the
solution of the brush region and wvy;s is the second virial coefficient that accounts for the non-
specific interactions between nucleosomes and histone proteins in the solution. The size of
histone proteins is much smaller than the size of RNAP and, henceforth, we thus neglect the
interactions between histone proteins and nucleosomes (and also the non-specific interactions
between histone proteins and vacant DNA chain segments). We treat the cases that the local
concentration of histone in the solution of the brush region is relatively small and thus the
interactions between histone proteins (and also the interactions between RNAP and histone)

are negligible.

S1.5 Free energy of chromatin brush

For the cases that the dynamics of the conformation of DNA chains is faster than the other
processes, the height h of a DNA brush is derived by minimizing the free energy (per unit

area) that has the form

f = fpol + fint + 1_[apph (89)

with respect to the brush height h. f,o is the free energy due to the entropic elasticity of
DNA chains, fi, is the free energy due to non-specific interactions, and the third term is the
work done by an applied pressure II,,,. In this paper, we treat two cases: i) a DNA brush

alone in a solution, II,,, = 0, and ii) a DNA brush pushed against another DNA brush with



applied pressures Il,,, (> 0), see fig. 1 in the main article. In case ii), the functional form
of the free energy for the two brushes is identical (although the values of the free energy
may be different in some cases) and thus the free energy of the system is the sum of the free
energies of the two brushes.

The free energy f,o due to the entropic elasticity of DNA chains has the form

fpol 3 O'h2
_2 9 S10

where 7' is the absolute temperature in units of the Boltzmann constant. We use the form
leg = la(1 — ynnis(sp, b)) to treat the effective length log of chain segments (8 =1, 2, ---,
Ny — 1), where the constant v > 0 accounts for the fact that the length of DNA chain
segments becomes shorter when they are reeled around histone proteins.

The free energy fi,; due to non-specific interactions has the form
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The 2nd virial coefficients wen, wing, and weg account for the (nucleosome)-(nucleosome)
interactions, the (nucleosome)-(vacant DNA segment) interactions, and the (vacant DNA
segment)-(vacant DNA segment) interactions, respectively; the interactions between DNA
chain segments change from repulsive to attractive when nucleosomes are assembled at the
DNA chain segments. wu is the 3rd virial coefficient that accounts for the three-body interac-
tions between nucleosomes. We here treat the cases that the local concentrations of RNAP
and histone are relatively small in the solution of the brush region and thus neglected the
interactions between these proteins and DNA chain segments. For simplicity, we do not ex-
plicitly treat the fact that nucleosomes, due to their attractive interactions, might assemble

into chromatin fibers.



S1.6 Steady states

Because we neglected the non-specific interactions between histone proteins and nucleosomes,
the local concentrations ¢(z,t) of histones are equal to the concentration ¢y of histones in

the bulk solution. In steady states, the solutions of eqs. (S1) - (S4) have the forms
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In the uniform DNA brush, the occupancies, nump(ss,t) and nps(ss, t), of RNAP and nu-
cleosomes do not depend on the position of the binding sites sg. For simplicity, we use
Nenp (= Tnp (54, 1)) and npis (= nnis(sp, t)) to represent these occupancies. Eq. (S13) implies
that the local concentrations of nucleosomes and vacant DNA chain segments are uniform

and have the forms

N,
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In steady states, the binding rate of RNAP to the promoter of a DNA chain is equal to
the dissociation rate of RNAP from the terminator of the chain, see egs. (S1) - (S3). The
rate constant k 4’ (z) thus has the form k g’(z) = Aop(h)d(z)/h. We derive the solution of
eq. (S5) by enforcing two boundary conditions: i) the local concentration p(h) of RNAP at

the top of the brush is determined by the continuity of the chemical potentials of RNAP,



p(h) = poe~"®n(® "and ii) the flux of RNAP at the solid surface (z = 0) is equal to the rate of
RNAP molecules that are released at the terminators, Ji,(0) = Aop(h)/h (because RNAP
cannot penetrate the solid surface). With these boundary conditions the local concentration

of RNAP in the solution of the brush region has the form

o(2) = plh) [1 T gjpm—z)} . (517)

With boundary condition i) we assume that although the promoters of DNA chains are
located at their free ends, the local concentration of RNAP at the vicinity of the promoters
is smaller than the concentration of the bulk solution due to the excluded volume interactions
between nucleosomes and RNAP. Experimentally, this may be effective for the cases that
there is a small distance between the free ends and the promoters of DNA chains.

Minimizing eq. (S9) with respect to the brush height h leads to the force balance equation

IT, 3ch wo? N2
- Tpp = N2 - 2h20(nhis_n+)(nhis_n7)
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2 03N}
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with w = Wey + Wofr — 2Winy and Ny = (Wo — Winy = \/W)/w. We derived the third
term of eq. (S18) by using the fact that this term is only significant for ny;s ~ 1. Indeed, eq.
(S7) is automatically satisfied with the above solutions (with ®co; = 0 Nonpishmp/ ).

The brush height is derived as a function of the occupancy ny;s of nucleosomes by using
eq. (S18). The parameter 7 is thus a function of the occupancy nys via p(h), see eq. (S15).
Eq. (S13) is thus a self-consistent equation of the occupancy nys. We use eq. (S13) to
derive the occupancy of nucleosomes as functions of the rate constants that are relevant to
transcription, the extent of the modulation of interactions between DNA chain segments by

assembling nucleosomes, and applied pressures.



S2 Diffusion of RNAP in the solution

We here derive the fluxes of RNAP in the solution of the brush region, eq. (5) in the
main article. It is an extension of the derivation that is shown in sec. S1 in the electronic
supplementary information in ref.' The free energy contributions that are relevant to the
diffusion of RNAP (which depend on the local concentration p(z,t) of RNAP in the solution)

have the form

frnp
T

= /dz [p(z,t)(log p(z,t) — 1) + vp(2,1)Pon(z,1)] - (S19)

The first term of eq. (S19) is the free energy contributions due to the translational entropy of
RNAP and the second term is the free energy contributions due to the interactions between
RNAP and nucleosomes. T is the absolute temperature. v is the second virial coefficients
that account for the interactions between RNAP and nucleosomes. ®,,(z,?) is the local con-
centration of nucleosomes. With eq. (S19), we neglected the (histone)-(RNAP) interactions,
the (vacant DNA segment)-(RNAP) interactions, and the (RNAP)-(RNAP) interactions, see
sec. 2 in the main article.

The chemical potential has the form

Nrnp(zat) — l 6frnp
T T op(z,t)
= logp(z,t) +vPoy(2,1), (520)

where 0 fin,/0p(2,t) is the functional derivative of the free energy f.,, with respect to the
local concentration p(z,t). By using the Debye construction, the fluxes of RNAP in the

solution of the brush region are derived in the form

a/Lrn z,t
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where we used the Einstein’s relationship to derive the last form of eq. (S21). The last form
of eq. (S21) is equal to eq. (5) in the main article.

The chemical potential of RNAP in the bulk solution has the form

% = log po, (S22)

where pg is the concentration of RNAP in the bulk solution. The continuity of chemical
potentials at the interface between the brush region and the bulk solution, fiy,,(h,t) = po,

lead to the local concentration p(h) of RNAP at the top of the brush in the form
p(h) = poe™"Tor ™). (523)

Eq. (S23) is equal to eq. (7) in the main article.

S3 Linear stability analysis
To analyze the stability of the steady state solutions, we consider small fluctuations

Mhis = Mhis T 0Mhis (S24)

ﬁrnp — nrnp+5nrnp (825)

around the steady state solutions, ny;s and ny,p, see eqs. (16) and (17) in the main article.
Substituting eqs. (S24) and (S25) into eqs. (S1) and (S4) and expanding these equations in

the power series of dny;s and dn,y, lead to the form

0 OMhis ki}ifc:o + (Mnp CNpis OMhis
& - — dolh . (826)
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Because the diagonal elements of the coefficient matrix of eq. (S26) are positive, the steady

state solutions, npis and 7.y, are stable when the determinant of this matrix

dnnis
. 4 d
= any 1+ (1= 75000 (527

is positive. The function ¢(n) is the right hand side of eq. (17) in the main article;

g9(n) = %n (1 + % —~ m> : (S28)

Eq. (17) in the main article has maximal three solutions, nflllg, nl(jg, and nfl?:) (nl(ll) <

(2) (3) (1) (3)

ny < ny). The above argument suggests that two of the solutions, n;;. and ny:., are

stable, whereas the other solution nfﬁi is unstable. One of the stable solutions become

A= 5(1 N nhis)(k(})lrilsco + Cnrnp) + (Mnis <§nrnp + Adp(h))

unstable when the solution satisfies a condition

d
dNpis

g(n) =1, (S29)

see eq. (S27), where the solution becomes equal to the unstable solution, analogous to the
spinodal curve of the usual case of phase separation. We thus derive the spinodal curve in
fig. 5 in the main article as the values of ny;s that simultaneously satisfy eq. (S29) and eq.
(17) in the main article. For a given value of 1y (= ApoC/(kZ5¢o€)), there are two values of
npis that satisfy the spinodal condition, see the points labeled by spl and sp2 in fig. S1. We
derive the critical point by finding the values of 1y, with which the two values of ny;s on the

spinodal curve are equal. The occupancy nyp;s thus satisfies eq. (S29), eq. (17) in the main

article, and

———9(n) =0 (530)
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at the critical point.
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Figure S1: We use fig. 3b in the main article to derive the spinodal and binodal curves of
fig. 5 in the main article (the cyan curve in fig. 3b is reproduced here). The spinodal curves
are derived by the values of np;s that satisfy both eq. (S29) and eq. (17) in the main text
(see the points labeled by spl and sp2). The magenta curve divide the II-h curve so that
the areas of the region A and B are equal. The latter condition ensures that the work that
is necessary to gradually change the system between the two states (labeled by bil and bi2)
that are at the two ends of the magenta line. The validity of this approach is discussed in
sec. 4 in the main article.

S4 Coil-globule transitions

DNA brushes may show the coil-globule transitions for the cases that the force balance
equation (eq. (15) in the main article or eq. (S18) in this ESI) has multiple solutions. When
the combination n_ of the 2nd virial coefficients (defined below eq. (15)) is approximately
unity, the right hand side (RHS) of eq. (15) in the main article is a monotonically increasing
function of the brush height h for any values of the nucleosomal occupancy ny;s, see fig. S2 a.
In contrast, when the combination n_ is smaller than a critical value (different from n® that
is defined in the main article), the RHS of eq. (15) in the main article is a non-monotonic

function for large values of the nucleosomal occupancy ny;s, see fig. S2 b. The critical value

12



of the combination n_ (for the coil-globule transitions) has the form

. 21
e [ (ke 53

where @ is defined by 4uoNy/(3whar). Eq. (S31) is derived from the condition that the
minimum of the first derivative of eq. (15) (in the main article) with respect to h becomes
zero for the cases that the occupancy ny;s is unity. The specific set of parameters (n, = 1.8,
v = 0.7, and 4uoNy/(3whay) = 2.0 x 107?) that are used in the main article, n* ~ 0.957;
the coil-globule transitions are not relevant for the values of the combination n_ > 0.975
that are used in the main article.

When pressures are applied to DNA brushes II,,, > 0, the left hand side (LHS) of eq.
(15) in the main article is negative; unless the local minimum of the RHS of this equation
(see for example the black arrow in fig. S2 b) is negative, the coil-globule transitions are not
driven by applied pressures. For relatively large brush heights, the first and second terms
of eq. (15) in the main article dominate the third term of the equation. In such cases, the

local minimum (of the RHS of eq. (15) in the main article) has an approximate form

1 (ny — nnis) 3 (s — n)1/3

S32
22/3 (1 _ ’Ynhis)4/3 ( )
at a brush height A, /harx that has the form
hmin 1/3 1/3 1/3 2/3
K ~ 2 (7’L+ — nhis) (nhis — n,) (1 — "}/nhis) . (833)
Ix
This approximation is effective for
3 -
“ <1 (934)

2473 (ny — nis) /3 (Mis — )3 (1 — ynpss)?/3

the RHS of eq. (15) in the main article is thus positive unless np ~ n_.
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The asymptotic limit ny;s ~ n_ corresponds to the cases that the brush height and the
nucleosomal occupancy is close to the critical condition for the coil-globule transitions; the
first and second derivatives of the RHS of eq. (15) (in the main article) with respect to the
brush height A are zero. The latter condition leads to the critical nucleosomal occupancy,
Ny = N_ + 0Ny, and the critical brush height he, ., where dne . and he . have the

approximate forms

5 2/t 335
R T (F TS L 55
hcg,c ~ ﬂ1/4(1—7n_)1/2. (836)
h'Alx

We used an approximation dneg./n_ < 1 to derive egs. (S35) and (S36). With eqs. (S35)

and (S36), the RHS of eq. (15) in the main article for the critical condition has the form

2&1/4

(L= 4n_ )PP >

which is positive (and may be small for a < 1).

The RHS of eq. (15) in the main article has a local minimum when the nucleosomal
occupancy npis is larger than the critical value n%°. For the cases that the nucleosomal
OCCUPANCY Npis = N + 0Ny 18 still not much larger than the combination n_ (dnyis/n- < 1),

the brush height at the local minimum reads h = heg . + 0h, where 6h has an approximate

form

2 (6nf, — ond )12
Oh ~ /= s °B.C )
3 (n, — 7)o (555)

With this approximation, the local minimum of the RHS of eq. (15) (in the main article)

has the form

cg,C L cg,C 939
\/é 5”;1115 + 5n§g,c 5n}2115 , ( )

(ny =)’ Omiis + Ongge | 1 (O — Imgo)*"? 1
8@2 5nhis
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which is positive because dnegc < dnege/n- < 1. Eqgs. (S33) and (S39) suggest that the
local minimum of the RHS of eq. (15) in the main article is always positive and thus the
coil-globule transitions are not relevant (unless tensions are somehow applied to the DNA
chains of brushes).

a. b.
20 T T T T T T T T T 20 T T T T T T T T

8 T
RHS of eq. (18)
o

RHS of eq. (18)
o

-
(=)

N
o

M0

Figure S2: The right hand side (RHS) of eq. (15) in the main article is shown as a function
of the rescaled brush height h/hai for nys = 0.2 (yellow), 0.4 (orange), 0.6 (light green),
0.8 (cyan), 0.9 (magenta), and 1.0 (black). The combination n_ of the 2nd virial coefficients
(defined below eq. (15) in the main article) is 0.99 (a) and 0.95 (b). The other parameters
are fixed to n, = 1.8, v = 0.7, and 4uo Ny /(Bwhar) = 2.0x 1073, hyy (= Nola(wo/(61,))'/3)
is the length scale of the brush height.
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