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1 Lagrangian mechanics

1.1 Introduction
In this chapter we study dynamics in an altogether different manner. Instead
of a local equation (mass × acceleration = force) we will formulate a general
principle for the whole motion between two points in space. This formulation
shares similarities with a law in optics, Fermat’s principle (Pierre de Fermat,
1662; early version by Hero of Alexandria, c. 60): "The path of a ray of light
between two points is the one that is crossed in the shortest time span". Also in
optics we can formulate a local law, the Snell’s law (Willebrord Snellius, 1621),
in order to calculate the path of the light that it takes to minimize its optical
length (another example: combination of running and swimming to reach a
target inside a lake).

We give now a specific example. Minimize the time to get from A to B, with
velocity c in area I and c/n in area II (Fig. 1). The total time is given by:

T =

√
x2 + a2

c
+

√
(L− x)

2
+ a2

c/n
.

The derivative of T with respect x needs to vanish:

x√
x2 + a2

=
n (L− x)√

(L− x)
2

+ a2

.

This is nothing but Snell’s law for refraction, sin i = n sin r (first formulated
by Ibn Sahl at Baghdad court in 984); zone I is here vacuum with a refractive
index 1, zone II has a refractive index n > 1.

Fermat’s principle does not mean a “deterministic” view. The light ray that
starts at A does not yet “know” that it will pass through B. A better picture
is given by Huygens principle (Christiaan Huygens, 1678) where a light wave
is determined at any subsequent time by the sum of the secondary waves. The
interference of the secondary light waves is constructive only if the phases do
not vary for small deviations from the the path. Fermat’s principle is then a
direct consequence of that. A similar principle is at work in quantum mechanics
where one can work locally (Schrödinger equation) or globally (Feynman path
integrals).
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Figure 1: Snell’s law for refraction.

1.2 Hamilton’s variational principle
In this section we will introduce a general principle that governs the dynamics of
mechanical systems. Let us first, however, recapitulate what we have learned in
KMa for the case of a particle of mass m in one dimension. Its position at time
t is given by x (t). Assume that the particle feels a time-dependent force f (t).
Newton’s second law states that the particle’s mass m times its acceleration,
ẍ (t) = d2x (t) /dt2, equals that force:

mẍ (t) = f (t) . (1)

This is its equation of motion. As a special case of Eq. 1 consider a particle in
an external potential V (x). In that case f (t) = −dV (x (t)) /dx and hence

mẍ (t) = −dV (x (t))

dx
. (2)

We introduce now Hamilton’s principle (Sir William Rowan Hamilton, 1834)
which states that the dynamics of such a physical system is determined by a
variational principle. As the first step we write down the Lagrangian [Lagra-
niaan] L of the system that is given by the kinetic minus the potential energy.
For the particle in the potential this leads to

L (x (t) , ẋ (t)) =
1

2
mẋ2 (t)− V (x (t)) . (3)

Next we introduce the so-called action [werking] functional

S [x] =

t2∫
t1

L (x (t) , ẋ (t)) dt. (4)
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A functional maps a function, here x (t), onto a number, here S [x]. The square
brackets indicate that the argument is not a number but an entire function.

Hamilton’s principle [principe van Hamilton] states that the time evolution
of the system, x (t), corresponds to a stationary point of the action, Eq. 4. More
precisely, of all the curves x (t) with given start point x (t1) = x1 and given end
point x (t2) = x2 the true solution is a stationary point (either a minimum,
maximum or saddle point) of the action.

We need now to define the meaning of a stationary point for a functional
more precisely. We consider a small perturbation h (t) around a given function
x (t). The new function x (t)+h (t) needs to have the same start and end points,
i.e., we require h (t1) = h (t2) = 0. Now let us consider

S [x+ h] =

t2∫
t1

L
(
x (t) + h (t) , ẋ (t) + ḣ (t)

)
dt. (5)

A Taylor expansion of the Lagrange function to first order leads to

S [x+ h] = S[x] +

t2∫
t1

(
∂L

∂x
h+

∂L

∂ẋ
ḣ

)
dt+O

(
‖h‖2

)
(6)

where O(‖h‖2) stands for higher order terms, namely integrals that contain
terms like h2 (t) and ḣ2 (t). Through integration by parts, namely replacing
ḣ∂L/∂ẋ by d

dt (h∂L/∂ẋ) − h d
dt (∂L/∂ẋ) and using the fact that the boundary

terms vanish, one arrives at

S [x+ h]− S [x] =

t2∫
t2

(
∂L

∂x
− d

dt

∂L

∂ẋ

)
h dt+O

(
‖h‖2

)
. (7)

One says that x (t) is a stationary point of the functional S if the integral
vanishes for any small h. This is the case if x (t) fulfills the so-called Euler-
Lagrange equation [Euler-Lagrange-vergelijking]

∂L

∂x
− d

dt

∂L

∂ẋ
= 0. (8)

Let us take the Lagrange function from above, Eq. 3, as an example. By
inserting it into the Euler-Lagrange equation, Eq. 8, we find the equation of
motion, Eq. 2. For this special case we can thus indeed verify that the time
evolution of the system, the solution of Eq. 2, is a stationary point of the
action, Eq. 4. It is straightforward to extend the formalism to d dimensions
where one obtains d Euler-Lagrange equations, one for each direction in space.
One can then easily verify that this set of equations is identical to the equations
of motion for a particle in d dimensions.

So far it looks like Hamilton’s principle is a very complicated way of obtaining
the equation of motion, Eq. 2, that one can write down immediately. For more
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Figure 2: The pendulum.

complicated systems that contain certain constraints, however, such a framework
is extremely useful. To give an example: Consider a pendulum, a mass m
attached to a massless rod of length l that is suspended from a pivot at position
(x, y) = (0, 0) around which it can swing freely. The potential of the mass in
the gravitational field is given by mgy. The Lagrange function of the pendulum
is thus given by

L (x, y, ẋ, ẏ) =
m

2

(
ẋ2 + ẏ2

)
−mgy. (9)

The Euler-Lagrange equations for the x- and y-coordinates lead to two equations
of motion, ẍ = 0 and ÿ = −g.

Unfortunately these equations are completely wrong. What we found are the
equations of motion of a free particle in 2 dimensions in a gravitational field.
Solutions are e.g. trajectories of rain drops or of cannon balls but certainly
not the motion of a pendulum. What went wrong? We forgot to take into
account the presence of the rod that imposes a constraint, namely that x2 +
y2 = l2. A better approach would be to use a coordinate system that accounts
automatically for this constraint, namely to describe the state of the pendulum
by the angle θ (t) between the pendulum and the y-direction, see Fig. 2. But
how does the equation of motion look in terms of this angle?

Here comes into play a great advantage of Hamilton’s principle: it is inde-
pendent of the coordinate system that one chooses. Suppose one goes from one
coordinate system x1, x2,..., xN to another coordinate system q1, q2,..., qf via
the transformations q = q (x) and x = x (q). The trajectory x (t) becomes then
q (x (t)). The action functional can then be rewritten as

S [x] =

t2∫
t1

L (x (t) , ẋ (t)) dt =

t2∫
t1

L

(
x (q (t)) ,

f∑
i=1

∂x (q (t))

∂qi
q̇i

)
dt. (10)
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The rhs of Eq. 10 is again of the form

S [q] =

t2∫
t1

L̃ (q (t) , q̇ (t)) dt (11)

with a new Lagrangian L̃. Also here Hamilton’s principle must hold, i.e., the
dynamic evolution of the system follows from the Euler-Lagrange equations

∂L̃

∂qi
− d

dt

∂L̃

∂q̇i
= 0 (12)

for i = 1, ..., f .
If we have a system with constraints we can sometimes introduce coordinates

that automatically fulfill those constraints. The equations of motion are then
simply given by the Euler-Lagrange equations in these coordinates. Let us go
back to the pendulum. We describe now the configuration of the pendulum
by the angle θ (t), see Fig. 2. In terms of this angle the kinetic energy of the
pendulum is given by ml2θ̇2/2 and the potential energy by −mlg cos θ. This
leads to the following Lagrange function:

L
(
θ, θ̇
)

=
ml2

2
θ̇2 +mgl cos θ. (13)

The corresponding Euler-Lagrange equation is given by

θ̈ (t) = −g
l

sin θ (t) , (14)

which is indeed the equation of motion of the pendulum.

1.3 Generalized coordinates
In the previous example we have introduced so-called generalized coordinates
[gegeneraliseerde coördinaten]. Generalized coordinates are any collection of
independent coordinates qi (independent means not connected by any equations
of constraint) that are just sufficient to characterize the position of a system of
particles.

In the previous case of a planar pendulum the pendulum body moves in
the two-dimensional xy-plane. Its position is then given by (x, y). The system
has, however, not two degrees of freedom but one. This is a consequence of the
constraint x2 + y2 = l2. q1 = x and q2 = y would thus not be an example of
generalized coordinates but q1 = θ is.

In general, if N particles are free to move in 3D but their 3N coordinates
are related by m independent conditions of constraint, then the system has f =
3N−m degrees of freedom and there are f independent generalized coordinates
to describe them. Important is here that the constraints are expressible as
equations of the form

fj (x1, x2, x3, ..., xN , yN , zN , t) = 0 for j = 1, 2, ...,m. (15)
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Figure 3: Example: a pendulum on a movable support.

Such constraint are called holonomic.
Remarkably the constraint for a cylinder rolling without slip on a surface

is holonomic (i.e. the location of its centerline and its orientation are coupled
through a holonomic constraint) but not for a sphere. For a very short rolling
motion the orientation of the sphere and the location of its center is coupled
(like for a cylinder). But through rolling of the sphere along suitable curves one
can achieve that for every sphere position all possible orientations are possible.
Such non-holonomic constraints are hard to deal with and will not be discussed
here.

1.4 Examples of Lagrange equations
The best way to learn how Lagrange equations and generalized coordinates work
is to look at specific examples.

Pendulum on a movable support Consider a massM that can move freely
along a horizonal line without friction. Attached to the mass M is a pendulum
of mass m via a massless connection of length l (Fig. 3). We calculate now the
Lagrange equations for this system.

We first need to find a suitable coordinate system. The system has 2 degrees
of freedom (you can find this number by subtracting the two constraints from
the 4 degrees of freedom of the unconstrained masses). Practical coordinates
are the position X of the mass M along the line and the angle θ between the
pendulum and the direction of gravity. The position of the pendulum body is
then given by

x = X + l sin θ and z = −l cos θ.
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The kinetic energy is then given by:

T =
1

2
MẊ2 +

1

2
m
(
ẋ2 + ż2

)
=

1

2
MẊ2 +

1

2
m

[(
Ẋ + lθ̇ cos θ

)2

+
(
lθ̇ sin θ

)2
]
.

This simplifies to

T =
1

2
(m+M) Ẋ2 +

1

2
m

[
2lẊθ̇ cos θ +

(
lθ̇
)2
]
.

The potential energy is given by

V = −mgl cos θ.

We can now obtain the equations of motions by taking derivatives of the
Lagrangian with respect to the coordinates and to their time derivatives. This
is done separately for the two coordinates. The Lagrange equation 12 for the
coordinate X is given by:

d

dt

[
∂ (T − V )

∂Ẋ

]
− ∂ (T − V )

∂X
= 0,

leading to

(m+M) Ẍ +ml
d

dt

(
θ̇ cos θ

)
= 0

or
(m+M) Ẍ = ml

(
θ̇2 sin θ − θ̈ cos θ

)
.

Note that the partial derivative with respect to Ẋ is only taken on those places
where this variable occurs but that the derivative with respect to the time t acts
on all variables including θ en θ̇. Another point to note here is that quantity
∂ (T − V ) /∂Ẋ is conserved (i.e. does not change with time). This follows always
immediately if the Lagrangian does not depend on one of the coordinates (here
X). You can check easily that this quantity is here the total momentum in the
X-direction.

For the other coordinate, θ, we obtain:

d

dt

[
∂ (T − V )

∂θ̇

]
− ∂ (T − V )

∂θ
= 0,

leading to

ml
(
lθ̈ + Ẍ cos θ − Ẋθ̇ sin θ

)
+mlẊθ̇ sin θ +mgl sin θ = 0

or

θ̈ +
Ẍ

l
cos θ +

g

l
sin θ = 0.

This example shows how straightforward the equations of motion can be de-
rived with the Lagrange formalism as compared to deriving them from Newton’s
formalism which involves force vectors.
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Particle in a central force field For a particle in a central field the motion
takes place in a plane. We choose polar coordinates. The velocity has a radial
and a tangential component. The kinetic and the potential energies are given
by

T =
m

2

(
ṙ2 + r2θ̇2

)
and V = V (r) .

The Lagrange equation for r is

d

dt

(
∂L

∂ṙ

)
= mr̈ =

∂L

∂r
= mrθ̇2 − dV

dr

and for θ:
d

dt

(
∂L

∂θ̇

)
= m

d

dt

(
r2θ̇
)

=
∂L

∂θ
= 0.

Here we find that mr2θ̇, the angular momentum [impulsmoment, draaiimpuls,
hoekmoment of draaimoment], is conserved as the Lagrangian does not depend
on θ.

1.5 Conjugate momenta
We call the quantity

pi = ∂L/∂q̇i (16)

the conjugate momentum [geconjugeerde impuls] to qi. If the Lagrangian does
not depend on a coordinate qi (a so-called ignorable coordinate) we obtain from
the corresponding Euler-Lagrange equation

d

dt

∂L

∂q̇i
= 0. (17)

The conjugate momentum to qi is then a constant of the motion.
As an example consider the motion of free particle in one dimension. The

Lagrangian L = T = mẋ2/2 does not depend on x and thus (d/dt) (∂L/∂ẋ) = 0.
This means mẋ = const. Another example is the total momentum of an isolated
system which is conjugated to the position of center of mass (see the following
chapter for a definition of the center of mass). In the previous example (particle
in a central force field) the Lagrangian does not depend on θ and the angular
momentum mr2θ̇ is a constant of motion.

1.6 Forces of constraint
The method of Lagrange multipliers [Lagrange multiplicatoren] is used in gen-
eral if one wants to optimize (maximize or minimize a function) under one or
several constraints. Suppose you want to maximize the function f (x1, ..., xm).
If this function has a maximum it must be one of the points where the func-
tion has zero slope, i.e., where its gradient vanishes: ∇f = 0 with ∇ =
(∂/∂x1, ..., ∂/∂xm). What do we have to do, however, if there is an additional
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g (x, y) = 0

g (x, y) = const.

f (x, y) = const.

Figure 4: The method of the Lagrange multiplier. The objective is to find the
maximum of the function f (x1, x2) under the constraint g (x1, x2) = C. Shown
are lines of equal height of f (purple curves) and of g (blue curves). The red
point indicates the maximum of interest. It is the highest point of f on the
line defined by g = C. At this point the gradients of the two height profiles
are parallel or antiparallel (case shown here). This means there exists a number
λ 6= 0, called the Lagrange multiplier, for which ∇f = λ∇g.

constraint, g (x1, ..., xm) = C with C some constant? This constraint defines an
(m− 1)-dimensional surface in the m-dimensional parameter space. Figure 4
explains the situation for m = 2. In that case f (x1, x2) gives the height above
(or below) the (x1, x2)-plane. As in a cartographic map we can draw contour
lines for this function. The constraint g (x1, x2) = C defines a single line gC
(or combinations thereof) in the landscape. The line gC crosses contour lines
of f . We are looking for the highest value of f on gC . It is straightforward to
convince oneself that this value occurs when gC touches a contour line of f (if
it crosses a contour line one can always find a contour line with a higher value
of f that still crosses the gC-line). Since gC and the particular contour line of f
touch tangentially, the gradients of the two functions at the touching point are
parallel or antiparallel. In other words, at this point a number λ exists (positive
or negative), called the Lagrange multiplier, for which

∇ (f − λg) = 0. (18)

We use now the same procedure for the Lagrangian. We saw earlier that the
Lagrange mechanics can deal easily with holonomic constraints. What we have
found is then the equation of motion on the allowed manifold that is embedded
inside the unconstrained configurational space. For instance, the pendulum is
allowed to move on the surface of a sphere embedded in the three-dimensional
space. What this method did not provide us with, however, is the force acting
on the rod connecting the mass to the pivot point. This is the force that keeps
the mass in the manifold of the allowed positions. Sometimes one would like to
know the forces of constraint, e.g. an engineer who builds a bridge would like to
know which forces the structural elements need to support during heavy traffic.

To get access to such forces of constraint we use a new Lagrangian. For
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simplicity, let us consider a system with one holonomic constraint g (q (t)) = 0
with q = (q1, q2, ..., qf+1). Now consider the new Lagrangian

L′ (q (t) , q̇ (t) , λ (t)) = L (q (t) , q̇ (t)) + λ (t) g (q (t)) (19)

where we introduced the Lagrange multiplier λ as an additional variable of L′.
This multiplier turns out to be a function of t, λ = λ (t), just as the other
variables are functions of t (the deeper reason being that we want to extremize
a functional under a certain constraint and not just a function like in Fig. 4).
Applying again Hamilton’s variational principle (now for L′ for small variations
q (t) and λ (t)) one finds the following Euler-Lagrange equations:

∂L

∂qi
− d

dt

∂L

∂q̇i
+ λ (t)

∂g

∂qi
= 0 (20)

and
∂L′

∂λ
− d

dt

∂L′

∂λ̇
= 0. (21)

The last equation is simple the constraint g (q (t)) = 0. We have now f + 2
equations that allow to determine f+2 unknown functions, qi (t) (i = 1, ...., f+1)
and λ (t). This seems overly complicated as compared to the strategy discussed
earlier where one finds f generalized coordinates and then writes down the f
corresponding Euler-Lagrange equation. But through the introduction of the
Lagrange multiplier we have gained something: the new quantity

Qi = λ (t)
∂g

∂qi
(22)

is a generalized force of constraint [gegeneraliseerde bewegingbeperkende kracht]
that acts on the system such that the constraint is always fulfilled.

How can one see that? Look at Eq. 20. Suppose we have a system of one
particle in 3D in an external potential V (x), then this can be rewritten as

ṗ = −∇V (x) + λ (t)∇g (x) .

On the lhs is the change in momentum, on the rhs are the forces, the first being
the force from the external potential, the second the force of constraint that
ensures that always g (x) = 0. This force acts perpendicular to the surface on
which the particle is allowed to move. For instance, for a pendulum one has
g (x) = x2 + y2 + z2 − l2 = 0 and ∇g (x) points indeed in the radial direction.
The multiplier λ (t) makes sure that the strength of the force, |λ (t)∇g (x)|, has
always the right value to ensure the constraint.

If there are more than one constraint, one simply adds additional terms, each
with its own Lagrange multiplier, to the Lagrangian. One finds then correspond-
ing generalized forces of constraint. We note that these generalized forces are
not always forces but can also be torques when the corresponding generalized
coordinates are angular.
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We give now a simple example for this method, the pendulum, see Fig.
2. We choose polar coordinates so that the position of the mass is given by
(x (t) , y (t)) = (r (t) sin θ (t) , r (t) cos θ (t)). The constraint is g (r) = r − l = 0.
The kinetic energy is

T =
1

2
m
(
ṙ2 + r2θ̇2

)
and the potential energy is V = −mgr cos θ. The new Lagrangian, Eq. 19, is
now

L′
(
θ, θ̇, r, ṙ, λ

)
=

1

2
m
(
ṙ2 + r2θ̇2

)
+mgr cos θ + λ (r − l) .

We have now 3 Euler-Lagrange equations, one for θ (which turns out to be
unimportant for our purpose), one for λ (which is just the constraint itself, see
above) and one for r:

∂L′

∂r
− d

dt

∂L′

∂ṙ
= mrθ̇2 +mg cos θ + λ+mr̈ = 0

from which follows (using r̈ = 0):

λ = −mrθ̇2 −mg cos θ.

The generalized force of constraint is

Qr = λ
∂g

∂r
= λ = −mrθ̇2 −mg cos θ.

This is the force that the massless rod has to sustain. Not surprisingly it is the
sum of the centrifugal force and the radial component of the weight of the mass
m.

1.7 Hamilton equations
Starting from Lagrange mechanics one can come to a different formulation by
replacing the generalized velocities q̇i by the conjugate momenta pi = ∂L/∂qi
(Eq. 16). This leads to an alternative formulation of classical mechnics that
is used for most advanced applications of theoretical mechanics and is used for
the the transition from classical to quantum mechanics. To start we introduce
the following function (still of q en q̇):

H =
∑
i

q̇ipi − L. (23)

One has ∑
i

q̇ipi =
∑
i

q̇i
∂L

∂q̇i
=
∑
i

q̇i
∂T

∂q̇i
= 2T (24)

because the kinetic energy is a homogeneous quadratic function of the q̇i’s (as-
suming V = V (q)). Specifically: with

T =
∑
i,j

cij (qk) q̇iq̇j (25)
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we find

∑
i

q̇i
∂T

∂q̇i
=
∑
i

q̇i

2ciiq̇i +
∑
i 6=j

cij q̇j

 =
∑
i

2ciiq̇
2
i + 2

∑
i6=j

cij q̇iq̇j = 2T. (26)

Hence
H = 2T − L = 2T − (T − V ) = T + V. (27)

The function H is thus the total energy of the system.
Instead of qi, q̇i we consider in the following qi, pi as the variables (position

and momentum also play a symmetric role in quantum mechanics). This is
possible because we can write q̇i as a function of pi en qi: q̇i = q̇i (p, q) (by
solving Eq. 16 for q̇i). We find then the Hamilton function:

H (q, p) =
∑
i

piq̇i (p, q)− L (q, q̇ (p, q)) . (28)

We calculate now the partial derivatives of H. We obtain

∂H

∂pj
= q̇j (q, p) +

∑
i

(
pi
∂q̇i
∂pj
− ∂L

∂q̇i

∂q̇i
∂pj

)
= q̇j (29)

In the last step we used pi = ∂L/∂q̇i. Furthermore we obtain

∂H

∂qj
=
∑
i

pi
∂q̇i
∂qj
− ∂L

∂qj
−
∑
i

∂L

∂q̇i

∂q̇i
∂qj

= − ∂L
∂qj

(30)

using again pi = ∂L/∂q̇i. From the Euler-Lagrange equation for qj we then find

∂H

∂qj
= − d

dt

∂L

∂q̇j
= −ṗj . (31)

With this we have derived Hamilton’s canonical equations of motion [Hamil-
tons canonische bewegingsvergelijkingen]:

∂H

∂pi
(q, p) = q̇i (t) and

∂H

∂qi
(q, p) = −ṗi (t) .

These are 2f coupled first-order differential equations instead of the f second-
order differential equations of Lagrange.

As an example consider a harmonic oscillator in 1 dimension:

H (x, p) = T + V =
1

2
mv2 +

1

2
kx2 =

p2

2m
+

1

2
kx2.

Hamilton’s equations are then given by

∂H

∂p
=

p

m
= ẋ
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and
∂H

∂x
= kx = −ṗ.

These equations can be interpreted in an elegant way by introducing the
phase space (faseruimte). This is the 2f dimensional space of all the positions
and momenta of the particles. A point in this phase space corresponds to a
particular state of the system. Hamilton’s equations describe how the system
races through phase space. For one particle in one dimension the phase space
is two-dimensional. According to Hamilton’s equations the trajectory of the
harmonic oscillator would describe an ellipse in this phase space. The phase
space of a system can have an incredibly high dimension. For instance, one
mole of gas in a container (about 20 liters at atmospheric pressure) contains
6× 1023 particles. Since each particle has 6 degrees of freedom, its phase space
is 36× 1023 dimensional. Despite of (or better because of) this high dimension
one can easily deal with such system...but this is subject of another course,
statistical mechanics.
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2 Mechanics of a rigid body: planar motion
A rigid body [starre lichaam] is a system of particles where all particles have
a fixed distance from each other. In this chapter we study rotations of a rigid
body around a fixed axis, i.e., all particles move on planar circles. We relegate
the more complex problem of the free motion of a rigid body to the next chapter.

2.1 Center of mass
Definition

The center of mass [zwaartepunt] gives the average position of a (not necessarily
rigid) body. The averaging is done over the mass. For an isolated system of
particles in an inertial system the center of mass moves always with constant
velocity (constant speed and direction).

Discrete case: the body is made of masspoints with positions ri and masses
mi. The center of mass is then given by the sum

rCM =
1

M

∑
i

miri with M =
∑
i

mi. (32)

Continuous case: for a continuous distribution of masses the center of mass
is given by the integral

rCM =
1

M

∫
rρ (r) dV with M =

∫
ρ (r) dV (33)

Hier ρ (r) is the density of mass [massadichtheid] (mass per volume) and dV =
dxdydz is the volume element.

For a thin shell we can define the area density [oppervlaktedichtheid] σ (r)
and the area element dS. The center of mass is now given by:

rCM =
1

M

∫
rσ (r) dS with M =

∫
σ (r) dS. (34)

For a thin wire with line density [lijndichtheid] λ (r) and length element dl we
have

rCM =
1

M

∫
rλ (r) dl with M =

∫
λ (r) dl. (35)

Use of symmetry

If the distribution of mass has a symmetry then the center of mass must obey
that symmetry as well. For instance, a body is mirrored onto itself by a reflection
on the XY -plane. Every particle mi with position (xi, yi, zi) has mirror image
m′i at (x′i, y

′
i, z
′
i) = (xi, yi,−zi). As a result the center of mass lies on the

symmetry plane:

zCM =
1

M

∑
i

(mizi +miz
′
i) = 0 (36)
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Figure 5: Coordinates used for calculating the center of mass of a solid hemi-
sphere. With appropriate reinterpretation these coordinates are also used for a
hemispherical shell, a semicircle and a half-disk.

Examples

• solid hemisphere with radius a and mass density ρ (see Fig. 5): Due to
symmetry one has x = y = 0. What remains to be found is the height
zCM of the center of mass by integrating z over the hemisphere. For
convenience we use disklike volume elements dV = πr2dz and find

zCM =
1

2πa3ρ/3

a∫
0

zπ
(
a2 − z2

)
ρdz =

3

8
a. (37)

• hemispherical shell: The surface element is given by dS = 2πr a dθ and its
height by z = a sin θ (see Fig. 5). This leads to

zCM =
1

2πa2

π/2∫
0

a sin θ 2πa2 cos θdθ =
a

2
. (38)

• semicircle: dl = adθ and

zCM =
1

πa

π∫
0

a sin θ a dθ =
2a

π
. (39)

• half-disk: Along similar lines one finds

zCM =
4a

3π
. (40)

2.2 Rotation of a rigid body about a fixed axis
Each point of the body moves on a circle with angular speed [hoeksnelheid] ω
(in rad/s) around the axis of rotation, say the z-axis. The speed of particle i
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is vi = ωri where ri =
√
x2
i + y2

i denotes the distance of the particle from the
axis of rotation. The velocity vector of the particle can be written as the cross
product:

vi = ωk× ri = ~ω × ri. (41)

Here k denotes the unit vector along the axis of rotation and ~ω = kω (the
component of ri along the z-axis, zi, does not contribute to the velocity and
indeed disappears in the cross product). The components of the cross product
are

ẋi = −ωyi, ẏi = ωxi, żi = 0. (42)

This is for the case of the rotation around the z-axis. Eq. 41 is also valid for
rotations around an arbitrary axis.

Kinetic energy

The kinetic energy [kinetische energie] is given by

Trot =
∑
i

1

2
miv

2
i =

ω2

2

∑
i

mir
2
i =

1

2
Izω

2 (43)

with
Iz =

∑
i

mi

(
x2
i + y2

i

)
. (44)

Iz is called the moment of inertia [traagheidsmoment] about the z-axis.

Angular momentum

The angular momentum [impulsmoment] is given by

L =
∑
i

miri × vi. (45)

Note that this vector is not necessarily pointing in the z-direction if not all
points lie in the xy-plane. Let us calculate the z-component of the angular
momentum. With Eqs. 42, 44 and 45 we obtain

Lz =
∑
i

mi (xiẏi − yiẋi) =
∑
i

mi

(
x2
i + y2

i

)
ω = Izω. (46)

To see that L is not necessarily pointing along the axis of rotation, we calculate
the vector triple product:

L =
∑
i

miri × (~ω × ri) =
∑
i

mi

(
r2
i ~ω − (~ω · ri) ri

)
. (47)

The first term points in the direction of rotation but the second not necessarily
if ~ω · ri 6= 0.
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Equation of motion

In KMa it was shown that the rate of change of the angular momentum for any
system is equal to the total moment [krachtmoment] exerted by the external
forces:

N =
∑
i

ri × fi =
∑
i

miri × v̇i =
d

dt

∑
i

miri × vi = L̇. (48)

For the rotation around a fixed axis, e.g. the z-axis, one finds through projection
on that axis:

Nz = L̇z = Izω̇. (49)

Comparison translation - rotation

To summarize, the moment of inertia is for rotations what is the mass for
translations. Specifically, for translations along the x-axis one has

px = mvx, T =
1

2
mv2, Fx = mv̇x

and for rotations about the z-axis one finds

Lz = Izω, Trot =
1

2
Izω

2, Nz = Izω̇.

2.3 Calculation of the moment of inertia
In the previous section we encountered the moment of inertia with respect to
the z-axis, Iz =

∑
imi

(
x2
i + y2

i

)
. For a continuous body this quantity is given

by

Iz =

∫
r2dm (50)

where dm denotes a mass element and r its distance from the axis of rotation.
dm is given by the density factor multiplied by an appropriate differential: dm =
ρ (r) dV or σ (r) dS or λ (r) dl. For composite bodies the total moment of inertia
is the sum of the moments of the individual parts.

Examples

• thin rod of length L and mass m = λL: If the axis of rotation is perpen-
dicular to the rod and passes through its center we find

Iz =

L/2∫
−L/2

x2λdx =
λ

12
L3 =

m

12
L2. (51)
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• circular disk with radius a and mass m = πa2σ: We assume that the axis
of rotation is perpendicular to the disk and passes through its center:

Iz =

a∫
0

σr22πrdr = 2π
σa4

4
=
m

2
a2. (52)

• sphere of radius a and mass m = 4πa3ρ/3: We assume the axis to pass
through the center and calculate the moment of inertia as an integral over
disks. According to Eq. 52 the contribution of each disk with radius r is
given by r2dm/2. Furthermore dm = ρπy2dz. Hence

Iz =

a∫
−a

1

2
πρr4 (z) dz =

π/2∫
0

1

2
πρ
(
a2 − z2

)2
dz =

8

15
πρa5 =

2

5
ma2. (53)

Perpendicular-axis theorem (or plane figure theorem)

Consider a rigid body that lies entirely in the z-plane, i.e., all mass points fulfill
zi = 0. Then

Iz =
∑
i

mi

(
x2
i + y2

i

)
=
∑
i

mix
2
i +

∑
i

miy
2
i = Ix + Iy. (54)

Example: We calculated above Iz of a circular disk, Eq. 51. What is Ix, i.e.
the moment of inertia for a rotation about an axis that lies in the plane of the
disk and passes through its center. From the perpendicular axis theorem follows
immediately Ix = Iy = ma2/4.

Parallel axis theorem (or Huygens-Steiner theorem)

Introduce coordinates x̄i and ȳi relative to the center of mass (xCM, yCM, zCM),
i.e. xi = xCM + x̄i and yi = yCM + ȳi. The moment of inertia with respect to
the z-axis is given by

Iz =
∑
i

mi

(
x2
i + y2

i

)
=
∑
i

mi

(
(xCM + x̄i)

2
+ (yCM + ȳi)

2
)
. (55)

As the x̄i and ȳi are defined as the coordinates relative to the center of mass,
we know that

∑
imix̄i =

∑
imiȳi = 0. This means that we can rewrite Eq. 55

as follows:

Iz = m
(
x2

CM + y2
CM

)
+
∑
i

mi

(
x̄2
i + ȳ2

i

)
= ml2CM + ICM,z. (56)

The moment of inertia is the sum of two terms that reflects the fact that a
rotation around the z-axis (which does not necessarily has to pass through the
center of mass) is the superposition of the rotation of the body around the center
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of mass (second term in Eq. 56) and the rotation of the center of mass about
the axis of rotation (first term). The angular momentum, Eq. 46, is then the
sum of the angular momenta of these two contributions. From Eq. 56 we can
see immediately that the moment of inertia is minimal if the axis of rotation
goes through the center of mass.

2.4 The physical pendulum
A rigid body can swing freely around a fixed horizontal axis (say the y-axis)
under its own weight. According to Eq. 49 the equation of motion is given by

Iy θ̈ = −mglCM sin θ. (57)

Here lCM is the distance between the axis of rotation and the center of mass, θ
gives the angular displacement. We used here the fact that the moment acting
on the body is the same as if all the forces act on the center of mass. Note that
this is true because of the linear relation between position and moment, Eq. 48;
it does not hold for angular momentum because positions enter quadratically,
Eq. 47.

For small angular displacements, θ � 1 one can approximate sin θ ≈ θ
and we find the harmonic oscillator for which θ (t) = θ0 cos (2πf − φ) with the
frequency of oscillation:

f =
1

2π

√
mglCM

Iy
. (58)

The moment of inertia follows from parallel axis theorem, Iy = ICM,y +ml2CM.
The period is thus given by

T = f−1 = 2π

√
ICM,y

mglCM
+
lCM

g
. (59)

Note that T goes to infinity for lCM → 0 and for lCM → ∞. In between it is
minimal for a certain value of lCM. From ∂T/∂lCM follows that this length is
given by lCM =

√
ICM,y/m. This quantity coincides with the so-called radius

of gyration [gyratiestraal]. For a general body this is defined as the distance
where a point with the same mass as the whole body has the same moment of
inertia as for a rotation about an axis that passes through the center of mass.

2.5 A rigid body in planar motion
We extend now our analysis to cases where the rigid body does not only rotate
around a fixed axis (like for the pendulum) but where the position of the axis
(but not its orientation) is allowed to change as well. An example is a cylinder
rolling down an inclined plane.

In the following we choose the point O′ as the point around which we wish
to calculate the motion of the rigid body. For a rolling cylinder this point could
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e.g. lie on the axis of rotation or on the contact line to the surface. The new
positions and velocities of mass point i are related to the old ones via

ri = r0 + r′i, vi = v0 + v′i. (60)

Here ri and vi denote the positions and velocities of mass point i with respect
to point of origin, O, of the intertial system and r0 =

−−→
OO′. We find for the

moment with respect to point O′:

N′ =
∑
i

r′i × fi =
∑
i

r′i ×
d

dt
mi (v0 + v′i)

= −v̇0 ×
∑
i

mir
′
i +

d

dt

∑
r′i ×miv

′
i. (61)

In the first term of the second line we gained a minus sign because we exchanged
the order in the cross product, in the second term we moved the time derivative
in front since ṙ′i × v′i ≡ v′i × v′i = 0. The second term gives just the time
derivative of the angular momentum with respect to O′:

d

dt
L′ =

d

dt

∑
r′i ×miv

′
i. (62)

Thus the equation of motion is modified to

N′ = −v̇0 ×
∑
i

mir
′
i +

d

dt
L′. (63)

Note that the usual relation between moment and angular momentum, Eq. 48,
is still valid for a moving rigid body if its center of mass is chosen as the point
O′ (due to

∑
imir

′
i = 0) or if the acceleration of O′ vanishes.

To summarize, we can write down the following general equations of motion
for the planar motion of a rigid body:

• for the translational motion: F = mr̈CM where F is the vector sum of all
external forces acting on the body,

• for the rotational motion with respect to some arbitrary origin O′: N′ =
L̇′ = I ′ω, if the acceleration of O′ vanishes or if O′ passes through the
center of mass.

Examples

• Cylinder rolling down an inclined plane without slip: Consider a cylinder
of radius a with mass m. The forces on the cylinder are its weight, mg,
and the reaction of the surface with the components FN and FP , see Fig.
6. For the component normal to the surface there is no acceleration and
thus 0 = mÿ = mg cos θ − FN . The acceleration parallel to the surface
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Figure 6: Cylinder rolling down an inclined plane.

follows from mẍ = mg sin θ − FP . The momentum with respect to the
center of mass (the torque exerted by the surface on the cylinder) is given
by NCM = Iα̈ = Iω̇ = FPa. If the surface friction is large enough such
that µFN > FP (µ: coefficient of static friction) the surface can always
apply enough torque on the cylinder to ensure that no slip occurs. In that
case we have the holonomic constraint:

x = x0 + aα.

From this follows

mẍ = mg sin θ − FP = mg sin θ − I

a
α̈ = mg sin θ − I

a2
ẍ

and thus
ẍ =

g sin θ

1 + I
ma2

.

For a cylinder one has obviously the same moment of inertia as for a disk,
namely I = ma2/2, 52, and thus

ẍ =
2

3
g sin θ.

• Cylinder rolling down an inclined plane with slip: The surface can only
provide the force not larger than FP = µFN . This value might be too
small to enforce non-slippage. In such a case one has

ẍ = g (sin θ − µ cos θ) and α̈ =
mga

I
µ cos θ

As an example consider a cylinder that is released a t = 0. The cylinder
will slideif the acceleration of a point on the surface of the cylinder, aα̈,
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is smaller than the acceleration of the contact point between cylinder and
surface, ẍ, i.e. if

mga2

I
µ cos θ < g (sin θ − µ cos θ) .

There is a critical coefficient of friction given by

µc =
tan θ

1 + ma2

I

,

beyond which the cylinder rolls without friction.
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3 Motion of a rigid body in three dimensions
In this chapter we consider the general motion of a rigid body where the direction
of the rotational axis may vary.

3.1 Rotation of a rigid body around an arbitrary axis and
a fixed point

We keep the laboratory system fixed and allow the rotation of a rigid body
around an arbitrary axis that passes through the origin O and is allowed to
change its direction freely. Suppose the system performs a rotation described
the vector ~ω. According to Eq. 41 the rotational velocity of particle i of the
rigid body is given by vi = ~ω×ri. The angular momentum, Eq. 45, of the rigid
body is given by:

L =
∑
i

miri × (~ω × ri) =
∑
i

mi

[
r2
i ~ω − (~ω · ri) ri

]
(64)

where we used the expression of the vector triple product a×(b× c) = (a · c)b−
(a · b) c. The relation between L en ~ω is a linear function (mathematics) or a
tensor [tensor] (physics). It is called moment of inertia tensor [traagheidstensor]
I. In mathematics we would write: I : ~ω → L but here we write simply

L = I ~ω. (65)

The moment of inertia tensor can be written as a 3× 3-matrix

I =

 Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz

 . (66)

Its components follow directly by writing out the components of the angular
momentum, Eq. 64. For instance, the x-component is given by

Lx = ωx
∑
i

mi

[
x2
i + y2

i + z2
i

]
− ωx

∑
i

mix
2
i − ωy

∑
i

mixiyi − ωz
∑
i

mixizi.

(67)
Thus from Lx = Ixxωx + Ixyωy + Ixzωz it follows immediately that

Ixx =
∑
i

mi

(
y2
i + z2

i

)
(68)

and
Ixy = −

∑
i

mixiyi (69)

and a corresponding relation for Ixz. Equivalent relation are found for all the
other components. The diagonal elements of the matrix, Ixx, Iyy and Izz, are
simple the usual moments of inertia about the x-, y- and z-axes. New for us are
the non-diagonal elements Ixy = Iyx, Iyz = Izy and Izx = Ixz which are called
products of inertia [traagheidsproducten].
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Examples We determine the moment of inertia tensor for a uniform square
plate of size l× l and mass m with respect to its center of mass. The moment of
inertia about an axis that lies in plane and is parallel to an edge is the same as
for a rod, namely ml2/12 (see 51). We can use the perpedicular axis theorem,
Eq. 54, to determine the moment of inertia around an axis perpendicular to the
the square, namely ml2/6. The non-diagonal elements vanish, because Ixy =

−
∫ l/2
−l/2

∫ l/2
−l/2 σxy dxdy = 0 due to symmetry and Izx = Izy = 0 since the plane

lies in the z = 0 plane. In this coordinate system we find thus a diagonal
moment of inertia tensor:

I =
1

12
ml2

 1 0 0
0 1 0
0 0 2

 .

We next determine the moment of inertia tensor of the same object but this
time for rotations about axes that pass through the corner of the square. Two
axes, x and y, coincide with the two associated edges of the plate, the third axis,
z, is perpendicular to it. The diagonal elements Ixx = Iyy we obtain through
the parallel axis theorem, Eq. 56, namely Ixx = ml2/12 + ml2/4, the third,
Izz, has according to the perpendicular axis theorem twice that value. Again
one has Izx = Izy = 0 since the plate lies in the z = 0-plane. But this time
Ixy = Iyx does not vanish:

Ixy = −
∫ l

0

∫ l

0

σxydxdy = −σl
4

4
= −ml

2

4

Alltogether the moment of inertia tensor is given by:

I =
1

12
ml2

 4 −3 0
−3 4 0
0 0 8

 .

Kinetic energy The kinetic energy of a rotating rigid body is given by:

Trot =
1

2

∑
i

mivi · vi =
1

2

∑
i

mivi · (~ω × ri) . (70)

We can permute the vectors of the mixed product, vi · (~ω × ri) = ~ω · (ri × vi)
and then put the vector ~ω in front of sum. The latter step is allowed because
we consider a rigid body. Using Eq. 45 we find:

Trot =
1

2
~ω · L. (71)

Using Eq. 65 we obtain

Trot =
1

2
~ω I ~ω (72)
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or in explicit matrix notation:

Trot =
1

2

(
ωx ωy ωz

) Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz

 ωx
ωy
ωz

 . (73)

For a rotation about a fixed axis we recover the result from the previous chapter.
E.g. for a rotation around the Z-axis ωx = ωy = 0 and ωz = ω we obtain
Trot = Izω

2/2 with Iz = Izz.

3.2 Principal axes of a rigid body
In the matrix representation is becomes clear that the angular momentum has
not necessarily the same orientation as the angular velocity vector, i.e. it is
possible that L = I ~ω ∦ ~ω. For three orthogonal directions, however, they are
parallel. Note that the matrix I is symmetric and it has thus an orthonormal
system of eigenvectors e1, e2, e3 with corresponding real eigen values I1, I2

and I3. The eigenvectors are the principal axes [hoofdtraagheidsassen] of the
rigid body for a given point O (often but not necessarily the center of mass).
The three eigenvalues of the moment of inertia tensor are called principal mo-
ments [hoofdtraagheidsmomenten]. The eigenvalue and -vectors follow from the
diagonlization of the moment of inertia matrix. The principle moments are ob-
viously always positive. By aligning the coordinate system (e1, e2, e3) with the
principal axes of the body one has

I =

 I1 0 0
0 I2 0
0 0 I3

 . (74)

Using this coordinate system expressions that describe the rotation around
an arbitrary axis become fairly straightforward. Let n be the unit vector denot-
ing the direction of the axis of rotation. Its components relative to the principle
axes are given by direction cosines (see Fig. 7):

n =

 cosα
cosβ
cos γ

 (75)

with cos2 α + cos2 β + cos2 γ and ~ω = ωn. The moment of inertia about that
axis is given by

In = nIn = I1 cos2 α+ I2 cos2 β + I3 cos2 γ (76)

as we shall see in a moment.
Consider the angular momentum

L = Iωn = ω (I1 cosα e1 + I2 cosβ e2 + I3 cos γ e3) . (77)
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Figure 7: Definition of the direction cosines.

That quantity is not necessarily parallel to the rotation axis but its component
in the direction of that axis is given by

L · n = ω
(
I1 cos2 α+ I2 cos2 β + I3 cos2 γ

)
= Inω. (78)

Finally the kinetic energy of the rotation obeys

Trot =
1

2
~ω I ~ω =

1

2
ω2
(
I1 cos2 α+ I2 cos2 β + I3 cos2 γ

)
=

1

2
Inω

2. (79)

The surface of constant kinetic energy has the shape of an ellipsoid, the so-
called the inertia ellipsoid [traagheidsellipsoïde]. When one choses the center of
mass as the reference point, then this ellipsoid has a symmetry that cannot be
smaller than that of the body. That simplifies the determination of the principal
axes.

Determination of the other principal axes if one is known One of the
principal axes might be known due to symmetry of the rigid body. If one choses
that axes in the third direction and the other two axes arbitrarily, then the
moment of inertia tensor is of the following form:

I =

 Ixx Ixy 0
Ixy Iyy 0
0 0 I3

 . (80)

One can now diagonalize this matrix through a rotation in the xy-plane. This
can be done by matrix multiplication by a rotation matrix P:

I′ = P−1IP with P =

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 . (81)
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For simplicity we write only the x− and y−components since the third compo-
nent stays unchanged. We need to find a rotational angle θ such that:[

cos θ sin θ
− sin θ cos θ

] [
Ixx Ixy
Ixy Iyy

] [
cos θ − sin θ
sin θ cos θ

]
=

[
A B
B C

]
?
=

[
I1 0
0 I2

]
with B = − (Ixx − Iyy) cos θ sin θ + Ixy

(
cos2 θ − sin2 θ

)
. In order to obtain a

diagonal matrix we need B = 0 which is the case if

Ixy
Ixx − Iyy

=
cos θ sin θ

cos2 θ − sin2 θ
. (82)

With sin 2θ = 2 sin θ cos θ and cos 2θ = cos2 θ − sin2 θ we obtain the following
condition for the angle

tan 2θ =
2Ixy

Ixx − Iyy
. (83)

Static and dynamic balancing Suppose a rigid body rotates around a fixed
rotational axis (e.g. a car wheel). The rotation is called statically balanced if the
axis of rotation lies on the center of mass. There can, however, still be a torque
on the rotational axis, namely when it is not a principal axis. If the rotation
is about a principal axis (that in addition goes through the center of mass) the
device is dynamically balanced.

3.3 Euler’s equation of motion of a rigid body
We finally are ready to derive the equation of motion of a rigid body under
the action of external forces. The rotational part of the motion of any system
referred to an inertial system is given by the equation of motion, Eq. 48: N =
dL/dt. But L can only be expressed as a simple function of ~ω in a coordinate
system where the axes coincide with the principal axes of the body. In other
words the coordinate system has to be fixed to the body and rotate with it.
In KMa the theory of rotating coordinate systems has been developed. It has
been shown that the time rate of change of a vector V in a fixed inertial system
versus a rotating system (here the one attached to the rigid body) is given by
(see Eq. (5.2.10a) in Fowles en Cassiday):

d

dt
V

∣∣∣∣
fixed

=
d

dt
V

∣∣∣∣
rot

+ ~ω ×V. (84)

The rate of change of the vector V in the fixed system is thus the sum of two
terms, the rate of change of V with respect to the rotating system and the rate
of change due to the rotation. This is also true for the angular momentum:

d

dt
L

∣∣∣∣
fixed

=
d

dt
L

∣∣∣∣
rot

+ ~ω × L. (85)
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Taking the time derivative of L = I ~ω in the rigid body system we obtain

d

dt
L

∣∣∣∣
rot

= I
d

dt
~ω

∣∣∣∣
rot

since I does not depend on time as the coordinate system rotates with the body.
We thus find for the equation of motion in the rotating system (using Eq. 48):

N = I
d

dt
~ω + ~ω × L. (86)

To find the three components of this equation let us write explcitely

~ω × L = ~ω × I ~ω =

 ω1

ω2

ω3

×
 I1ω1

I2ω2

I3ω3

 =

 ω2ω3 (I3 − I2)
ω3ω1 (I1 − I3)
ω1ω2 (I2 − I1)

 .

Therefore the three components of Eq. 86, the Euler’s equation of motion
[Eulervergelijkingen], are given by:

N1 = I1ω̇1 + ω2ω3 (I3 − I2)

N2 = I2ω̇2 + ω3ω1 (I1 − I3)

N3 = I3ω̇3 + ω1ω2 (I2 − I1) . (87)

As an example consider the rotation of a rigid body with constant angular
velocity about a fixed axis (that passes through the center of mass). Since the
rotation vector is constant one has N1 = ω2ω3 (I3 − I2) and two other similar
equations for the other components. These are the components of the torque
that need to be exerted to keep the axis of rotation fixed. For a rotation around
a principal axis (e.g. the 1-axis) the torque vanishes because ω2 = ω3 = 0.

3.4 Free rotation: qualitative description
For a free rotation no external moment is exerted on the rigid body. According
to Eq. 48 the angular moment stays constant in the fixed inertial system. The
coordinate system attached to the rigid body rotates around L. Since a rotation
changes only the direction but not the length of L, the following is a constant
of the motion:

(I1ω1)
2

+ (I2ω2)
2

+ (I3ω3)
2

= L2. (88)

Even though the components of ~ω can vary, the tip of the ~ω-vector stays on
an ellipsoid given by the relation above. Also the kinetic energy needs to stay
constant since no external force is exerted on the body:

I1ω
2
1 + I2ω

2
2 + I3ω

2
3 = 2Trot. (89)

This second relation defines another ellipsoid with different ratios between the
principal axes (it is more round).

28



(a) (b) (c) 

Figure 8: Rigid body without rotational symmetry: 2 ellipsods, constant L
(blue) and constant Trot (red). Trot decreases from (a) to (c). In case (a) and
(c) the body moves along circles where the two elliposoids cut through each
other. In case (b) the rotation is not stable.

Since the rotation vector needs to obey both relation, Eq. 88 and 89, the
rotation vector needs lie on both surfaces. That means it needs to lie on the
intersection of the two ellipsoids. InFig. 8 we show the two intersecting ellipsoids
for a body without rotational symmetry (an asymmetric top, e.g. a book) with
I1 > I2 > I3. The blue ellipsoid corresponds to the surface of constant L, the
red of constant Trot. In the three examples we keep L constant but change
the value of Trot. In Fig. 8(a) we show the rotation around the 1-axis. If the
rotation would go exactly around that principal axis, the two ellipsoids would
touch other at that axis. For small variation, like in that figure, the angular
velocity vector will move along a small ring around that axis. The same is true
for the 3-axis, Fig. 8(c).

Very different is the case for the rotation about the 2-axis, corresponding
to the intermediate principal moment I2. The intersection between the two
elliposids are curves that go all around the ellipsoids. The rotation around the
2-axis is thus not stable against small perturbation and the body will wildly
change its orientation as soon as it is perturbed. This can be easily checked
by throwing a book into the air inducing a rotation around any of the three
principal directions.

3.5 Symmetric spinning top: free rotation
The Euler equation 87 for the free rotation of a symmetric spinning top, N1 =
N2 = N3 = 0, I3 = Is and I1 = I2 = I, are given by

Iω̇1 + ω2ω3 (Is − I) = 0

Iω̇2 + ω3ω1 (I − Is) = 0

Isω̇3 = 0. (90)
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Figure 9: The three Euler angles give the orientation of the rotating coodinate
system (1, 2, 3) with respect to fixed system (x, y, z) of the observer.

It follows that ω3 is a constant of motion. We define the reduced angular velocity

Ω = ω3
Is − I
I

(91)

allowing to rewrite the remaining two Euler equations:

ω̇1 + Ωω2 = 0

ω̇2 − Ωω1 = 0.

They can be combined to
ω̈1 + Ω2ω1 = 0. (92)

This is the equation of the harmonic osciallator. Therefore the angular ve-
locity vector describes a conical motion around the axis of symmetry with
ω1 = ω0 cos Ωt, ω2 = ω0 sin Ωt and ω3 = const. This motion is called precession
[precessie]. The trajectory traced out by ~ω is just the circle that we found in
Fig. 8(a) (assuming I1 > I2 = I3) as the intersection of the two ellipsoids.

3.6 Euler angles and the free rotation of a symmetric top
We have determined the motion of the angular velocity vector in the rotating
coordinate system that is attached to the body. This gives us, however, not
yet the motion of the body in the fixed coordinate system of the observer. To
achive this, we need to describe the orientation of the rigid body with the help
of angles, the Euler angles [Eulerhoeken] (Leonard Euler, 1776).

To go from the fixed coordinate system to that of the rotating body one
needs three rotations by three angles, see Fig. 9:

(i) a rotation about the z-axis by the angle φ leads to new axes x1 and
y1 (z1 ≡ z),

(ii) a rotation around the x1-axis by θ gives x′ ≡ x1, y′ and z′,
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(iii) and a rotation around the z′-axis by ψ gives finally the body-fixed
(1, 2, 3)-coordinate system.

Rotations do not commute so the order by which they are performed is impor-
tant. But for infinitesimally small rotations can one simply add the variations
of the positional vectors:

~ωdt = d~ω = dφ ez + dθ ex′ + dψ ez′ . (93)

It turns out that the (x′, y′, z′)-coordinate system is most practical to discuss
the motion of a symmetric top. The components of the angular velocity vector
follow from Fig. 9 by inspection. Since ez · ey′ = sin θ and ez · ez′ = cos θ it
follows from Eq. 93 that

ωx′ = θ̇

ωy′ = φ̇ sin θ

ωz′ = φ̇ cos θ + ψ̇. (94)

For a free rotation the angular momentum vector L is a constant both with
respect to its length and direction. We choose its direction as the z-axis. In the
(x′, y′, z′)-coordinates its components are given by:

Lx′ = 0

Ly′ = L sin θ

Lz′ = L cos θ. (95)

The relation between the components of L and ~ω follow from the moment of
inertia tensor:

Lx′ = Iωx′

Ly′ = Iωy′

Lz′ = Isωz′ (96)

where we used the symmetry of the tensor in the (x′, y′)-plane which is identical
with the (1, 2)-plane.

Using these 9 equations, Eqs. 94, 95 and 96, we can now find the motion of
the spinning top in the observer frame. First of all we obtain:

ωx′ = 0, θ̇ = 0. (97)

This means that the angle θ is constant and that the angular velocity vector
lies in the (y′, z′)-plane. We next determine the angle α between the angular
velocity vector and the z′-axis. To do so we compare the y′- and z′-components
of ~ω and L:

ωy′ = ω sinα, ωz′ = ω cosα

Ly′ = Iω sinα, Lz′ = Isω cosα. (98)

Thus
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Figure 10: Free rotation of a symmetric top: elongated (lhs) and flat object
(rhs).

Ly′

Lz′
= tan θ =

I

Is
tanα. (99)

For I > Is (extended object, “cigar”) we find that the angular velocity vector
lies in between L and the symmetry axis (i.e. the z′-axis), θ > α, see lhs of Fig.
10. For a flat object, I < Is, one has instead θ < α, see rhs Fig. 10.

The angular velocity of the x′-axis can be expressed as a function of θ alone
or of α alone. For example, due to ωy′ = φ̇ sin θ = ω sinα one has

φ̇ =
ωy′

sin θ
= ω

sinα

sin θ
= ω

√√√√1 + cos2 α

[(
Is
I

)2

− 1

]
. (100)

In the last step we used Eq. 99 and cos2 θ = 1 − sin2 θ and the corresponding
relation for α.

To summarize, there are three basic angular rates. (1) The angular velocity
ω around the ~ω-axis. (2) The vector ~ω and the symmetry axis (the 3- or z′-
axis) rotate around the z-axis (the direction of L) with the angular velocity φ̇,
Eq. 100. (3) In the rotating (1, 2, 3)-system attached to the body the angular
velocity vector rotates with the angular velocity Ω, Eq. 91, around the 3-axis,
the symmetry axis of the body (and also L does this since L and ~ω span a plane
in which the 3-axis (≡ z′-axis) lies, see Fig. 10).

3.7 Motion of a symmetric spinning top in the gravity
field

In the following we study the motion of a symmetric spinning top under the
action of a torque (caused e.g. by gravity) that is free to turn about a fixed point
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Figure 11: A symmetric spinning top under gravity.

O, see Fig. 11. We write down the Lagrangian in the(x′, y′, z′)-coordinates:

L =
1

2

(
Iω2

x′ + Iω2
y′ + Isω

2
z′
)
−mgl cos θ

where ωx′ , ωy′ and ωz′ are given by Eq. 94and l is the distance between point
O and the center of mass. From this we find Euler-Lagrange equations (Eq. 8)
for the three angles:

∂L

∂ψ
= 0 =

d

dt

∂L

∂ψ̇
= Is

d

dt

(
φ̇ cos θ + ψ̇

)
, (101)

∂L

∂φ
= 0 =

d

dt

∂L

∂φ̇
=

d

dt

[
Iφ̇ sin2 θ + Is cos θ

(
φ̇ cos θ + ψ̇

)]
, (102)

dL

dθ
= mgl sin θ + Iφ̇2 sin θ cos θ − Isφ̇ sin θ

(
φ̇ cos θ + ψ̇

)
=

d

dt

[
∂L

∂θ̇

]
= Iθ̈.

(103)
From Eq. 101 we find:

d

dt

(
φ̇ cos θ + ψ̇

)
= 0 (104)

or φ̇ cos θ + ψ̇ = S. S is a constant of motion, called spin [spin]. According to
94 one has S = ωz′ , the component of the angular velocity about the symmtry
axis. We thus find that Lz′ = IsS (the conjugate momentum to ψ) is a constant
of motion.

Inserting Eq. 104 into Eq. 102 one finds

d

dt

[
Iφ̇ sin2 θ + IsS cos θ

]
= 0. (105)

We thus find a second constant of motion:

Iφ̇ sin2 θ + IsS cos θ = Lz, (106)
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the conjugate momentum of φ. That this is indeed the z-component of the
angular momentum follows from Lz = Ly′ sin θ + Lz′ cos θ, see Fig. 11. It can
be easily understood that Lz and Lz′ are constant since the torque points in
the x′-direction and has thus no component along the z- and z′-direction.

Precession with a constant angle θ We look for a solution with θ̇ = 0.
From Eq. 103 we obtain in this case

Isφ̇S sin θ − Iφ̇2 sin θ cos θ = mgl sin θ

or
Isφ̇S − Iφ̇2 cos θ = mgl. (107)

This is a second order equation for φ̇. It has only possible physical solutions for

I2
sS

2 ≥ 4mglI cos θ. (108)

This is the condition that needs to be met to have a stable precession with a
constant θ. Especially, the spinning top can only stay in a vertical position (a
so-called sleeping top) if

S >
2
√
mglI

Is
. (109)

Nutation: precession with a non-constant angle θ A precession with a
constant angle θ requires a certain angular speed φ̇ of the precession, namely one
of the two solutions of the second order equation 107. If the angular velocity
of the precession is slower or faster, θ cannot stay constant. Instead the top
performs a nutation [nutatie] between a minimal and a maximal value of θ on
top of the precession as will be demonstrated in the lecture with the help of a
gyroscope.

An example of a (nearly) symmetric spinning top is the precession of planet
earth. The earth is not a free spinning top because of the tidal forces exerted
by the sun and the moon. They cause the precession of the equinoxes, a cycle
of approximately 26000 years. On top of this is a nutational motion with a very
small opening angle of 0.3′′ (arcseconds) manifesting itself as a variation of the
height of the poles. Its angular velocity follows from Eq. 91 with ω3 = 2π/day
and (Is − I) /Is ≈ 1/300 due to the earth’s oblateness. One predicts thus Ω ≈
300 days, the actual value being quite close, about 418 days.
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