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Abstract
Chromatin remodelers are molecular motors which actively displace 
nucleosomes on chromatin. Recent results on the structural properties of 
these motors indicate that the displacement of nucleosomal DNA corresponds 
to an inchworm motion induced by the generation and propagation of twist 
defects. Here we show that this basic action mechanism can be described by 
a coarse-grained active Brownian dimer (ABD) model, thereby quantitatively 
rationalizing the notion of inchworm motion. The model allows for extensions 
to more microscopic as well towards more macroscopic descriptions of 
chromatin hydrodynamics.

Keywords: nucleosome, chromatin remodeler, helicase,  
active Brownian dimer

(Some figures may appear in colour only in the online journal)

Introduction

Active systems currently are one of the most intensive fields of research within the statistical 
physics community. Built on a large body of work dealing with individual motors (see, e.g. 
[1]), the field has turned towards studies of the collective behaviour of ‘active’ constituents, 
see, e.g. [2]. Here we are concerned with chromatin remodeling motors which actively displace 
and remove nucleosomes from the chromatin fiber, which have so far received only little atten-
tion in the statistical physics or biophysics literature [1]. The number of modeling attempts of 
individual remodeler dynamics has been rather limited so far; see, e.g. the [3–6]; but also the 
collective behaviour of chromatin remodelers is beginning to attract attention [7–10].

This lack of attention may in part be explained by the structural complexity and size of 
remodelers which has so far allowed to resolve only few and in particular often partial struc-
tures; this also impeded studies of remodeler dynamics, except in artificial constructs (see 
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below). Very recently, the more widespread use of cryo-electron microscopy and FRET-
imaging techniques have led to numerous new results, in particular on the (small) chromatin 
remodeler Chd1 [11–15].

Chromatin remodelers are built around evolutionarily conserved two-domain ATPase units 
which belong to the helicase-related superfamily II (SF2), and can be grouped into a small 
number of families which differ from each other by their accessory subunits [16]. These 
molecular motors play crucial rules in numerous chromatin-based processes such as the acti-
vation or the repression of transcription and DNA repair [17–19]; their biological relevance is 
underscored by the recent understanding that remodeler dysfunction is one source of regula-
tory diseases such as cancer [20]. A better understanding of how the motors act on the nucle-
osomes is thus of key relevance.

In this paper we show that, at a coarse-grained level, the DNA displacement around the 
nucleosome of a stripped-down version of chromatin remodeling enzymes can be very well 
captured in terms of a different type of model, an active Brownian dimer model. Such models 
were developed several years ago in the context of the simpler linear motors [21].

Mapping of a chromatin remodeler to an active Brownian dimer

Our mapping relies on recent structural biology results which we now briefly review. Liu et al 
[22, 23] have described the structure of a truncated version of a basic remodeler which they 
call ScSnf2 in complex with a nucleosome core-particle with a 167-bp DNA fragment con-
taining the ‘601’ positioning sequence [24]. Cryo-electron microscopy of this fully functional 
complex yielded a resolution of about 4 Å. From the observed populations of the complex, 
the remodeler was found to bind at the nucleosome preferably in different locations on DNA, 
i.e. either on superhelical location SHL 2, on SHL 6 and simultaneously on both SHL 2 and 
SHL 6 [22]. We take this basic information as key ingredients to be reflected in our model, 
which therefore should be able to describe a basic chromatin remodeler without any further 
additional recognition domains.

Although precise dynamical information cannot directly be inferred from the cryo-EM 
data, the following facts can be considered as established, also in conjunction with earlier 
work: (i) the remodeler structure consists of two lobes (also called ‘cores’, in fact presum-
ably properly folded protein domains), which form multiple contact surfaces with both DNA 
turns; (ii) upon remodeling, the remodeler injects twist defects into the DNA turns which are 
expelled at the end contact of the remodeler domains with the DNA; (iii) the remodeler thus 
performs a spatially restricted rotation at the nucleosome turns: its full rotation around the 
DNA is impeded by the presence of the histone core. This limited rotary motion of the remod-
eler is a remainder of its helicase-like nature: a helicase would fully rotate around a single 
DNA double-strand during its linear motion along the DNA [25]. This rotation is represented 
in some models of helicases, but not by the Brownian dimer model. In our case, this neglect 
is justified because of the specific arrangement of the remodeler at the nucleosome. Figure 1 
(left) displays a sketch of the remodeler profile at the DNA turns around the nucleosome.

Turning to modeling this behaviour, condition (iii) allows to neglect the rotary motion of 
the remodeler; conditions (i) and (ii) then allow to restrict the dynamics to the footprints of the 
two lobes on DNA, which we denote as in [21, 26] as x1 and x2. In the course of the remodeler 
action, footprint x1 is first shifted towards location x2 via twist defect injection; the displace-
ment of footprint x2 follows in due course leading to twist defect ejection. The DNA length 
x ≡ x1 − x2 − x0 where x0 is the equilibrium extension of the DNA around the nucleosome 
thus relaxes after one remodeler step which is typically 1–2 bp large [27–29]; the variable x is 
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therefore small, irrespective of the location of x1 and x2 along the internucleosomal DNA. This 
mapping of the displacement dynamics is illustrated in figure 1 (right). The motion of the foot-
prints thus is indeed akin to an inchworm motion of DNA around the histone octamer [23].

Modeling the inchworm

This inchworm motion can be rationalized in terms of molecular motor models, for which 
there are two philosophies. The most common one relies on Brownian ratchet models, where 
the key ingredient is the ratchet potential, a potential with a sawtooth-profile, which controls 
motor motion in conjunction with the ATP-consumption cycle. For chromatin remodelers 
such models have been developed for the case of a remodeler from the ISWI family which 
is capable to position nucleosomes on DNA; this could be demonstrated experimentally in 
single-molecule positioning assays [4, 5]. For the present case in which the motion is that of a 
motor with two footprints, a ratchet model has been discussed in the literature [33]. The other 
modeling philosophy relies on active Brownian dimer models [21, 26], which is the approach 
we follow here.

In the overdamped case which we assume in the following, it is given by coupled Langevin 
equations for the two footprint coordinates xi,

γi(x)ẋi(t) = −∂iU(x) + gi(x)ξi(t), (1)

where ξi(t) is a Gaussian noise with zero mean ⟨ξi(t)⟩ = 0 and variance ⟨ξi(t)ξj(t)⟩ = δijδ(t − t′). 
Three key factors appear in this equation. The first is a spatially-dependent friction term γi(x) ! 0 
which qualitatively models the remodeler-nucleosome interaction. The second term is the 
potential U(x) which we ascribe to the interaction of the remodeler domains between the two 
footprints. Both depend on the relative coordinate x introduced before. Finally, the factor gi(x) 
describes the noise correlations. It is given by

gi(x) ≡
√

2γi(x)kBT + Ai (2)

Figure 1. Two representations of the action of the remodeler on nucleosomal DNA. 
Left: side-view of the engagement of the two remodeler lobes with the two turns of 
DNA, following [22, 23]. Right: mapping of the remodeler-DNA contacts on the two 
remodeler footprints denoted by coordinates along the DNA centered at xi, i = 1, 2. 
Each black bar represents the length of DNA along the nucleosome, with the red bars 
indicating the footprints (contact surfaces) of the remodeler along the DNA. Top bar: 
initial configuration at time t0. Middle bar: after a first step t1, the left footprint has 
moved to the right while the other is still unchanged. Lower bar: at time t2 the right 
footprint has also moved and the displacement step has been completed.

R Blossey and H Schiessel J. Phys. A: Math. Theor. 52 (2019) 085601



4

where the factor Ai describes the contribution of non-equilibrium noise due to ATP-consumption.
This active Brownian dimer model is obviously highly coarse grained, since the non-equi-

librium ATP-dependent driving force is not associated with particular configurations of the 
remodeling-based ATP cycle (we comment on this further in the discussion). Crucial in these 
kinds of models is the asymmetry in the spatially-dependent coupling of the motor to the 
twist-stretched DNA: neglecting the spatial dependence destroys the propagation mode in the 
model.

The dynamics of the two footprints can be decoupled into a center of mass motion and the 
relative coordinate. Due to the dependence of γi(x) and U(x) on only the relative coordinate x 
the equation of the center of mass coordinate xcm is a function of the relative coordinate and 
the noise, while the equation for the relative coordinate is independent from the center of mass 
coordinate. The dynamics of the latter can be cast into a Fokker–Planck equation for the prob-
ability distribution of the relative coordinate P(x, t) which reads as [26]

∂tP(x, t) = −∂x[a(x)P(x, t)] +
1
2
∂x[b(x)∂x[b(x)P(x, t)]] (3)

which has a stationary solution given by

p(x) =
N

b(x)
exp

∫ x

d y
2 a(y)
b2 (y)

, (4)

where N is the normalization factor. In the following, based on the model assumptions, we 
choose for γi(x) the following expressions. Shifting the x-dependence into one of the foot-
print coordinates, we define γ1 = γ0 and γ2 = γ0 + γx, similar to the choice in [21]. The 
zeroth-order term γ0 can be understood as the translational friction term deriving from thermal 
nucleosome displacement [30, 31]. For the present case, the detailed form of the x-dependence 
in γ2 is irrelevant, since x is always small in our case. We now exploit this case, which was not 
done in [26], where other choices were studied by numerical means. The smallness of x allows 
us to obtain analytical results for the model. Finally, it suffices to approximate the domain 
coupling U(x) by a harmonic potential with an effective elastic constant κ, U(x) = 1

2κx2.
In our case the coefficients in the Fokker–Planck equation are given by the expressions

a(x) = −
(

1
γ0

+
1

γ0 + γx

)
κx − kBT

2
γ

(γ0 + γx)2 , (5)

where the T-dependent term has its its origin in the noise term of the Langevin equation, equa-
tion (2) which has both thermal and ‘active’ contributions, and

b2(x) = 2kBT
(

1
γ0

+
1

γ0 + γx

)
+

A
(γ0 + γx)2 (6)

where we have set A1  =  0 and A2  =  A. In the limit γ ≪ γ0, the coefficients simplify to

a(x) ≈ − 2
γ0

κx − kBT
2

γ

γ 2
0
≈ − 2

γ0
κx, (7)

where we neglect the last, temperature-dependent term, as it is small compared to the first 
term. Further, we have

b2 (x) ≈ 4 kBT
γ0

+
A
γ 2

0
. (8)

In this case, the probability distribution reduces to a simple Gaussian given by
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p(x) =
1√

2πσ2
exp−(x −µ)2

2σ2 (9)

with zero mean value, µ = 0, and the variance

σ2 =
A + 4 kBTγ0

4 γ0 κ
. (10)

Note that for A  =  0, p(x) is the equilibrium Boltzmann distribution. From this distribution we 
can then compute the average inchworm velocity using the expression derived in [26]. The 
authors have given the exact expression

⟨ẋcm⟩ = − 1
2
⟨∆γi(x)∂xU(x)⟩

+
kBT

2
⟨∂x∆γi(x)⟩+

∑

i

(− 1)iAi

4

〈
∂xγi(x)
γi(x)3

〉 
(11)

with the averages ⟨·⟩ to be taken with respect to p(x) and the definition

∆γi(x) = γ−1
1 (x)− γ−1

2 (x). (12)

In our case the expression reduces to

⟨ẋcm⟩ = − γ

2 γ 2
0

〈
κx2 〉+ kBTγ

2 γ 2
0

+
A
4
γ

γ 3
0

, (13)

whereby the two last terms follow from the averages to be performed on the approximate 
equation

∆γi(x) = γ−1
1 (x)− γ−1

2 (x) = γ−1
0 − (γ0 + γx)−1 ≈ γ

γ0
x. (14)

The remaining average over ⟨x2⟩ produces the final result

⟨ẋcm⟩ = − A
8
γ

γ 3
0
− kBT

2
γ

γ 2
0
+

kBT
2

γ

γ 2
0
+

A
4
γ

γ 3
0
=

A
8
γ

γ 3
0

. (15)

Thus, performing the average the T-dependent terms—which are themselves small within 
our approximation—cancel each other out exactly, as they should on general grounds: in the 
absence of active driving, the average inchworm velocity must be zero [26]. The final result 
for the inchworm velocity depends only on both the active noise A and the stretch-dependent 
driving via γ  and γ0, but neither on the harmonic potential κ nor temperature. These depen-
dencies enter back into the final result when going to higher orders in our approximation. 
Keeping the next order in the displacement x leads to a skewed distribution for the displace-
ment, p(x), as found numerically in [26]. A finite mean of the distribution, e.g. with a positive 
value µ > 0, goes hand in hand with its skewness towards negative values of x in order to 
allow for the cancellation of temperature-dependent terms in the limit A → 0.

One can compare the putative inchworm motion with experiments on artificial motor con-
structs, as done for the remodeler RSC by Sirinakis et al [32]. In that paper the maximum 
velocity of the remodeler is obtained from the location of the maximum of the probability 
distribution of observed velocities as a function of ATP consumption [ATP], which shows a 
weaker logarithmic dependence on driving, vmax ∼ ln[ATP]. In the experiments of [32], the 
motor was employed on a linearized DNA sequence under external load; the propagation of 
the DNA was then actually by the formation of loops. Clearly, this is a different regime of 
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helicase action, since for the remodeler acting on the nucleosome, the external load is given 
by the DNA itself.

Discussion

In this paper we have formulated a coarse-grained minimal model of a chromatin remod-
eler which combines three elements: (i) structural insights into the build-up of a ‘minimal’ 
chromatin remodeling module; (ii) a mapping to the class of active Brownian dimer models 
introduced several years ago for simple helicases; (iii) an exact solution of the model which 
furthermore exploits the fact that the twist-stretch coupling is always small in the present case. 
The model allows to rationalize the notion of inchworm motion in the context of remodelers 
and makes a simple prediction of the expected inchworm velocity as a function of active driv-
ing and the twist-stretch coupling. Higher-order corrections to our analytic limit can be identi-
fied with the strength of the remodeler lobe coupling and temperature.

Obviously, the model we present is extremely reduced. It can, however, easily be extended 
in both more microscopic and macroscopic directions: in order to include detail of nucleosome 
structure and coupling it to the proper ATP-cycle, modeling approaches such as cited before 
in terms of ratchet models [33], or very recent novel active models [34] can be applied. In 
this way, more information about the force-generation leading to the inchworm motion would 
be built in. On the other hand, it would also be of high interest to take the coarse-grained 
Brownian dimer for the confrontation with experiments: measuring the inchworm velocity as 
a function of the active driving force would allow to estimate the friction parameters in equa-
tion (15). A further outlook is that the Brownian dimer model can be taken as a starting point 
for the derivation of chromatin hydrodynamics models beyond phenomenology [10].
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