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Abstract
We study the dynamics of the nucleosome, the most abundant DNA protein
complex in eukaryotic cells. The dynamics consist of two mechanisms,
site exposure and sliding, which are crucial for making DNA accessible to
DNA-binding proteins. The intertwining of both effects leads to a rich stochastic
process that has not been studied before. Within the assumptions of our model,
nucleosomes perform a symmetric random walk along the DNA strand. We
investigate how the diffusion constant depends on the relative rates of site
exposure and sliding.

PACS numbers: 02.50.Ga, 87.15.kj, 87.15.H−

(Some figures may appear in colour only in the online journal)

1. Introduction

The DNA of eukaryotic cells (cells of animals, plants and fungi) has typically macroscopic
lengths but needs to fit inside micron-sized cell nuclei. To achieve this and to have the genetic
information accessible, eukaryotic DNA is hierarchically folded with the help of proteins [1].
On the first level, DNA is wrapped around millions of protein cylinders resulting in a string
of DNA spools, called nucleosomes. The core of each spool is a cylinder composed of eight
histone proteins and is wrapped by a 147 base pairs (bp) long stretch of DNA. A short stretch
of unbound DNA, the linker DNA, connects to the next protein spool. It is known from the
nucleosome crystal structure [2] that the DNA is bound to the protein core at 14 binding
sites at which the minor groove of the DNA double helix faces the cylinder. This defines the
binding path, a left-handed superhelix of one and three quarter turns. The details of higher
order structures beyond the nucleosome are still a matter of debate [3] and are not discussed
here any further.

With three quarters of eukaryotic DNA being wrapped into nucleosomes, the question
arises how other DNA-binding proteins can bind to their target DNA sequence if it happens to
be located inside a wrapped DNA portion. As the result of the proximity of the impenetrable
surface of the protein cylinder, steric exclusion makes such target sequences inaccessible.
However, spontaneous fluctuations of the nucleosomes allow transient access. This is possible
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via two dynamic modes: the site exposure mechanism [4–12], where the DNA partially
unwraps from the protein core, and nucleosome sliding [13–18] where the protein cylinder
moves as a whole along the DNA.

The site exposure mechanism is based on thermal fluctuations where nucleosomal DNA
unwraps spontaneously from either end of the wrapped DNA portion as the result of the
sequential opening of binding sites. For each unbinding event, the DNA has to pay the price to
open a binding site but reduces its bending energy since the corresponding 10 bp long stretch
can straighten. The change in the net energy is very small, on the order of the thermal energy
[19]. Experimental methods detect the site exposure mechanism either through measuring
protein accessibility to nucleosomes [4–8] or, more recently, through fluorescence energy
transfer between dyes placed on the nucleosomal DNA and/or the protein cylinder [9–12].

Nucleosome sliding along DNA is caused by small defects that spontaneously form in the
wrapped DNA. There is experimental evidence [17, 18] that those defects are small 1 bp twist
defects where an extra or a missing base pair is located between two neighbouring binding
sites [20, 22, 23]. The corresponding piece of DNA has to be over- or understretched and over-
or undertwisted to accommodate the defect. Twist defects are produced at either end of the
wrapped portion and then start to diffuse through the wrapped DNA portion. Since there are
14 binding sites between the DNA and the protein core and since a twist defect is localized
between two binding sites, the defect has 13 possible positions on the nucleosome. If the defect
eventually falls off at the same end where it had been produced, then the nucleosome does not
change its position on the DNA. If, on the other hand, it diffuses through the whole wrapped
portion and falls off at the other end, then the nucleosome makes a step by 1 bp along the
DNA. The cost of a twist defect has been estimated to be about 9 kBT , where T denotes the
absolute temperature and kB the Boltzmann constant [20]; this means that the probability of
having more than one defect on a nucleosome is negligible.

So far the two different dynamical modes of the nucleosome have been treated separately
in the literature, i.e. the site exposure mechanism has been considered in the absence of defects
[19] and nucleosome sliding in the absence of site exposure [20]. The mathematics behind
these two separate treatments is fairly straightforward. In reality, however, the two mechanisms
are intertwined. For instance, a defect inside the nucleosome might disappear without moving
to another binding site when DNA unwraps beyond the location of that defect. There have
been studies [21] which investigate the influence of site exposure on the sliding mechanism,
but our purpose is to combine both into one dynamical model.

2. Model description and approximations

2.1. The Markov model

We consider a single nucleosome attached to an infinitely long DNA strand, from the moment
a defect originates at either end of nucleosome, until the defect leaves the structure. We want
to answer the following question: given that a defect enters at one end, what is the probability
for it to exit at the other end?

We model the system as a stationary continuous time Markov chain, with a state space
determined by the following three parameters (see also figure 1) for t ∈ [0,∞):

• The number of unwrapped binding sites on the left end, labelled at ,
• The number of unwrapped binding sites on the right end, labelled bt ,
• The ‘position’ of the defect, labelled Dt . Formally, Dt is defined as the number of binding

sites from the defect up to and including the leftmost binding site.
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Figure 1. Visualisation of our model for nucleosome sliding and site exposure. The nucleosome
(blue) is fully wrapped with DNA (red), and there is a twist defect, represented by the yellow
stripes. This state is represented by three integers; the position of the defect and the number of
unwrapped loops from either side. In this case, at = 0, bt = 0, and Dt = 11.

These are not free parameters, because at and bt have to be non-negative integers and
at ! Dt ! 14− bt for all time. The Markov chain starts with a0 = b0 = 0, D0 = 1, and ends
whenever Dt = at or Dt = bt .

Let us now consider the dynamics of the Markov chain. We assume that site exposure
and sliding evolve independently, so we consider their transitions separately. Unwrapping or
wrapping at one end causes at or bt to increase or decrease by 1, so there are allowed transitions
at → at ± 1 and bt → bt ± 1. The sliding process allows the defect to jump to a neighbouring
DNA segment, so we also have Dt → Dt ± 1.

The rates for these transitions depend on at, bt and Dt as well as the underlying sequence
of the DNA strand [4, 5, 13, 14], but incorporating this into the model would make it too
complicated. We want to examine the effect of site exposure versus sliding, so we set all
wrapping and unwrapping rates to a constant λ, and all sliding rates to another constant µ.
Changes in environmental conditions that favour site exposure over sliding or vice versa can
be modelled by varying the ratio between λ and µ. Since sliding is always much faster than
site exposure, we will allow approximations that are valid for λ% µ .

With this approximation the model is symmetric, which implies that the nucleosome
performs a symmetric random walk along the DNA. The rate at which the nucleosome moves
is equal to the rate A at which defects are generated times the probability Psuccess that such a
defect leaves the structure at the other end than it entered. Since such a move results in a 1bp
step, the diffusion constant is equal to

D = 1
2 A(1bp)2Psuccess. (1)
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Figure 2. The main approximation we use in this paper ignores the constraints on a, b and D due to
the finite size of the nucleosome and formulates the problem in terms of relative distances x, y. This
stochastic process is a continuous time random walk in the quarter plane with uniform transition
rates. The process starts with x = 1, y = 13, and it results in a successful move when it reaches
the x-axis without hitting the y-axis.

Both A and Psuccess depend on environmental conditions, but in this study we will focus on the
latter term. This probability also depends on the starting condition. The defect will always be
generated at the first or last DNA segment, but there could be binding sites that are unwrapped.
We derive formulas that are valid for any initial state, with emphasis on the fully wrapped
state.

2.2. Infinite lattice approximation

This process turns out to be too complicated to calculate in full detail, so we have to make
some approximation. We remove the restriction that at and bt have to be non-negative, but we
still start with a0 = b0 = 0. Physically, this means the DNA can wrap arbitrarily many times
around the nucleosome. Since those nonphysical moves involve wrapping and unwrapping
events, this approximation is expected to behave best in the regime of small λ.

Given the infinite lattice approximation, the process has become translation-invariant.
Therefore, the whole dynamics can be described in terms of the relative distances

xt := Dt − at, yt := 14− bt − Dt . (2)
The process starts with (x0, y0) = (1, 13), and it stops whenever xt = 0 or yt = 0. The allowed
transitions for (xt, yt ) are (see also figure 2)

(x, y) → (x ± 1, y) λ

(x, y) → (x, y ± 1) λ (3)

(x, y) → (x ± 1, y∓ 1) µ.

In other words, the transition rates

pi j = lim
τ↓0

P[(xt+τ , yt+τ ) = (x + i, y + j)|xt = x, yt = y]
τ

(4)

are given by p0,1 = p0,−1 = p1,0 = p−1,0 = λ and p1,−1 = p−1,1 = µ. For convenience, we
normalize time such that∑

i j

pi j = 1, (5)

so that pi j is the probability for the random walk to move in the direction (i, j) given that it
makes a move. The dynamics are most clearly described by the generator

Lg(x, y) = d
dt

E[g(xt, yt )|x0 = x, y0 = y]|t=0

=
∑

i j

pi jg(x + i, y + j)− g(x, y), (6)
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where E denotes the expectation value under the process. The main object of study is the
function f (x, y), the probability that the random walk started at (x, y) hits the x-axis before it
hits the y-axis. In particular, the probability of success is given by

Psuccess = f (1, 13). (7)

Because the random walk has no drift, the hitting time of either axis is finite with probability
1, so we can write

f (x, y) := P(yτ = 0|x0 = x, y0 = y), (8)

with τ the hitting time

τ := inf{t " 0 : xt = 0 ∨ yt = 0}. (9)

It is easy to see that f (x, y) is increasing in x and decreasing in y. By the first step analysis,
we obtain that f is the solution to the Dirichlet problem

∀y > 0 : f (0, y) = 0,

∀x " 0 : f (x, 0) = 1,

∀x, y > 0 : L f (x, y) = 0, i.e.

f (x, y) =
∑

i, j

pi j f (x + i, y + j). (10)

Moreover, the inherent symmetry in the transition probabilities immediately implies that

∀x, y > 0 : f (x, y) + f (y, x) = 1. (11)

3. Discrete results

3.1. Limiting cases: simple symmetric random walk

The Dirichlet problem is easy to solve in the absence of site exposure, which means µ = 1
2

and λ = 0. The motion is restricted to the diagonal {x + y = 14}, and the one-dimensional
Dirichlet problem is trivial. In general, f (x, y) = x

x+y , so the probability of success equals
f (1, 13) = 1

14 . The simplest non-degenerate random walk is the simple symmetric random
walk, for which µ = 0 and λ = 1

2 . This corresponds to a nucleosome for which no sliding
occurs, only site exposure. In this case, the solution can also be computed exactly, because
the eigenvalues and eigenfunctions of the generator are known. This information enables us
to solve the Dirichlet problem using a theorem by Chung [24]. For the sake of completeness,
in the appendix, we prove this theorem for general reversible random walks on finite graphs.
Here, we are working on an infinite state space, but we can reduce to the finite problem by
means of a limiting procedure.

We restrict the process to a finite box, stopping the process when either x or y becomes
equal to some fixed N. We then calculate the probability fN (x, y) that the random walk leaves
this box through the x-axis. As N → ∞, it becomes less likely that the random walks exits
through the far end of the box, so fN converges pointwise to f . In other words, to find f (x, y),
we define

τN := inf{t " 0 : xt = 0 ∨ yt = 0 ∨ xt = N ∨ yt = N}, (12)

compute

fN (x, y) := P(yτN = 0|x0 = x, y0 = y) (13)

and let N → ∞. Now we have to solve the Dirichlet problem with additional boundary
conditions f (x, N) = f (N, y) = 0. Because the simple symmetric random walk is
homogeneous inside the box, we can put Chung’s theorem in an easier form.
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Theorem 1. The solution to the Dirichlet problem on a finite subset S ⊂ N2 with boundary
condition g : δS → R is given by

f (x, y) = 1
4

∑

i∈I

1
λi

∑

S+(x′,y′)∼(x′′,y′′ )∈δS

φi(x, y)φi(x′, y′)g(x′′, y′′) (14)

where {(φi, λi), i ∈ I} is an orthonormal eigensystem of the generator on S.

We will choose S to be the N×N box, and g(x, 0) = 1 and zero otherwise. The generator
of the simple symmetric random walk is the discrete Laplacian given by

%g(x, y) := g(x, y + 1) + g(x, y− 1) + g(x + 1, y) + g(x− 1, y)

4
− g(x, y). (15)

The orthonormal eigensystem of % is easily computed to be

φmn(x, y) = 2
N

sin
(πmx

N

)
sin

(πny
N

)
,

λmn = 1− 1
2

cos
(nπ

N

)
− 1

2
cos

(mπ

N

)
, (16)

m, n ∈ {1, 2, . . . , N − 1}.
We can insert this into the statement of the theorem to obtain

fN (x, y) = 1
N2

N−1∑

m=1
m odd

N−1∑

n=1

sin
(

πm
N

)
sin

(
πn
N

)
sin

(
πmx

N

)
sin

(
πny
N

)
(
1− cos

(
πm
N

))(
1− cos

( nπ
N

)/
2− cos

(mπ
N

)/
2
) . (17)

As N → ∞, the summations become integrals. The first summation is only over the odd
integers, which gives an overall factor of 1/2. Also, because the summand involves functions
of πn/N rather than n/N, there is a factor of 1/π2. Together, we obatin

f (x, y) = 1
2π2

∫ π

0

∫ π

0

sin(u) sin(v) sin(xu) sin(yv)

(1− cos(u))(1− cos(u)/2− cos(v)/2)
du dv. (18)

In the appendix, we show how to solve this integral algebraically. The physically important
number is the value of f for x = 1, y = 13, and this turns out to be

f (1, 13) = 42 344 121− 1198 449 065 536
9009π

≈ 0.048 969 . . . (19)

3.2. Asymptotic relations

The method employed in the last section does not generalize from the simple symmetric
random walk to arbitrary λ and µ. In order to use Chung’s theorem, one needs to know the
eigenfunctions of the normalized Laplacian. Unfortunately, for a general weighted graph,
determining the eigenfunctions is just as hard as solving the Dirichlet problem directly.

It is possible to find f (x, y) exactly, using an elaborate technique developed by Malyshev
[25]. However, this method is computationally difficult, and it only yields an integral
expression. Alternatively, one can use ideas from harmonic function theory [26], but that
is also quite involved. Therefore, we take a different route. First, we determine the asymptotic
behaviour of f (x, y) for y 0 x, which will turn out to be f (x, y) ≈ cx/y, where c depends
on µ and λ. Then, we switch to a continuum version of the process, which does not change
the asymptotic behaviour, and allows us to compute c(µ, λ) analytically. We can approximate
f (1, 13) either by c

14 or by the solution for f (1, 13) in the continuum process. Neither will be
an exact match, but the dependence on µ and λ is qualitatively the same for each.
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Let us now ask what happens to f (x, y) as y → ∞. Because f (x, y) is decreasing in y,
the limit Lx := lim

y→∞
f (x, y) exists for all x " 0. From the Dirichlet condition (10), it follows

that

Lx = Lx−1 + Lx+1

2
, (20)

which means that x → Lx is linear. Since Lx is also bounded, and L0 = 0 by definition, Lx has
to vanish for all x " 0. For later purposes, it is convenient to rewrite the limit lim

y→∞
f (x, y) in

terms of generating functions, because for the generating functions there is a useful functional
equation. So we define the functions V : R2 → R, and V1,2 : R → R by

V (u, v) =
∞∑

m=1

∞∑

n=1

f (m, n)umvn, (21a)

V1(u) =
∞∑

m=1

f (m, 1)um, (21b)

V2(v) =
∞∑

n=1

f (1, n)vn. (21c)

Because the coefficients of V (u, v) are probabilities, they are bounded, and as a result
V (u, v) converges absolutely and uniformly on compact subsets of D := {(u, v) ∈ R2 : |u| <

1, |v| < 1}. The same applies to V1(u) and V2(v). For u, v ∈ D, we can use the Dirichlet
condition (10) to write

V (u, v) =
∞∑

m=1

∞∑

n=1

f (m, n)umvn

=
∞∑

m=1

∞∑

n=1




∑

i j

pi j f (m + i, n + j)



 umvn.

=
∑

i j

pi ju−iv− j

( ∞∑

m=1

∞∑

n=1

f (m + i, n + j)um+ivn+ j

)

. (22)

The term inside the brackets is equal to V (u, v) plus a couple of boundary terms. These
boundary terms can be simplified, noting that

V1(u) + V2(u) =
∞∑

n=1

[ f (n, 1) + f (1, n)] un =
∞∑

n=1

un = u
1− u

. (23)

Finally, after some algebra we arrive at the functional equation

D(u, v)V (u, v) + uv[(µv + λ)V2(v)− (µu + λ)V2(u)] = u2v

1− u
(µv − µu + λv − λ), (24)

where

D(u, v) = uv − λ(u2v + uv2 + u + v)− µ(u2 + v2). (25)

The limit L1 can be rewritten using Abel’s theorem, since

lim
y→∞

f (1, y) = lim
u→1

(1− u)V2(u). (26)

To calculate this last limit, we multiply the functional equation by 1− u, and let u → 1. Then,
we obtain

(v − 1)2 lim
u→1

(u− 1)V (u, v) + v lim
u→1

(u− 1)V2(u) = v(v − 1). (27)
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Because f (m, n) ∈ [0, 1] for all m and n, we can estimate V (u, v) ! |uv/((1− u)(1− v))|.
This means the first term in this equation will go to zero as v → 1. The third term also
vanishes, so lim

u→1
(u− 1)V2(u) = 0. Therefore, we have arrived at the simple conclusion

∀x " 0 : lim
y→∞

f (x, y) = 0. (28)

Now that we know that f (x, y) decays to zero as y → ∞, it is natural to ask how fast this
decay is. If µ = 1

2 , then f (x, y) = x/(x + y) ≈ x
y . In general, it holds that f (x, y) ≈ cx

y ,
where c depends on the parameters µ and λ. Formally, we have to be careful, since the limit
lim

y→∞
y f (x, y) does not necessarily exist. There could be oscillations in f (x, y) of magnitude

proportional to 1/y, which get amplified by the prefactor y. However, since such oscillations
do not occur in numerical simulations, we choose to ignore that problem and try to find the
solution under the assumption that the limit exists.

As before, we only have to consider the case x = 1, because the rest follows from the
recurrence relation and the fact that f (x, y) vanishes as y →∞. Again, we use Abel’s theorem
to write

lim
y→∞

y f (1, y) = lim
u→1

(1− u)
dV2(u)

du
. (29)

To obtain an expression for the latter limit, we differentiate the functional equation with respect
to v, substitute v = u and multiply with 1− u. This gives

(1− u)
∂

∂v
[D(u, v)V (u, v)]|v=u + µu2(1− u)V2(u) + (µu3 + λu2)(1− u)

dV2(u)

du
= (2λ + µ)u3 − λu2. (30)

In the limit u → 1, the second term on the left-hand side vanishes. Using the product rule on
the first term, and noting that V (u, u) = u2

2(1−u)2 by symmetry, we obtain

lim
u→1

[
2λ

µ + λ

(
1
2
− (1− u)3 ∂V (u, v)

∂v

∣∣∣∣
v=u

)
+ (1− u)

dV2

du

]
= 1. (31)

Since 1
2 ! f (m, n) ! 1 as long as m " n, we can estimate the derivative of V (u, v) from

above and below:
1
8

! lim
u→1

(1− u)3 ∂V (u, v)

∂v

∣∣∣∣
v=u

! 1. (32)

Combining these estimates with the equation above, we see that

1− 7
2λ

1− 2λ
! lim

u→1
(1− u)

dV2(u)

du
! 1

1− 2λ
(33)

Since λ ! 1
4 , the lower bound is always positive, and there exists a constant c such that

lim
y→∞

y f (x, y) = cx (34)

for all x " 0.
On a side note, the asymptotic relation f (x, y) ≈ cx

y as y →∞ is quite general amongst
random walks in the quarter plane. Using the same method as above, we have been able to
show it for nearest-neighbour random walks which have symmetric transition rates, no drift,
and for which p1,1 + p−1,−1 < 1

5 . We believe the assumptions of nearest-neighbour jumps and
symmetry can be relaxed, but the no-drift condition is crucial. The gradient of D(u, v) at the
point (1, 1) is equal to the drift, so only in the case of no drift does D(u, v) have an isolated
zero there. An example with a negative drift is investigated by Godrèche [27].

8
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4. Continuum limit

The asymptotic analysis in the previous section provides us with an upper and a lower bound
on the function c(µ, λ), but it does not indicate how to find its exact value. This is not a
result of insufficient analysis, but a typical feature of these kinds of problems (for example,
see [27]). Fortunately, there is also a typical trick to solve this issue. It can be shown that
the asymptotic behaviour of f (x, y) will not change if we switch to the continuum limit of
the same random walk. The discrete Dirichlet problem then turns into a differential equation,
which is analytically solvable in our case.

In the continuum limit, the graph of the random walk is modified by adding extra vertices
and edges, in such a way that the new graph is still isomorphic to the original one. Additionally,
the transition rates are altered to ensure that the new random walk evolves at the same time
scale as before. Iterating this procedure results in a finer and finer grid, and in the limit we
obtain a stochastic process on R2, which turns out to be a stretched version of Brownian
motion.

To make this notion precise, we view the process Xt = (xt, yt ) as a process on R2, and set
X (N)

t := 1
N XN2t . As N →∞, these processes converge in some sense to a continuous process

Xc
t on R2. By the Trotter–Kurtz theorem [28], it suffices to show that the generators converge

on a large enough set of functions. The generator of X (N)
t is

LNg(x, y) = N2

[
∑

i j

pi jg
(

x + i
N

, y + j
N

)
− g(x, y)

]

. (35)

As N →∞, these generators converge to

Lc = 1
2

∑

i, j

i(i− j)pi j

(
∂

∂x
+ ∂

∂y

)2

+ 1
2

∑

i, j

i(i + j)pi j

(
∂

∂x
− ∂

∂y

)2

, (36)

for sufficiently regular functions. It turns out that if we restrict to the set of infinitely
differentiable functions with compact support and uniformly bounded derivatives, then all
the requirements of the Trotter–Kurtz theorem are satisfied.

Because the event yτ = 0 is invariant under spatial and temporal scaling, we can interpret
the continuum limit in a different way. If we define the stopping times τN and τc as well as the
hitting probabilities fN (x, y) and fc(x, y) analogous to τ and f , then we can write

fN (x, y) = P(y(N)
τN

= 0|x(N)
0 = x, y(N)

0 = y)

= P(y(N)
τ = 0|x(N)

0 = x, y(N)
0 = y)

= P(yτ = 0|x(N)
0 = x, y(N)

0 = y)

= P(yτ = 0|x0 = Nx, y0 = Ny)

= f (Nx, Ny). (37)

Since the processes X (N)
t converge to Xc

t , fN converges to fc at least pointwise, and in the limit
N →∞ we have

fc(x, y) = lim
N→∞

f (1Nx2, 1Ny2) (38)

for all x, y ∈ R (1·2 denotes the integer part of a real number). This convergence allows us to
compute c, since

lim
n→∞

n fc(1, n) = lim
n→∞

lim
N→∞

n f (N, nN)

= lim
N→∞

lim
n→∞

n f (N, nN) = c, (39)

9



J. Phys. A: Math. Theor. 46 (2013) 095005 B van Opheusden et al

where we have tacitly assumed that the exchange of limits can be justified by a uniform
convergence argument. So to determine the function c we can work with the continuous
process, for which the hitting time problem is much simpler. Indeed, it is well known [29, 30]
that fc is the solution of the Dirichlet problem

fc(x, 0) = 1

fc(0, y) = 0 (40)

Lc fc = 0,

which is the continuous analogue of (10). To solve this differential equation, we define new
coordinates

x̃ := x + y
( ∑

i, j i(i− j)pi j
)1/2 , ỹ := x− y

(∑
i, j i(i + j)pi j

)1/2 , (41)

so that the generator assumes the canonical form of Brownian motion

Lc = 1
2

(
∂2

∂ x̃2
+ ∂2

∂ ỹ2

)
. (42)

This means fc is a harmonic function of x̃ and ỹ, which we will try to construct as the imaginary
part of a holomorphic function of z = x̃ + iỹ. The domain of this function is the wedge

{z ∈ C\{0} : − arctan(α) < arg(z) < arctan(α)}, (43)

where we have defined

α :=
(∑

i, j i(i + j)pi j∑
i, j i(i− j)pi j

)1/2

. (44)

This domain can be biholomorphically mapped onto the upper half-plane H by the function
z → iz(π/(2 arctan α)). The unique holomorhic function on H satisfying the correct boundary
conditions is (1/π ) ln(z), which implies

fc(x, y) = 1
2

+
arctan(α x−y

x+y )

2 arctan(α)
. (45)

The function c can now be computed by a Taylor expansion of fc, which gives

c = α

(1 + α2) arctan α
. (46)

Finally, because α =
(

λ
λ+2µ

)1/2 = O(
√

λ), in the limit of slow site exposure, c =
1− 2λ

3 + O(λ2).

4.1. Comparison with simulation

Using the continuum limit, we managed to compute c(µ, λ) exactly, and we obtained an
approximation fc(x, y). This approximation cannot be exact, since in the special case of
simple symmetric random walk we have

fc(1, 13) = 1
2
− 2

π
arctan

(
12
14

)
≈ 0.048 875, (47)

whereas earlier we have computed

f (1, 13) = 42 344 121− 1198 449 065 536
9009π

≈ 0.048 969. (48)

Still, the difference is very small. In figure 3, we compare fc(1, 13) to a numerical simulation
of f (1, 13) and the exact value of c

14 . The difference between the continuum and discrete

10
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Figure 3. Various approximations for the probability of success are suggested. Shown are numerical
results for the infinite lattice approximation and two analytical ways to compute it, one based on
the asymptotic analysis and one based on the continuum limit. Neither is exact, but the continuum
limit is extremely close. However, the infinite lattice approximation itself is weak, even in the limit
of slow site exposure.

process remains negligible for all λ, whereas the asymptotic estimate gets worse. Even near
λ = 0, the slope of the continuum and discrete process match up, but the asymptotic estimate
does not.

Unfortunately, the infinite lattice approximation breaks down for all non-zero values of λ.
This is caused by the fact that in the infinite lattice approximation, the nucleosome can always
wrap and unwrap from both sides. Physically, this makes no sense, because wrapping can only
take place if there is space available on the nucleosome. Since this is a site exposure effect,
the difference will scale as O(λ) for small λ.

4.2. A new model: triangle approximation

Let us try to refine the model to obtain better agreement with the simulation. We consider the
same random walk, but now conditioned on the event that xt + yt ! 14 for all t " 0. This still
allows for impossible movements, though. If the nucleosome unwraps at one end, it is possible
in this model to wrap at the other end. For this effect to occur two unwrapping/wrapping steps
are needed, so we expect its contribution to be O(λ2).

Because the state space of the random walk is now finite, the Dirichlet problem is easy to
solve. The generator becomes a matrix, and the Dirichlet problem amounts to a simple exercise
in linear algebra. However, this matrix is still 91×91, so the solution will be a complete mess.
This approach will yield the correct answer, but it does not provide with any insight on its
behaviour. We cannot switch to a continuum limit either, because the event xt + yt ! 14 is not
scale invariant, so the processes X (N)

t = 1
N XN2t will not converge. Therefore, we have to resort

to a numerical simulation again, the results of which are shown in figure 4.

11
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Figure 4. Motivated by the failure of the infinite lattice approximation, we propose a refinement of
the model, where the relative positions are restricted to the triangle {x+y ! 14}. The probability of
success can no longer be calculated analytically, so here we show results of a numerical simulation.
The triangle approximation is still not exact, especially at large λ, but the slope at λ = 0 is correct,
evident from the inset.

5. Conclusion

We found approximate results for the diffusion constant of nucleosomes along a DNA strand,
incorporating both sliding and site exposure. The site exposure effect will always reduce the
probability for defects to succeed in moving the nucleosome.

Most of the results were derived using the infinite lattice approximation, which assumes
the nucleosome to be infinitely large. In this approximation, we have derived a near-exact
expression, which becomes exact in the limit of slow wrapping/unwrapping.

To obtain a mathematically solvable model, we neglected the dependence of the site
exposure and sliding rates on the position of the defect and the number of unwrapped loops.
These rates also depend quite a lot on the underlying sequence of the DNA. As an extension
of the model, it would be interesting to see how position-dependent rates will affect the
diffusion constant. We could also investigate the effect of forces on the nucleosome. That
would introduce an asymmetry in the problem, so the nucleosome will perform a random walk
with drift. Moreover, due to the force, unwrapping will be favoured over wrapping, and the
nucleosome will be removed from the DNA strand after a finite time. Results on force-induced
nucleosome movement and desorption have been shown by Chou [21].

Appendix A. Dirichlet problems for finite Markov chains

In this appendix, we consider a Markov chain with finite state space X . Moreover, we will
assume that it is reversible with rates rx→y and stationary measure π (x). The generator of such

12
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a process has the simple form

Lg(x) :=
∑

y∈X

rx→y[g(y)− g(x)]. (A.1)

The Markov chain has an associated weighted graph defined by x ∼ y ⇐⇒ rx→y 6= 0 and
edge weights wxy := π (x)rx→y. We can formulate the Dirichlet problem in terms of this graph.
Let S ⊂ X be a connected subgraph, and δS = {x /∈ S : ∃y ∈ S : x ∼ y}. The Dirichlet problem
amounts to finding, for a given g : δS → R, a function f : S ∪ δS → R such that

(L f )|S = 0,

f |δS = g. (A.2)

The generator can be considered as a linear operator from the space of real-valued functions
on X to itself. These functions can then be mapped linearly to functions on S by the restriction
operation, denoted RS. In this language, the first equation above is equivalent to requiring that
f lies in the kernel of RSL. This kernel is equal to the kernel of RS%, where % is the matrix
with elements

%(x, y) =






1 x = y

−wxy

dx
x 6= y

∀x, y ∈ X, (A.3)

and we have defined dx =
∑

y∈X wxy. This matrix % is not symmetric, but its conjugacy
class contains a symmetric matrix L = T 1/2%T−1/2, where T (x, x) = dx, and T (x, y) is zero
otherwise. The matrix L is called the normalized Laplacian of X . The most important object
is the submatrix LS of L consisting of matrix elements for which x, y ∈ S. This is a square
symmetric matrix, and therefore, it has an orthonormal basis of eigenfunctions.

Let {(φi, λi), i ∈ I} be such an orthonormal eigensystem of LS, and set f̃ = T 1/2 f .
Observe now that for all x ∈ S:

(RSL f̃ )(x) =
∑

y∈S∪δS

L(x, y) f̃ (y) = LS f̃S(x) +
∑

y∈δS

L(x, y) f̃ (y) = 0. (A.4)

So we need to solve the equation LSRS f̃ = α, where

α(x) = −
∑

y∈δS

L(x, y) f̃ (y) =
∑

y∈δS

d−1/2
x wxyg(y) (A.5)

The matrix-tree theorem [31] states that the number of spanning trees of S equals
det LS ×

∏
x∈S dx. Because S is connected, this number is nonzero, so LS is invertible. Using

that LS =
∑

i∈I λiφiφi
T , we can compute

RS f = T−1/2RS f̃ = T−1/2L−1
S α =

∑

i∈I

1
λi

T−1/2φiφi
T α. (A.6)

If we work out this last expression, then we see that

f (x) =
∑

i∈I

1
λi

∑

y∈S

∑

z∈δS

g(y)wyzφi(z)d−1/2
y d−1/2

x φi(x) (A.7)

for all x ∈ S.

Appendix B. Calculating the integral

The integral in equation (18) can be solved algebraically, and here we describe a method to do
so. Starting from the integral

f (k, l) = 1
2π2

∫ π

0

∫ π

0

sin(u) sin(v) sin(ku) sin(lv)

(1− cos(u))(1− cos(u)/2− cos(v)/2)
du dv, (B.1)
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first simplify the integrand by introducing Chebyshev polynomials of the second kind, defined
as Uk(cos(u)) = sin((k+1)u)

sin(u)
. This results in

f (k, l) = 1
2π2

∫ π

0

∫ π

0

sin(u)2 sin(v)2Uk−1(cos(u))Ul−1(cos(v))

(1− cos(u))(1− cos(u)/2− cos(v)/2)
du dv

= 1
2π2

∫ π

0

∫ π

0
(1 + cos(u))

sin(v)2Uk−1(cos(u))Ul−1(cos(v))

sin2(u/2) + sin2(v/2)
du dv, (B.2)

where the last line follows from some trigonometric identities. Then expand the polynomials,
together with the factor 1 + cos(u). This yields a number of terms, each of which is of the
form

Imn =
∫ π

0

∫ π

0

sin2(v) cosm(u) cosn(v)

sin2(u/2) + sin2(v/2)
du dv (B.3)

for some m, n ∈ N. Those integrals can be transformed by changing variables to x = u/2 and
y = v/2, and using the appropriate double angle formulas,

Imn = 4
∫ π

2

0

∫ π
2

0

(sin2(x)− sin4(x))(1− 2 sin2(x))m(1− 2 sin2(y))n

sin2(x) + sin2(y)
dx dy. (B.4)

Again, expand the nominator and separate the terms, which now look like

Jmn =
∫ π

2

0

∫ π
2

0

sin2m(x) sin2n(y)

sin2(x) + sin2(y)
dx dy. (B.5)

Finally, use long division, noting that

xmyn

x + y
= xmyn−1 − xm+1yn−2 + . . . + (−1)n xm+n

x + y
. (B.6)

The resulting integrals can then be directly solved for all m, n > 0:
∫ π

2

0

∫ π
2

0
sin2m(x) sin2n(x)dx dy = π2

22m22n

(
2m− 1
m− 1

)(
2n− 1
n− 1

)
, (B.7)

∫ π
2

0

∫ π
2

0

sin2m(x)

sin2(x) + sin2(y)
dx dy =

π2n)( m
2 )2

16)(m)
. (B.8)

There is one curious fact we can derive from this calculation. The first integral above is always
a rational number times π2, and the second integral will be a rational times π if m is even and
a rational times π2 if m is odd. All the coefficients in the expansions are integers, and there
is an overall factor of 1/π2, so the resulting integral can always be written as a + b/π , with
a, b ∈ Q.

This is not too unexpected, though. To derive the solution to a Dirichlet problem, one has
to invert the Laplacian operator, in other words, derive Green’s function. It is well known [32]
that the two-dimensional lattice Green function is always of this particular form.
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