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In this work we report first analytical results on the dynamics and conformational properties of
polyampholytes~PAs, polymers containing positive and negative charges! in the presence of
external electrical fields. In terms of the Rouse model of polymer dynamics and in the so-called
weak coupling limit we obtain for PAs explicitly the mean-square displacement both of the center
of mass and of individual beads, and also determine the PAs’ equilibrium end-to-end distance. For
a singly charged PA we also relate the findings to a fractional differential equation. ©1995
American Institute of Physics.
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I. INTRODUCTION

Recently, the dynamics and the conformational prop
ties of heteropolymer chains with quenched random disor
have received much attention due to their possible releva
to biological processes like protein-folding.1–3 Therefore
polyampholytes~PA!, i.e., polymer chains which carry both
positive and negative charges have been a subject of con
erable interest within the last decade. The main emphasi
this research concerned the role of the mutual interaction
charges on the PA’s conformational properties. Depending
the physical situation and on the parameters~i.e., random or
regular placement of charges, the presence of a net cha
the temperature and/or the quality of the solvent! PAs may
stretch to an extended configuration or, conversely, m
collapse.4–14

This work examines the behavior of PAs in extern
electrical fields. We propose a model valid in the weak co
pling limit,14–16 i.e., for the regime l B/b!1 where
l B5e2/(eT) denotes the Bjerrum length andb is the mono-
mer size~with e being the electron charge,e the dielectric
constant of the solvent, andT the temperature in units of the
Boltzmann constantkB!. In this limit the thermal fluctuations
dominate the electrical interaction between charged mo
mers and the PA has a Gaussian conformation~see below,
and also Ref. 14 for a detailed discussion of this regim!.
The neglect of the intramolecular electrical interaction a
lows a rigorous analytical treatment. Our model may th
also provide a basis for more complicated cases, such as
dynamics of collapsed or extended PAs in external fields

Here we present first analytical results on the dynami
and the conformational properties of PAs with random
placed charges. For these PAs we derive the explicit ti
dependence of the mean-square displacement~MSD! of the
center of mass~c.m.! and also of the position of a tagge
monomer. Furthermore we determine the mean-square e
to-end distance of PAs in equilibrium. We also show that t
case of a single charged monomer in the PA can be expre
in terms borrowed from fractional calculus.17 This estab-
lishes a link between the Rouse description of the PA an
corresponding rheological constitutive equation.18–20
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II. THE MODEL

We view the PA as consisting ofN charged beads, con-
nected into a linear chain by harmonic springs. The chain
position is given by the set$Rn(t)%, whereRn(t)5[Xn(t),
Yn(t),Zn(t)] is the position vector of thenth bead (n
50,1,...,N21) at timet. We denote the charge of thenth
bead byqn and take it to be a quenched random variable.

Neglecting the intramolecular electrical interactions be
tween the charged beads the potential energyU~$Rn(t)%! of
the PA chain contains only elastic contributions and the in
teractions with the external electric fieldE:

U~$Rn~ t !%!5
K

2 (
n51

N21

@Rn~ t !2Rn21~ t !#
2

2E(
n50

N21

qnRn~ t !. ~1!

In Eq. ~1! K denotes the spring constantK53T/b2, with T
being the temperature in units of the Boltzmann constantkB
andb the mean distance between beads~in the absence of an
external field!. The electrical field points along theY axis, so
that

E5~0,E,0!. ~2!

In Eq. ~1! we have neglected the intramolecular electrica
interactions. This corresponds to the weak coupling lim
where the thermal fluctuations dominate so that the electr
static interaction is not able to deform the chain. Using
Flory-type approach Dobrynin and Rubinstein14 have shown
recently that this situation~the so-called unperturbed regime!
is realized in au solvent fort . AN. Heret is the reduced
temperature so that

t5
beT

e2r
5

b

l Br
, ~3!

wheree is the dielectric constant of the solvent andr is the
fraction of charged monomers. As before,l B denotes the
Bjerrum lengthl B5e2/(eT). The conditiont . AN can be
fulfilled when one has a solvent with a large dielectric con
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stant ~for instancel B.7 Å in water at room temperature!
and when the concentrationr of the charges along the back
bone of the PA is sufficiently small.

Equation~1! turns into the Rouse model when exclud
volume effects and hydrodynamic interactions are dis
garded; then the chain’s dynamics is described byN coupled
Langevin equations:21,22

z
dRn~ t !

dt
52

]U~$Rn~ t !%!

]Rn~ t !
1fR~n,t !. ~4!

In Eq. ~4! z is the friction constant andfR(n,t) are Gaussian
random forces with

f i~n,t !50 ~5!

and

f i~n,t ! f j~n8,t8!52zTd i jdnn8d~ t2t8!. ~6!

Here i and j denote the components of the force vector, i
i , j5X,Y,Z and the dash stands for the thermal averag
i.e., averages over realizations of the Langevin for
fR(n,t).

Equation~4! with the potential~1! is linear and hence the
dynamics of the chain decouples in theX, Y, andZ direc-
tions. The X and Z components of theRn are field-
independent and follow standard Rouse behavior.21,22 We
concentrate hence on theY component. Regarding the suffi
n as being continuous it follows from Eqs.~1! to ~4!:

z
]Yn~ t !

]t
5K

]2Yn~ t !

]n2
1qnE1 f Y~n,t ! ~7!

with the boundary condition]Yn(t)/]nun50,N50. Equation
~7! contains two types of random forces: the ordinary th
mal noisef Y(n,t) and a quenched random forceqnE. The
case of configuration-dependent forces was conside
recently when modeling polymers in random layer
flows.23,24

Equation~7! is to solved using normal coordinates:22

Y~p,t !5
1

N E
0

N

dn cosS ppn

N DYn~ t !, p50,1,2,... .

~8!

These satisfy

]Y~p,t !

]t
52

p2

tR
Y~p,t !1

1

z
q̃pE1

1

z
f̃ Y~p,t !. ~9!

HeretR denotes the Rouse timetR5zb2N2/3p2T ~the larg-
est internal relaxation time of the harmonic chain!; the sym-
bols q̃p and f̃ Y(p,t) on the right-hand side of Eq.~9! denote
the Fourier transforms of the charge variab
q̃p5N21*0

Ndn cos(ppn/N)qn , and of the thermal noises
f̃ Y(p,t)5N21*0

Ndn cos(ppn/N) f Y(n,t), respectively.
Switching on the electric field att50 and assuming tha

the chain was initially in a Gaussian conformation, we ha
from Eq. ~9!:
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Y~p,t !5
1

z E
2`

t

dt f̃ Y~p,t!exp@2p2~ t2t!/tR#

1
q̃pE

z E
0

t

dt exp~2p2t/tR!. ~10!

From theY(p,t) theYn(t) follow:

Yn~ t !5Y~0,t !12(
p51

`

Y~p,t !cosS ppn

N D . ~11!

We obtain now readily from Eqs.~10! and ~11! the explicit
time dependence of the MSD of the chain’s c.m. and that
a tagged bead. We begin the analysis with the c.m.’s motio
TheY component of the trajectory of the c.m. is given by th
normal coordinate withp50, i.e., Yc.m.(t)5Y(0,t). From
Eq. ~10! we have the following general result for the MSD o
the c.m. in theY direction:

^@Yc.m.~ t !2Yc.m.~0!#2&5
2T

zN
t1

E2

z2
^q̃0

2&t2. ~12!

In Eq. ~12! the brackets denote averages with respect to t
realizations ofqn and use was made of the properties o
f i(n,t); furthermore^q̃0

2& is the pair correlation function of
the charge variable.

The behavior of a tagged bead, say one of the chai
ends, is more complicated. Using Eq.~11! with n50 we
have for theY component:

^@Y0~ t !2Y0~0!#2&

5
4T

zN (
p51

` E
0

t

dt e22p2t/tR1
2T

zN
t1

4E2

z2
t(
p51

`

^q̃0q̃p&

3E
0

t

dt e2p2t/tR1
4E2

z2 (
p51

`

(
q51

`

^q̃qq̃p&

3E
0

t

dt1E
0

t

dt2 e
2p2t1 /tR2q2t2 /tR1

E2

z2
^q̃0

2&t2. ~13!

Finally for theY component of the end-to-end vectorP(t),
P(t)5R0(t)2RN(t), we obtain from Eqs.~10! and ~11!:

^PY
2~ t !&5

b2N

3
1
16E2

z2 (
p

`

(
q

`

^q̃pq̃q&

3E
0

t

dt1E
0

t

dt2 exp~2p2t1 /tR2q2t2 /tR!.

~14!

Here the hat designates that the summation in Eq.~14! ex-
tends over odd, positive numbers only.

III. RANDOM CHARGE DISTRIBUTION

We can now specify the statistical properties of theqn .
First let each bead of the chain be either positively or neg
tively charged,qn56q. We stipulate that charges on differ-
ent beads are uncorrelated, i.e.,

^qnqm&5q2dnm , ~15!
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5072 Schiessel, Oshanin, and Blumen: Polyampholytes in external electrical fields
and thus that the average charge equals zero,^qn&50. Note,
however, that the latter condition does not necessarily im
that a particular chain is electrically neutral. For the Four
transform of the charge variables we now have

^q̃0
2&5

q2

N
; ^q̃0q̃p&50;

^q̃pq̃r&5
q2

2N
dpr for p,r51,2,... . ~16!

From Eqs.~12!, ~13!, and ~14!, which hold in general, we
can now derive the properties of PAs with random char
distributions. Inserting Eq.~16! into Eq. ~12! we obtain for
the MSD of the c.m. in theY direction:

^@Yc.m.~ t !2Yc.m.~0!#2&5
2T

zN
t1

q2E2

z2N
t2. ~17!

Notice that the MSD of the c.m. contains two independe
contributions: a conventional Rouse diffusion term propo
tional to t21,22 and a drift term due toE proportional tot2.
TheN21 dependence of the drift term arises as follows: d
to the randomness in theqn , the total charge of a chain is o
the order ofN1/2. Hence the electric force acting on the cha
goes asN1/2, while the friction is proportional toN. Under
both forces the c.m. moves ballistically, with a velocityV
}qE/zAN.

Now we turn to the dynamics of the PA’s end. Makin
use of Eqs.~13! and ~16! we get

^@Y0~ t !2Y0~0!#2&5
2TtR
zN (

p51

`
1

p2
~12e22p2t/tR!

1
2T

zN
t1

2q2E2tR
2

z2N (
p51

`
1

p4

3~12e2p2t/tR!21
q2E2

z2N
t2. ~18!

The second and fourth terms on the right-hand side of
~18! are identical to those for the MSD of the c.m., Eq.~17!,
and govern the long-time behavior, when the beads mot
mirrors that of the c.m. The first and the third term are im
portant at short times when the internal relaxation modes
the chain contribute to its dynamics. Fort!tR we deduce
from Eq. ~18!:

^@Y0~ t !2Y0~0!#2&54bA T

6pz
t1/21

2T

zN
t

1
8bq2E2~A221!

3z3/2A3pT
t3/21

q2E2

z2N
t2.

~19!

The first term in Eq.~19! gives the conventional result fo
the MSD of the tagged bead of a Rouse chain in the sh
time regime.22 A new feature here is the third term, which i
related to the internal relaxation of the chain and gives rise
a subdriftt3/4 behavior. Fort!tR the second and fourth term
are smaller than the first and third terms, respectively.
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Consider now the PA conformations for a random pla
ment of charges. Inserting Eq.~16! into Eq. ~14! we obtain
for the equilibrium value of the end-to-end distance:

^PY
2~`!&5

b2N

3
1
8q2E2tR

2

z2N (
p

`
1

p4

5
b2N

3
1
q2E2b4N3

108T2
. ~20!

Besides the usual term proportional toN, we find an addi
tional field-induced stretching characterized by aN3 depen-
dence. This pronounced stretching can be understood b
following Flory-type argument:16,22 Due to the statistica
properties of the charge distribution, the chain may
thought as being subdivided into two blobs, having an a
age charge excess aroundqAN and2 qAN each. The part o
the free energy of the PA which describes the averaged
tential energy of this effective dipole in the external fieldE
obeysF int } ANqEPY . The penalty term~stretching in the
Y direction! obeys, as usualFdef}TPY

2/(b2N). Hence we ge

F~PY!

T
5
C1PY

2

Nb2
1
C2ANqEPY

T
1C3 , ~21!

whereC1 , C2 , andC3 are constants. Now minimizingF
with respect toPY , i.e., setting]F/]PY50, we have

PY
2}

q2E2b4

T2
N3, ~22!

which corresponds to Eq.~20!. Note that this argument ca
be made for any subgroup~blob! of the chain. This results i
a self-similar conformation of the stretched chain with a fr
tal dimension ofdf52/3, a value smaller than unity. How
ever, Eq.~20! is reasonable only as long as the elongatio
theY direction is less than that of chains in a fully stretch
situation, i.e., as long as

q2E2b4N3

108T2
!b2N2 ~23!

holds; this sets an upper bound on the external distur
field E.

IV. ONE CHARGED BEAD

Finally, let us consider a situation in which only o
bead of the PA is charged, say the first one, i.e.,

qn5qdn0 . ~24!

Equations~9! to ~14! generally hold, while instead of E
~16! one now has

q̃p5qN21 ~25!

for p50,1,2,... .Inserting Eq.~25! into Eq. ~12! leads to

@Yc.m.~ t !2Yc.m.~0!#25
2T

Nz
t1

q2E2

z2N2 t
2. ~26!

Now the ballistic term in the c.m. motion is proportional
N22 and is by a factor 1/N smaller than the previous expre
sion, Eq.~17!.
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Using Eq. ~14! we obtain for theY component of the
end-to-end distance:

PY
2~`!5

b2N

3
1
16q2E2tR

2

z2N2 S (
p

`
1

p2D 2
5
b2N

3
1
q2E2b4N2

36T2
, ~27!

e.g., stretching is now by a factor of1/(3N) smaller than
previously obtained, cf. Eq.~20!.

Furthermore the dependence onE of Y0(t), the mean
position of the charged bead, obeys a fractional differen
equation.17 We show this by first evaluatingY0(t) using the
explicit solution for the normal coordinates, Eq.~10!, to-
gether with Eq.~11! and the initial conditionY0(0) 5 0.
For t>0 it follows:

Y0~ t !5Y~0,t !12(
p51

`

Y~p,t !

5
qE

zN
t1

2qE

zN (
p51

` E
0

t

dt exp~2p2t/tR!. ~28!

For t!tR we have in terms of the spring constantK53T/b2

from Eq. ~28!:

Y0~ t !5
qE

zN
t1

2

Ap

qE

AzK
t1/2, ~29!

i.e., a result mentioned previously in Ref. 25. For lon
chains,tR}N2@1, so thatY0(t)}t

1/2 holds for a very long
time. Evidently this is the PA’s response to a fieldE(t)
5EQ(t), whereQ is the Heaviside step function. Then th
position of the charged bead in the presence of an arbitr
external fieldE(t) @with E(t)50 for t<0# is well approxi-
mated by the following convolution integral:

Y0~ t !5
q

AzK

1

G~a!
E
0

t

dt~ t2t!a21
dE~t!

dt

5
q

AzK

d2a

dt2a FdE~ t !

dt G , ~30!

with a53/2. The convolution integral of Eq.~30! is a
Riemann–Liouville integralwhich for anya.0 defines the
fractional integral, symbolized by the operatord2a/dt2a.17

Now fractional derivatives da/dta for a.0 are obtained by
applying ordinary derivatives to fractional integrals. Usin
the composition rule~see Ref. 17 for details! we obtain from
Eq. ~30! the following, so-called extraordinary, differentia
equation:

qE~ t !5AzK
d1/2Y0~ t !

dt1/2
. ~31!

Such an expression resembles a rheological constitu
equation for a viscoelastic material; in fact, in this field fra
tional differentiation has recently become an importa
tool.18–20 That the Rouse model may be related to a fra
tional differential equation was also noticed in Ref. 26.
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Refs. 27 and 28 we have shown how to interpret fraction
relationships in terms of sequential spring-dashpot mode
For these the fractional equation

s~ t !5haE12a
dae~ t !

dta
~32!

with 0<a<1 holds, wheres denotes the stress,e the strain,
and E and h are constants. Equation~32! interpolates be-
tween solidlike~a50! and fluidlike behavior~a51!. In the
special casea51/2 the model consists of equal springs an
dashpots, arranged in an infinite ladderlike structure~see
Ref. 27 for details!.

The Rouse chain with one charged bead described abo
parallels this model. Due to the symmetry of the problem th
mean position of any given bead lies on theY axis, i.e.,
Xn(t)5Zn(t)50. Therefore the beads are on the averag
sequentially aligned along theY axis. The relation of the
projection of the Rouse chain on theY axis to the spring-
dashpot arrangement of Ref. 27 gets to be more compelli
when one recalls that the beads are connected by springs
are exposed to a velocity-dependent friction.

We close by noticing that the Rouse model used in th
present work is simplified due to the neglect of hydrody
namic forces on the motion of the beads. While such effec
are less important for stretched polymers, their influence
the PA’s motion deserves further investigations which a
now in progress.

V. CONCLUSION

We have studied in this work the influence of electrica
fields on the dynamics of PAs both for randomly place
charges, and for a unique charge. At long times both t
chain’s c.m. and also the individual beads move ballisticall
while the average velocity decreases withN. On the other
hand, fort!tR the dynamics of the individual beads show
up: for randomly placed charges a subdrift behavior appea
with the MSD growing ast3/2. The dynamics of a single
charge is reminiscent of viscoelastic models which obe
fractional equations.
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