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In this work we report first analytical results on the dynamics and conformational properties of
polyampholytes(PAs, polymers containing positive and negative chargesthe presence of
external electrical fields. In terms of the Rouse model of polymer dynamics and in the so-called
weak coupling limit we obtain for PAs explicitly the mean-square displacement both of the center
of mass and of individual beads, and also determine the PAs’ equilibrium end-to-end distance. For
a singly charged PA we also relate the findings to a fractional differential equatioh998
American Institute of Physics.

I. INTRODUCTION Il. THE MODEL

Recently, the dynamics and the conformational proper- Ve view the PA as consisting &f charged beads, con-
ties of heteropolymer chains with quenched random disordd?€cted into a linear chain by harmonic springs. The chain’s
have received much attention due to their possible relevan osition s given by the_s_e[tRn(t)}, where R,,(£) =[Xy(t),
to biological processes like protein-foldifg® Therefore _”(t)'Z”(t)] is the position (;/ector %f thsnth biafmﬂ
polyampholyteqPA), i.e., polymer chains which carry both =0.1,...N—1) at timet. We denote the charge of t

. d . h h b bi ¢ _Bead byq,, and take it to be a quenched random variable.
positive and negative charges have been a subject of consid- Neglecting the intramolecular electrical interactions be-

erable interest within the last decade. The main emphasis Qfeen the charged beads the potential en&tgiR. (t)}) of
n

this research concerned the role of the mutual interaction ok pA chain contains only elastic contributions and the in-
charges on the PA's conformational properties. Depending oferactions with the external electric fiekl

the physical situation and on the parameiges, random or

regular placement of charges, the presence of a net charge, N-1
the temperature and/or the quality of the solyePAs may U({Rn(D)}) = 5 21 [Rn(t) = Ry_1(t)1?
stretch to an extended configuration or, conversely, may "~
collapse*~14 N1
This work examines the behavior of PAs in external _Ezfo AnRi(1). @)

electrical fields. We propose a model valid in the weak cou-

pling limit,**~*® i.e., for the regimelg/b<l where In Eq. (1) K denotes the spring constat=3T/b2, with T

|g=e?/(€T) denotes the Bjerrum length amdis the mono-  being the temperature in units of the Boltzmann conskant

mer size(with e being the electron charge,the dielectric  andb the mean distance between beéidghe absence of an

constant of the solvent, afidthe temperature in units of the external field. The electrical field points along théaxis, so

Boltzmann constarkg). In this limit the thermal fluctuations that

dominate the electrical interaction between charged mono-

mers and the PA has a Gaussian conformateae below, E=(0,E,0). @

and also Ref. 14 for a detailed discussion of this regime . .

The neglect of the intramolecular electrical interaction aI-.In Eq. (.l) we h_ave neglected the intramolecular glectr!cql
interactions. This corresponds to the weak coupling limit

lows a rigorous analytical treatment. Our model may thuswhere the thermal fluctuations dominate so that the electro-

also prpwde a basis for more compllcate.d cases, SU(,:h as trg?atic interaction is not able to deform the chain. Using a
dynamics of coIIapsed_ or extenQed PAs in external f|elds_. Flory-type approach Dobrynin and Rubinstéihave shown
Here we present first analytical results on the dynamicalecently that this situatiofthe so-called unperturbed regime

and the conformational properties of PAs with randomlyjg reajized in ag solvent forr > N. Herer is the reduced
placed charges. For these PAs we derive the explicit tim?emperature so that

dependence of the mean-square displacerBD) of the

center of masgc.m) and also of the position of a tagged beT

monomer. Furthermore we determine the mean-square end- 7~ E: @, ©)
to-end distance of PAs in equilibrium. We also show that the

case of a single charged monomer in the PA can be expressegheree is the dielectric constant of the solvent amds the

in terms borrowed from fractional calcult§.This estab- fraction of charged monomers. As befollg, denotes the
lishes a link between the Rouse description of the PA and &jerrum lengthl ;=e?/(€T). The conditionr > /N can be
corresponding rheological constitutive equattér?° fulfilled when one has a solvent with a large dielectric con-
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stant (for instancelg=7 A in water at room temperature 1 [t - )
and when the concentratignof the charges along the back- Y(p.t)= 7 fﬁde fv(p, m)exd —p“(t—7)/7g]
bone of the PA is sufficiently small.

Equation(1) turns into the Rouse model when excluded apE t )
volume effects and hydrodynamic interactions are disre- + Na deT exp(—p7/1g). (10
garded; then the chain’s dynamics is describedNbgoupled
Langevin equation&"?2 From theY(p,t) the Y, (t) follow:
dRy(t) _ JU{RA(D}) Y.(H)=Y(0,.0+2> Y(p t)cos(m> (11)
= — n 1 1 .
g dt &Rn(t) +fR(n!t) (4) p=1 N

We obtain now readily from Eq410) and (11) the explicit
time dependence of the MSD of the chain’s c.m. and that of
a tagged bead. We begin the analysis with the c.m.’s motion.
TheY component of the trajectory of the c.m. is given by the

In Eq. (4) ¢ is the friction constant antk(n,t) are Gaussian
random forces with

fi(n,t)=0 ) normal coordinate withp=0, i.e., Y. ,(t)=Y(0,t). From
Eg. (10) we have the following general result for the MSD of
and . L
the c.m. in theY direction:
fi(n,t)fj(n,,t/)ZZé’T&ij5nnr5(t_t,). (6) 2T E?

(Yem(O = Yem(0)1)= 75 t+ 72 (@o)t* (12)
Herei andj denote the components of the force vector, i.e.,
i,j=X,Y,Z and the dash stands for the thermal averaged" EQ. (12) the brackets denote averages with respect to the
i.e., averages over realizations of the Langevin forcegealizations ofq, and use was made of the properties of

fa(n,t). fi(n,t); furthermore(ﬁ%) is the pair correlation function of
Equation(4) with the potential1) is linear and hence the the charge variable. _
dynamics of the chain decouples in the Y, and Z direc- The behavior of a tagged bead, say one of the chains

tions. The X and Z components of theR, are field- €nds, is more complicated. Using EG.1) with n=0 we
independent and follow standard Rouse behdigt.we  have for theY component:

concentrate hen_ce on t!’Yecomponent. Regarding .the suffix (IYo(D—Yo(0) D

n as being continuous it follows from Eqggl) to (4):

AT t 2 2T 4B & ..
Y (t 32Y o (t =— > fdfe*ZP TRE ——th — t D
g n( ) =K ng ) +an+fy(n,t) (7) é«N =1 Jo é«N 52 =1 <q0qp>
at on
e AR S G
with the boundary conditio@Y ,(t)/dn|,_o y=0. Equation X fodr e P 7R 7= 21 21 (Qq0p)
p=19=

(7) contains two types of random forces: the ordinary ther-
mal noisefy(n,t) and a quenched random forggE. The t t ) ) EZ _

case of configuration-dependent forces was considered XJ dTlf dr, e P72/7Rd TZ/TR+ZZ<QS>'[2- (13
recently when modeling polymers in random layered 0 0

flows 224 Finally for the Y component of the end-to-end vecteft),
Equation(7) is to solved using normal coordinat&s: P(t) =Ry(t) —Ry(t), we obtain from Eqs(10) and (11):
— p®N 16E2 4 L
1 (N pmn P2())= — 4+ —— 5
Y(p.) =5 fo dn CO‘{T)Yn(t), p=0,1,2,... . (Py())=— Iz % % (pdq)
(8 t t
XJ d71J drs eX[i—pleer—qZTZ/TR).
These satisfy 0 0
N(pt)  p’ 1. 1. (14)
P Y(p,t)+ 7 gpE+ 7 fv(p,t). (9)  Here the hat designates that the summation in (E4). ex-

tends over odd, positive numbers only.

Here r; denotes the Rouse timg=(b?>N%/37°T (the larg-
est internal relaxation time of the harmonic chaie sym-
bols g, andfy(p,t) on the right-hand side of E9) denote  Ill. RANDOM CHARGE DISTRIBUTION
the Fourier transforms of the charge \variable,

= 10N .
gp=N "Jodn cospmn/N)qp,, and of the thermal noises, First let each bead of the chain be either positively or nega-

fv(p,t)=N"1f)dn cos@mn/N)fy(n,t), respectively. . > . .
Switching on the electric field at=0 and assuming that tively chargedg,=*g. We st.lpulate that charges on differ-
ent beads are uncorrelated, i.e.,

the chain was initially in a Gaussian conformation, we have
from Eq. (9): (AnGm) =9% S, (15)

We can now specify the statistical properties of the
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and thus that the average charge equals Zefp=0. Note, Consider now the PA conformations for a random place-
however, that the latter condition does not necessarily implynent of charges. Inserting E¢L6) into Eq. (14) we obtain
that a particular chain is electrically neutral. For the Fourierfor the equilibrium value of the end-to-end distance:
transform of the charge variables we now have
J N 8B L 1
4

2 _ R
@=0 @a=o. I
b?N  g%E%b*N3
-3 " 10877
Besides the usual term proportional Xy we find an addi-

From Egs.(12), (13), and (14), which hold in general, we tional field-induced stretching characterized biadepen-
can now derive the properties of PAs with random chargélence. This pronounced stretcgiznzg can be understood by the
distributions. Inserting Eq(16) into Eq. (12) we obtain for  following Flory-type argument®?” Due to the statistical

2

- q (20
(@p0r)= 55 Gpr for pr=1.2,... . (16)

the MSD of the ¢.m. in th&’ direction: properties of the charge distribution, the chain may be
) o thought as being subdivided into two blobs, having an aver-

T QE h dN and— q/N each. The part of

Y. (O—Y. (0)1%) =" t+ 2. 1 age charge excess aroundN a gvVN each. The part o
(Yem(O)=Yom(0)F) ¢N {°N @7 the free energy of the PA which describes the averaged po-

Notice that the MSD of the c.m. contains two independenttentlal energy of this effective dipole in the exteral fiéld

contributions: a conventional Rouse diffusion term propor—gb;¥:;ii'gr:0g§qu§g 'U-ST; pen_? ::t))zl /t(%rglistrﬁgzlcnegv\l/r; theet
tional to t?*??and a drift term due td& proportional tot?. ys: def | Py : 9

The N~ dependence of the drift term arises as follows: due  F(Py) C;P?2 C,NQEP,
to the randomness in theg, , the total charge of a chain is of T  NB2 + T +Cs, (21)
the order oN*'2, Hence the electric force acting on the chain S
goes aN'2, while the friction is proportional tdN. Under ~WhereC;, C,, and C; are constants. Now minimizing
both forces the c.m. moves ballistically, with a velociy ~ With respect tPy, i.e., settingdF/9Py=0, we have
«qE/Z\N. q2E%b*
. . 2 3

Now we turn to the dynamics of the PAs end. Making ~ Py* —=z—N°, (22)

use of Egs(13) and(16) we get

which corresponds to Eq20). Note that this argument can
be made for any subgrouplob) of the chain. This results in

0

2Tq 1

_ 2\ A2 2t/ 7
([Yo(t) = Yo(0)]%)= (N pzl EZ (1—e =" 1m) a self-similar conformation of the stretched chain with a frac-
tal dimension ofd;=2/3, a value smaller than unity. How-
2T 2q2E27§ 1 ever, Eq.(20) is reasonable only as long as the elongation in
TNt TN pzl o the Y direction is less than that of chains in a fully stretched
situation, i.e., as long as
X (1—e PUR)2 4 aE (18) q°E*b*N°
2 : 2N 2
N 108T2 <b°N (23
The second and fourth terms on the right-hand side of EOholds; this sets an upper bound on the external disturbing

(18) are identical to those for the MSD of the c.m., E&j7), fiel
and govern the long-time behavior, when the beads motion
mirrors that of the c.m. The first and the third term are im-
portant at short times when the internal relaxation modes OIf\/. ONE CHARGED BEAD

the chain contribute to its dynamics. Fbg 1 we deduce

from Eq. (198): Finally, let us consider a situation in which only one

T T bead of the PA is charged, say the first one, i.e.,
(Yo =Yo(0)F) =4b \ g7 2+ T t An=0no- (24)

dE.

Equations(9) to (14) generally hold, while instead of Eq.

8bg°E%(V2-1) 32, q°E? 2 (16) one now has
/ 2 ) -
378323 7T N d,—qN? 25)
(19

for p=0,1,2,... .Inserting Eq.(25) into Eq.(12) leads to
The first term in Eq(19) gives the conventional result for 2T  q2E2

the MSD of the tagged bead of a Rouse chain in the short-  [Y¢m(t) = Yem(0)]?= — t+ —5— t2. (26)
time regime?? A new feature here is the third term, which is Ne— &N

related to the internal relaxation of the chain and gives rise ttNow the ballistic term in the c.m. motion is proportional to
a subdriftt®’4 behavior. Fot< 75 the second and fourth term N~2 and is by a factor M smaller than the previous expres-

are smaller than the first and third terms, respectively. sion, Eq.(17).

Downloaded-12-Nov-2002-t0-194.95.632 £NeRe i B¥5H ¥ Oh-L03, - 152,272 -FeRIRIBREF 39 right, ~see—http://ojps.aip.org/icpoljcper . jsp



Schiessel, Oshanin, and Blumen: Polyampholytes in external electrical fields

Using Eq.(14) we obtain for theY component of the

end-to-end distance:

b2N  16q2E272 (L 1)\?
2 —
PY()=—3 TN Ep o?

_b?N  g*E*b*N? )
~3 e @7
e.g., stretching is now by a factor 4f/(3N) smaller than
previously obtained, cf. Eq20).

Furthermore the dependence Bnof Yy(t), the mean
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Refs. 27 and 28 we have shown how to interpret fractional
relationships in terms of sequential spring-dashpot models.
For these the fractional equation

d“e(t)
dt*

with O<a=<1 holds, wherer denotes the stress,the strain,
and E and # are constants. Equatiof832) interpolates be-
tween solidlike(a=0) and fluidlike behavio(a=1). In the
special caser=1/2 the model consists of equal springs and
dashpots, arranged in an infinite ladderlike struct(gee

o(t)=n"E "

(32

position of the charged bead, obeys a fractional differentiaRef- 27 for details

equationt’ We show this by first evaluating,(t) using the
explicit solution for the normal coordinates, E(.0), to-
gether with Eq.(11) and the initial conditionYy(0) = O.
Fort=0 it follows:

[

Yo<t>=v<o,t>+221 Y(p,t)
=

[

E 29E t
a il > j dr exp(—p?7/7R). (28
p=1J0

"N

Fort< 7 we have in terms of the spring const&tt3T/b?
from Eq. (28):

E 2 gE
Yo(t)=q—t+—q—t1’2

INT m ik

(29

i.e., a result mentioned previously in Ref. 25. For long

chains,7rxN%>1, so thatYy(t)=t''? holds for a very long
time. Evidently this is the PAs response to a fieiqt)

The Rouse chain with one charged bead described above
parallels this model. Due to the symmetry of the problem the
mean position of any given bead lies on tieaxis, i.e.,
Xn(t)=2Z,(t)=0. Therefore the beads are on the average
sequentially aligned along th¥ axis. The relation of the
projection of the Rouse chain on thé axis to the spring-
dashpot arrangement of Ref. 27 gets to be more compelling
when one recalls that the beads are connected by springs and
are exposed to a velocity-dependent friction.

We close by noticing that the Rouse model used in the
present work is simplified due to the neglect of hydrody-
namic forces on the motion of the beads. While such effects
are less important for stretched polymers, their influence on
the PA's motion deserves further investigations which are
now in progress.

V. CONCLUSION

We have studied in this work the influence of electrical
fields on the dynamics of PAs both for randomly placed

=EO(t), where® is the Heaviside step function. Then the charges, and for a unique charge. At long times both the
position of the charged bead in the presence of an arbitrarghain’s ¢.m. and also the individual beads move ballistically,

external fieldE(t) [with E(t)=0 for t<0] is well approxi-
mated by the following convolution integral:

1t dE(7)
g d* [dE(t)
CJek dtTe | dt [ (30

with @=3/2. The convolution integral of Eq(30) is a
Riemanr-Liouville integral which for any «>0 defines the
fractional integral symbolized by the operatar ¢/dt™ .}’
Now fractional derivatives @/dt* for >0 are obtained by

applying ordinary derivatives to fractional integrals. Using

the composition rulésee Ref. 17 for detailsve obtain from

Eq. (30) the following, so-called extraordinary, differential

equation:
dl/2Y0(t)
qQE() = VK — g —- (31

while the average velocity decreases wiNh On the other
hand, fort< 7 the dynamics of the individual beads shows
up: for randomly placed charges a subdrift behavior appears,
with the MSD growing as®2. The dynamics of a single
charge is reminiscent of viscoelastic models which obey
fractional equations.
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