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The fractal globule, a self-similar compact polymer conformation where the chain is spatially seg-
regated on all length scales, has been proposed to result from a sudden polymer collapse. This state
has gained renewed interest as one of the prime candidates for the non-entangled states of DNA
molecules inside cell nuclei. Here, we present Monte Carlo simulations of collapsing polymers. We
find through studying polymers of lengths between 500 and 8000 that a chain collapses into a glob-
ule, which is neither fractal, nor as entangled as an equilibrium globule. To demonstrate that the
non-fractalness of the conformation is not just the result of the collapse dynamics, we study in ad-
dition the dynamics of polymers that start from fractal globule configurations. Also in this case the
chain moves quickly to the weakly entangled globule where the polymer is well mixed. After a much
longer time the chain entangles reach its equilibrium conformation, the molten globule. We find
that the fractal globule is a highly unstable conformation that only exists in the presence of extra
constraints such as cross-links. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4807723]

I. INTRODUCTION

Progress in experimental methods to study the confor-
mation of DNA in situ has recently revived the interest in
various only partially understood polymer physics problems.
The fractal globule plays a prominent role here. It has been
suggested1 that this non-equilibrium polymer configuration is
brought about by the sudden collapse of a long polymer in
a ! or good solvent when one switches the system suddenly
to poor solvent conditions. As the polymer crumbles at suc-
cessively larger and larger length scales, a self-similar fractal
of fractal dimension 3 ensues where the chain is segregated
on every length scale. The non-mixing of the subchains was
based on an argument1 where the subchains were compared
to polymer rings who are known not to mix.2, 3 Only through
a much slower process involving the chain ends the polymer
reaches eventually its equilibrium state, the molten globule.

A hallmark of the fractal globule is that it is non-
entangled. Switching back to good solvent conditions, a frac-
tal globule grows quickly back into a swollen coil. This is
radically different for a molten globule that is highly entan-
gled and thus gets arrested during swelling. Grosberg et al.1

suggested that the fractal globule conformation might share
common features with the conformations of biological macro-
molecules such as DNA and proteins. Especially for eukary-
otic DNA that can have lengths of centimeters, fractal confor-
mations could be crucial as the genome might be otherwise
inaccessible due to the entanglements.4

For a long time it has been difficult to test this idea ex-
perimentally. One way to detect the conformation is to mea-
sure the spatial distance r(g) between two monomers as a
function of the chemical distance g = |i − j| (the genomic
distance for DNA). Such measurements have indeed been
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performed for eukaryotic chromosomes since a long time
through the use of fluorescence in situ hybridization (or FISH
for short).5–7 However, it is very hard if not impossible to ex-
tract an exponent from the data, especially due to large cell-
to-cell variations.8

A new molecular biology technique called chromosome
conformation capture promises to shed light on the problem.
This method allows for measuring, genome wide, the con-
tact probability pc between DNA segments as a function of
their genomic distance g. The contact probability is defined
as the probability that two monomers at a genomic distance g
are equal or less than an Euclidean distance R0 apart. Chro-
mosome conformation capture of human lymphoblasts pro-
duced approximately pc ∼ g−1 in the range from 500 kbp
to 7 Mbp (bp: basepair).9 The −1 slope does not occur for
standard polymer models which raises the question whether
it could be found for fractal globule configurations. The au-
thors of Ref. 9 claim that this is indeed the case. They distin-
guish two types of fractal globules, smooth and interdigitating
ones. Smooth fractal globules lead to the slope −4/3 in the
contact probability whereas interdigitating fractals have the
“proper” slope of −1.10 An important note to make here is
that the relation between the exponent characterizing the de-
cay and the polymer conformation (here −1 and the interdig-
itating fractal globule) is not a one-to-one relation. Thus, any
proposed structure must preferably make predictions of other
experimentally measurable quantities, before one can con-
clude for certain whether this conformation matches the DNA
in the cell nucleus. Nevertheless, Liebermann-Aiden et al.9

showed through Monte Carlo simulations that their procedure
of rapidly collapsing a polymer from its swollen state leads to
a conformation that has a −1 slope and which is claimed to
resemble the interdigitating fractal globule.

Through Monte Carlo simulations we show that the col-
lapse of a swollen polymer coil through a change in sol-
vency does not reproduce the −1 slope. Even though polymer
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collapse occurs in a hierarchical fashion, as predicted in
Ref. 1 and observed, e.g., in Refs. 11 and 12, the subchains
mix so quickly that the polymer directly after the collapse is at
first sight nearly indistinguishable from an equilibrium glob-
ule. In particular, we find for g < N2/3 the relations r(g) ∼
g1/2 and pc ∼ g−3/2, each supposedly a hallmark of the molten
globule. Such a polymer is, however, not yet in equilibrium as
it is nearly as little entangled as it was in its original swollen
coil conformation. Only via a much slower mechanism the
equilibrium is finally reached.

Inspired by this result, we started to question the stability
of the fractal globule itself. To this effect we prepared frac-
tal conformations by hand and studied their consecutive re-
laxation to the equilibrium structures. The considered fractals
have the above mentioned properties that subchains are spa-
tially separated and that the whole chain is “unentangled.”
We found that such structures are not stable but that the chain
mixes quickly on all length scales in less than N2 time steps,
producing an unentangled pseudo-equilibrium globule before
the global equilibrium is reached via a much slower process.

Thus, to maintain the notion of a fractal globule as the
structure of DNA in the cell nucleus, one has to show ei-
ther one of three things: either even the longest polymers that
we can simulate (8000) are too short to capture the asymp-
totic behavior, or the time scale of the cell cycle is extremely
short from a polymeric point of view, or other “ingredients”
are present to maintain the structure of the globule. One such
“ingredient” could be the addition of cross-links, see, e.g.,
Ref. 13. In this paper we approach the problem instead from a
polymeric point of view, since we are of the opinion that with
our current knowledge of chromatin structure the latter two
approaches are at least highly debatable.

The remainder of the paper is divided into three sections.
First in Sec. II the Monte Carlo method and the fractal starting
conformations are described in detail. In Sec. III we give a
theoretical background on the problem of fractal globules and
present the results of the Monte Carlo simulations. In Sec. IV
we attempt to piece the whole story together.

II. MONTE CARLO METHOD

A. Basis implementation

Our Monte Carlo simulation method uses a lattice poly-
mer model that is based on Rubinsteins repton model.14 For
other applications see, e.g., Refs. 15 and 16. The monomers of
the polymer lie on an underlying lattice. The choice of lattice
in three-dimensional space is usually limited to the simple cu-
bic (SC), body-centered cubic (BCC), and face-centered cubic
(FCC) lattices, because of the translation symmetry of points
on the lattice, with each point of the lattice being equivalent.
We use the FCC lattice as the underlying lattice of the sim-
ulations. One advantage of this lattice is that moving from
one point of the lattice to another can be made in an arbitrary
number of steps, which improves the possibilities to find valid
Monte Carlo moves. On the SC and BCC lattices this is not
the case, because the number of steps to go from one point to
another is always either even or odd. The polymer consists of
N monomers where consecutive monomers are either on ad-

FIG. 1. Schematic depiction of the Monte Carlo moves. The arrows denote
the bond vectors, where an arrow that ends and starts at the same monomer
is an element of stored length. (a) and (b) Instances of corner moves. (c) The
end moves. (d) An example of a transversal move.

jacent points on the lattice or on the same lattice site. We call
the bond between two consecutive monomers on the same site
a unit of “stored length.” We allow stored length, because it
speeds up the simulation, even though the effective length of
the polymer is slightly smaller (by a constant fraction). Only
consecutive monomers are allowed to occupy the same site.
Thus there is still excluded volume interaction between the
monomers.

The dynamic properties of the Monte Carlo method
is governed by its “moves.” At each Monte Carlo step a
monomer is selected at random and one Monte Carlo move is
attempted on the monomer. Independent of the success of this
move, the time in the Monte Carlo simulation is increased by
1/N. Thus after N Monte Carlo moves the time has increased
by one unit of time. The Monte Carlo moves involve manip-
ulations of the vectors between two consecutive monomers,
the bond vectors, that can either have the length 0 (in case of
stored length) or 1 (for monomers at neighboring lattice sites).
The basic moves of our Monte Carlo algorithm are depicted
in Fig. 1 and are defined as follows:! Corner move: Select an inner monomer i and in-

terchange the two bond vectors u and v, where u
= ri+1 − ri and v = ri − ri−1. For example, the tuple
(u, v) would transition to (v, u) after the move. If one
of the bond vectors u and v has zero length, the cor-
ner move effectively diffuses stored length along the
polymer chain.! Forward end move: Select one end. If the end has
stored length, then extend the monomer to a random
site around the position of the end monomer.! Backward end move: Reverse of the forward end
move.! Forward transversal move: If the bond vectors adjacent
to the selected monomer are either of the form (0, w)
or (w, 0), move it to a tuple (u, v), with w = u + v.! Backward transversal move: Reverse of forward
transversal move.

Moves that violate the self-avoidance constraint are al-
ways rejected. Only moves are allowed that move a monomer
over exactly one unit distance. The chemical potential be-
tween stored length and non-stored length can be adjusted
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through the acceptance rate of the moves. In our simula-
tions we chose a 1:2 acceptance ratio between stored length
and non-stored length. This implies a 1:1 ratio for the back-
ward/forward transversal moves, because a tuple (0, w) has
on the FCC lattice 4 different tuples (u, v), that move the
monomer over distance 1. The reverse move has two possi-
bilities: (0, w) and (w, 0). The forward end move has 12 pos-
sibilities (although one of them will always be rejected). The
backward move has only one possibility, and thus the accep-
tance ratio is 1:6 between the forward and backward moves.
This ensures detailed balance. It is easy to see that the ergod-
icity condition is also satisfied, because it is possible to com-
pletely retract the polymer to a single point, and from there
with corner moves and forward end moves all possible con-
figurations can be created.

B. Self-attraction

Self-attraction of the polymer is accomplished by fa-
voring moves, that decrease the surface of the polymer.
More formally, in our model we define the Hamiltonian as
follows:

H = µ
∑

0≤i<N

si − ε
∑

i,j

pij . (1)

Here si is one if a bond vector is stored length, and zero other-
wise. pij is one if monomers i and j are next to each other, oth-
erwise zero. If through stored length more than one monomer
occupies a site, only one monomer is counted in the sum for
pij. This is done to keep stored length from accumulating next
to each other. The acceptance ratios of all moves are adjusted
to maintain detailed balance. In the following we choose
µ = 0.25 and ε = 0.25. The si term is introduced, because
otherwise the stored length ratio would change significantly
from the case without self-attraction, and also would strongly
depend on the actual shape of the globule. There are only
a limited number of transitions in energy, because sums in
the Hamiltonian are integers. Therefore, we store all the pos-
sible acceptance rates in a small table for efficiency. In our
simulations the amount of stored length varies between 11%
and 13%.

C. Chain crossing

In some of our simulations we allow chain crossing. The
chain crossing move is a special variant of the corner move. If
we allow chain crossing, then if the corner flip is rejected by
a self-avoidance constraint, we also try to move the monomer
that blocks the original move by the means of a corner move.
We accept the combination corner move, if the monomers
are interchanged by the moves. The Hamiltonian of the self-
attraction does not change with such a move, and therefore
the chain crossing move does not need to take it into account.
This extra move adds a small factor to the simulation time,
but on the other hand, the overall dynamics of the polymer
are sped up substantially.

FIG. 2. A sample random FCC fractal of length N = 4000.

D. Random FCC fractal

For the simulation of the equilibration of a smooth frac-
tal globule, we introduced a space filling randomized fractal
creation method specifically designed for the FCC lattice, see
Fig. 2 for an example. Another option would have been using
a standard method for creating Hilbert or Peano curves, but
we found that our method creates smoother contact probabil-
ity curves than non-random versions of the aforementioned
curves.

The shape of the FCC fractal is a L × L × L paral-
lelepiped which is described by the non-orthogonal basis:
t = (1, 1, 0)/

√
2, u = (1,−1, 0)/

√
2, v = (−1, 0, 1)/

√
2.

Note that {t, u, v} is almost an orthogonal basis, and thus
the shape of the parallelepiped is close to cubic. In the first
iteration, this cube has size 2 × 2 × 2, and one of the possible
self-avoiding walks is chosen that is visiting all points in
this cube with length 7 (and thus 8 monomers). In further
iterations each monomer is chosen as a seed for another
2 × 2 × 2 cube. Care has to be taken to ensure that links
on the new 2 × 2 × 2 cubes interconnect. Depending on
their relative position, two cubes can have a different number
of possible interconnects. If two cubes are separated by a
plane, the number of points facing each other on each side
is equal to 4. The two other possibilities are separated by a
line (diagonal in one direction, 2 points), and separated by
a point (diagonal in two directions, 1 point). By first setting
the interconnects that are the most urgent (least number of
possible interconnects), conflicts are avoided to the maximum
extent. No problematic conflict was ever detected using our
prioritizing, even with the fractal of N > 108, suggesting that
this is in fact theoretically impossible. A proof, however, is
beyond the scope of this article. If more than one interconnect
is possible, the interconnect is chosen randomly.

When the interconnects are determined, one of the still
possible self-avoiding walks inside the 2 × 2 × 2 cube is
randomly selected for each cube. The advantage of the FCC
lattice here is that for every possible combination of in and
outgoing interconnects, there is always at least one possible
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space filling self-avoiding walk in the 2 × 2 × 2 cube con-
necting them.

III. RESULTS

In this section we present results from our Monte Carlo
simulation. We start by setting up the necessary theoretical
background to interpret the results in Subsection III A. In
Subsection III B we study polymer collapse focusing on the
state immediately after the collapse. To learn more about this
state we study next the dynamics of fractal globule with chain
crossing, Subsection III C, and without chain crossing, Sub-
section III D.

A. Theoretical preliminaries

Though the contact probabilities for both the interdigitat-
ing and smooth fractal globule have already been derived in
Ref. 9, we present here a shorter, more intuitive derivation.

For an equilibrium molten globule of polymerization de-
gree N one expects r(g) ∼ g1/2 (as long as this distance is
smaller than the overall globule size, i.e., as long as g < N2/3)
as the result of the screening of the excluded volume.8, 17 On
the other hand, a fractal globule of fractal dimension 3 would
simply give r(g) ∼ g1/3 for any value of g.

For a molten globule the polymer is mixed on all length
scales. Two monomers at a distance g apart are connected by
a subchain that takes up a volume proportional to g3/2. The
contact probability pc = pc(g) is then simply inversely pro-
portional to that volume, pc ∼ g−3/2. If one would recycle this
argument for the fractal globule (which is not allowed as the
chain is not mixed), one would predict pc ∼ g−1.

There are deterministic counterparts to fractal globules,
space-filling curves like the three-dimensional Peano and
Hilbert curves. The problem with the simple argument above
is that it does not account for the fact that the chain is demixed
on all length scales. This means, for instance, that if we look
at a chain section of length g, its two g/2 monomers long
subchains (each taking up a volume v ∼ g) will not mix.
From this follows that two monomers a genomic distance
g apart can only be in contact if both monomers reside on
the interface between the two subchains (each with probabil-
ity v2/3/v ∼ g−1/3) and that they meet then on this interface
(additional factor 1/v2/3 ∼ g−2/3). In total the contact prob-
ability of the fractal globule should obey pc ∼ g−1/3 × g−1/3

× g−2/3 = g−4/3, in agreement with the finding for the above
mentioned deterministic curves.

Now, let us widen our definition of the fractal globule by
releasing the constraint that it has to be “smooth.” Instead,
the interface between the two g/2 monomer long subchains
is a fractal surface with fractal dimension 2 ≤ dS ≤ 3. Now
the probability for a monomer to be at the fractal surface of
its subchain is vdS/3/v ∼ gdS/3−1 and the probability that two
given interface monomers are in contact is proportional to
v−dS/3 ∼ g−dS/3. Altogether this leads to a contact probability
that scales like pc ∼ gdS/3−1 × gdS/3−1 × g−dS/3 = gdS/3−2,
see also Ref. 2. For a smooth interface, dS = 2, we recover
the relation pc ∼ g−4/3. In general the exponent can vary be-

tween that value and the value −1 for dS = 3. It is that latter
case that the authors of Ref. 9 refer to as interdigitated frac-
tal. In that case the interface has the dimension of a volume
and different subchains overlap. To ensure self-similarity the
thickness of the overlapping zone has to scale with the volume
of the subchain as v−1/3.

A more refined argument is given in the Appendix.

B. Collapse of a polymer in a poor solvent

It was proposed in Ref. 1 that a polymer directly after
a collapse – as induced by a change in the solvent quality
from good to poor – is temporarily trapped in the fractal glob-
ule state. According to the simulation presented in Ref. 9 that
state is of the interdigitating type. The main argument for the
existence of such a metastable state is based on the idea that
the equilibration of a fractal globule is achieved by reptation
which is a slow process—at least of the order N3. The collapse
of a polymer happens on an asymptotically much shorter time
scale, namely, O(N1+2ν) with 1 + 2ν ≈ 2.2 for a swollen chain
through Rouse dynamics.18 The latter neglects hydrodynamic
interactions that would make this process even faster.

We present here simulations of the collapse of a poly-
mer induced by a sudden change in solvent quality from good
to poor. The polymer has a length N = 4000. The starting
configuration is that of a swollen coil which results from the
excluded volume that is built into the model as outlined in
Sec. II. When switching on the self-attraction the polymer
crumples in a hierarchical fashion as originally proposed in
Ref. 1 and already observed in computer simulations.11, 12 De-
spite this we find that the state momentarily after the collapse
of the polymer does not resemble that of a fractal globule.
In our simulations, we take for the cutoff radius of the con-
tact probability R0 one lattice distance. As seen in Figs. 3
and 4, the r2(g) and pc(g) plots of the collapsed polymer re-
semble closely the ones expected for an equilibrium globule,

 1
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<r
2 >

g

x1

x2/3

equilibrium

FIG. 3. Polymer of length N = 4000 in a poor solvent, directly after the col-
lapse from a swollen coil. Chain crossing is not allowed in this simulation.
Depicted is the mean squared monomer-monomer distance versus the dis-
tance g along the chain. The time starts with the black curve just after the
polymer reaches the globular state. This curve is hidden under the sequence
of curves up to the yellow curve N2 time steps later. All these curves can
clearly be distinguished from the molten globule equilibrium curve (green).

Downloaded 17 Jul 2013 to 132.229.14.7. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions



224901-5 Schram, Barkema, and Schiessel J. Chem. Phys. 138, 224901 (2013)

 0.0001

 0.001

 0.01

 0.1

 1

 1  10  100  1000  10000

p c

g

x-3/2

x-4/3

equilibrium

FIG. 4. The contact probability pc(g) is plotted against the distance along the
chain. Everything else is the same as in Fig. 3.

namely, r2 ∼ g and pc ∼ g−3/2. This is in clear contrast to the
relations r2 ∼ g2/3 and pc ∼ g−1 that have been reported in
Ref. 9 for a collapsed chain of similar length. Since the col-
lapse in our simulations takes approximately N1+2ν units of
time, we do not expect that this polymer configuration cor-
responds to an equilibrium globule since the polymer would
need a time O(N3) to entangle itself completely.

Remarkably the plots of r(g) and pc(g) shown in Figs. 3
and 4 do not change noticeably over a span of N2 time steps
as curves for different times lie on top of each other. The sys-
tem has, however, not reached equilibrium. To demonstrate
this we plot in these figures also the equilibrium curves that
have been obtained through a simulation where we allowed
for chain crossing. The curves are similar to, yet clearly dis-
tinguishable from, the curves obtained immediately after the
collapse (and up to N2 time steps later).

It is clear that the collapsed polymer, as created in our
simulations, does not resemble the fractal globule. However,
despite showing r2 ∼ g and pc ∼ g−3/2 it is not in equilib-
rium either. Since collapsing polymers crumple in a hierar-
chical fashion but the product appears to be well mixed, this
suggests that a fractal globule which has a spatially separated
structure on all length scales is not stable on the time scale of
the collapse. We therefore expect that it dissolves, presumably
through the mixing of its substructures on all length scales
within O(N1+2ν) or less time units. To check this idea we study
in the following the dynamics of fractal globules. We prepare
the fractal starting configuration by hand and then relax the
configuration in a poor solvent, thereby maintaining the glob-
ular state of the system. We especially ask how long it takes
for the fractal state to disappear and whether this process is
faster than the polymer collapse presented in the current sub-
section.

C. Fractal globule dynamics with chain crossing

Our starting configuration here and in Secs. II D and
III D is the randomized fractal globule that lives on a FCC
lattice, see Sec. II D. The FCC fractal grows by a factor of 8
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FIG. 5. Contact probability of our fractal globule with smoothing constant q
= 81/11 at each step. See text for details.

each generation, or equivalently, a factor of two in each spatial
direction.

As discussed in Sec. III A, the contact probability is ex-
pected to exhibit power law behavior, namely, pc ∼ g−4/3. In-
stead of plotting pc(g) directly in a double logarithmic plot,
we smoothed the data points over intervals [g, qg], where
q is the smoothing constant. Choosing q = 81/11 ≈ 1.21 we
find “bumps” in the pc plot that are periodic with an interval
log g = 8, see Fig. 5. If we choose q to be the growth factor of
the fractal, q = 8 in our case, these bumps disappear resulting
in a smooth curve. As predicted, we find a slope of −4/3.

We now let the smooth fractal globule equilibrate with
chain crossing allowed but with the self-avoidance constraint
still present. In our simulations we accept all proposed chain
crossing moves. The effect of chain crossing of the polymer is
analogous to the presence of topoisomerase II (topo II) in the
nucleus of a cell. Topo II is an enzyme that cuts both strands
of a DNA double helix, passes another unbroken double he-
lix through it, and finally reanneals the cut strands. Allowing
chain crossing makes the problem easier analytically, because
the polymer will essentially behave as a Rouse chain on length
scales smaller than the radius of the globule. Moreover, since
the polymer does not experience as much topological con-
straints, the equilibration is also significantly faster.

Because movement is less topologically constrained, we
expect for timescales not too short, but before monomers
start to feel the constraint of the surface of the globule, that
monomers behave as 〈|r(t) − r(0)|〉 ∼ t1/4 with a prefactor
that is linearly dependent on the concentration of topo II. The
exponent 1/4 is only valid when the monomers have no ex-
cluded volume (θ -solvent) or, as here the case, when the ex-
cluded volume is screened by other monomers.17 Since the
size of the globule is N1/3, it takes τ ∼ N4/3 time steps for each
monomer to completely renew its position within the globule.
As all monomers renew their positions in that timescale, the
polymer will be equilibrated within that time. Another way
to derive this relation is to realize that an equilibrium globule
can be interpreted as N1/3 subchains of length N2/3 in a globule
of size N1/3. The Rouse time of each subchain is proportional
to the square of its length, i.e., proportional to N4/3.
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FIG. 6. Equilibration with chain crossing of a N = 8000 smooth random
FCC fractal. Chain crossing is allowed. This is a mean squared displacement
versus the genomic distance g = |i − j| plot. The time starts with the black
curve at t = 0 and increases exponentially in 48 steps from t = 1 to t = N2.

In Figs. 6 and 7 we present the time evolution of the func-
tions r2(g) and pc(g) for a chain of polymerization degree
N = 8000. At the start of the simulation we obviously find
the scaling relations of a smooth fractal globule, namely, r2 ∼
g2/3 and pc ∼ g−4/3. The curves have been taken at times with
an exponential distances from each other, ti = N2i/48, and go
up to N2 time units. As can be seen in the plots, the curves
already reach a state characterized by r2 ∼ g and pc ∼ g−3/2,
much before the end of the simulation. Since the equilibration
time is proportional to N4/3, we expect this state to correspond
to the equilibrium molten globule.

As discussed earlier, the state after a polymer collapse
shows similar behavior of r2(g) and pc(g) but is not in equi-
librium. We therefore need a better diagnostic tool that picks
up the differences between globules more clearly. Since the
main difference between the different structures is expected
to be of topological nature, we introduce a quantity for entan-
glements, the knotting fraction nmin/n

eq
min. Here nmin is the av-
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FIG. 7. Equilibration with chain crossing of a N = 8000 smooth random FCC
fractal. It shows the contact probability as a function of the genomic distance.
The time starts with the black curve at t = 0 and increases exponentially in
48 steps from t = 1 to t = N2.

erage length of the polymer after shrinking it in a Monte Carlo
simulation as short as possible without changing its topologi-
cal state (an approach inspired by the primitive path analysis
presented in Ref. 19). The value n

eq
min is the measured aver-

age of nmin for the equilibrium globule. To determine nmin we
place an unbreakable crosslink between the two monomers
that are furthest apart along the chain but next to each other in
space. This leads to a ring polymer with two dangling ends.
Then we run the simulation, but every time step we remove,
if possible, one monomer from the complete chain. Also, on
a shorter interval (1/2 time step), we attempt to replace the
crosslink as to create a larger ring polymer with shorter dan-
gling ends. The simulation ends after 4N/3 time steps. Note
that since the polymer length decreases in time, the number
of Monte Carlo moves is actually less than 4N2/3.

Since entanglements cannot escape the ring, a point is
reached where the ring cannot be made any smaller without
changing the topological state of the ring polymer. Thus, the
minimal length of the ring is a rough measure for the knot
complexity of its initial configuration. Of course, in the time
between the start of this simulation and the time that the whole
polymer forms a ring, without any dangling ends, entangle-
ments may form as the crosslink is moved changing the topo-
logical state of the ring. However, our results suggest that this
effect is small.

Figure 8 shows the knotting fraction as a function of time.
The plot is consistent with our prediction τ ∼ N4/3. Full knot-
ting (and equilibration at the same time) occurs after ∼N4/3

time steps, but local knotting (small knots of size O(1)) is ex-
pected to occur in order 1 time steps because knots are created
all along the polymer chain in parallel. The number of local
knots at shorter timescales grows proportional to the length of
the polymer N, thus reaching a given knot fraction in a con-
stant time. This can be seen by the curves in Fig. 8 shifting
to the left as N grows bigger. The fact that the curves do not
shift smoothly to the left (for example, the curve with length
N = 4000 falls on top of the one with N = 8000) is due to
the fact that we can only create smooth fractals of globular
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FIG. 8. The knotting fraction nmin/n
eq
min as a function of time. The simulation

starts with a fractal globule, and then equilibrates with a self-attraction. The
Monte Carlo simulation includes a move that allows two chains to cross each
other.
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FIG. 9. Equilibration without chain crossing of a N = 8000 smooth random
FCC fractal. Chain crossing is not allowed in this simulation. This is a mean
square displacement versus the genomic distance g = |i − j| plot. The time
starts with the black curve at t = 1 and increases exponentially in 50 steps to
t = N2.

shape for lengths 8m with m being an integer. The N = 8000
chain is created by cutting the N ≈ 32 000 to a fourth of its
length. This cut polymer has a different shape, more specifi-
cally, a higher surface to volume ratio and thus does not knot
as quickly as a closer to spherical version of such a fractal.

D. Fractal globule dynamics without chain crossing

The question how long it takes to fully equilibrate a frac-
tal globule without chain crossing (e.g., for DNA in the ab-
sence of topo II) is much harder to answer than the previous
case. The most straightforward argument is that the globule
will only equilibrate through standard reptation, implying an
equilibration time τ ∼ N3, see Ref. 1. We cannot simulate
chains of sufficient length on that time scale but we show in
this section that substantial rearrangement of the fractal glob-
ule takes already place on a much shorter time scale.

In Figs. 9 and 10 we present the time evolution of the
functions r2(g) and pc(g) for a chain of length N = 8000. For
t = 0 we find the scaling relations of a smooth fractal globule,
r2 ∼ g2/3 and pc ∼ g−4/3. As in Figs. 6 and 7 the curves have
been taken at times with an exponential distances from each
other, ti = N2i/48. Note that within N2 time steps the smooth
fractal globule reaches a state characterized by r2 ∼ g and
pc ∼ g−3/2. Again, as is the case after the collapse of a poly-
mer (Figs. 3 and 4), we reach a state that appears to be that
of the equilibrium molten globule. That we have yet to reach
true equilibrium, can be seen by comparing the curves to the
equilibrium ones, also shown in Figs. 9 and 10 (green curves).
The differences are small but become dramatic when inspect-
ing the time development of the knotting fraction.

In Fig. 11 we present the knotting fraction nmin/n
eq
min of

chains of different length as a function of time. The knotting
of the chain clearly grows much slower than for a polymer
with chain crossing, Fig. 8. However, our plot suggests that
substantial knotting already occurs after N2 time steps, i.e.,
much shorter than N3 steps, for all lengths considered (up to
N = 8000), see Fig. 11. This may be attributed to an extremely
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p c
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FIG. 10. Equilibration without chain crossing of a N = 8000 smooth random
FCC fractal. Chain crossing is not allowed in this simulation. Depicted is the
contact probability as a function of the genomic distance. The time starts with
the black curve at t = 1 and increases exponentially in 50 steps to t = N2.

small temporal prefactor, but we speculate here that the poly-
mer can already partially knot itself within a timescale N2.
Knots are created at the ends of the polymer at a constant rate
independent of the length of the polymer. If one such knot is
of size O(1) and consists only of a local self-entanglement, it
can diffuse along the polymer chain with a diffusion coeffi-
cient that is again independent of N. After O(N2) time steps
these knots will have diffused all along the polymer chain, and
thus the polymer will be partially knotted with a number of
self-entanglements that is proportional to N. Knot-knot “col-
lisions” do not affect this scaling argument since the affected
knots can be renumbered after each collision.

To fully equilibrate, local entanglements will have to
grow into entanglements of the size of the whole polymer,
thereby acquiring a friction proportional to N. This extra fac-
tor N suggests that a globule can only fully equilibrate after
τ ∼ N3 which in fact scales like the refreshment time of a rep-
tating polymer. Our time series are too short, however, to find
conclusive evidence for this prediction.
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FIG. 11. The knotting fraction nmin/n
eq
min as a function of time. The simula-

tion starts with a fractal globule, and then equilibrates with a self-attraction.
Chain crossing is not allowed.
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FIG. 12. Final radius of gyration Rg after swelling the globules that have
been relaxed for t time steps, either with or without chain crossing moves.
Each polymer globule is swelled for 2N time steps, before its radius of gy-
ration is measured. The ones with chain crossing are indicated in the plot by
CC in the key. Globules with few entanglements will swell much more easily
than ones with many of them.

Our algorithm to determine the knot fraction has no di-
rect experimental counterpart. A more physical way to detect
entanglements is to reswell a globule by switching off the at-
traction between the monomers (see also Ref. 9 for a similar
approach). This can be realized in an experiment through a
change in solvent quality, e.g., by changing the temperature
or the ionic strength. In our simulation we simply switch off
the attractive interaction and record the size of the chain after
2N steps. In Fig. 12 we depict the radius of gyration squared
R2

g divided by N2/3 as a function of log (t)/log (N), where t de-
notes the time the fractal globule had to equilibrate under poor
solvent conditions before the swelling phase. Different curves
correspond to different chain lengths and to chains that either
have been equilibrated with or without chain crossing. Obvi-
ously, after we switch off the self-attraction we do not allow
for chain crossing anymore.

All the curves share the overall same shape. For very
short times t the chain has no time to get entangled and thus
swells rapidly after being put into a good solvent. There is
no detectable difference between chains that had been equi-
librated with or without chain crossing. The same is true for
very long times where the chain had enough time to com-
pletely entangle. Such equilibrated chains get quickly arrested
during swelling due to the entanglements and probably do not
grow much beyond their starting size Rg ∼ N2/3. Our simula-
tion time without chain crossing is unfortunately too short to
have reached that state for all cases studied.

In between there is a crossover region where chains swell
to an intermediate size within the 2N swelling time steps.
The location of this crossover is very sensitive to whether the
fractal globule had been equilibrated with or without chain
crossing. In the former case we expect equilibration within
t ∼ N4/3 and the data for the longest chain N = 8000 clearly
support this prediction as the curve reaches its equilibrium
value around log (t)/log (N) = 4/3. On the other hand, when
chain crossing had been forbidden during the equilibration
step the chain has not yet reached full entanglement after

t ∼ N2 steps. Equilibration is attained much later, presumably
at t ∼ N3 that is outside the available simulation time for the
longest chains.

IV. DISCUSSION AND CONCLUSION

In this paper we studied the fractal globule, a non-
equilibrium polymer state that is characterized by being
demixed at all length scales. Its most important property is the
absence of entanglements, a property that makes this state one
of the prime candidates for the conformations of long eukary-
otic DNA inside cell nuclei.1, 4, 9 Our study indicates, how-
ever, that the very property of being unentangled also brings
about the immediate destruction of the fractal state. In fact,
we found that the conformation of a polymer after a collapse
shares many features with an equilibrium globule, e.g., it fea-
tures a monomer-monomer distance that scales like r2 ∼ g for
g < N2/3 and then level off at a value r2 ∼ N2/3. The latter is
a clear hallmark that the chain is mixed, even on the largest
length scales—unlike the fractal globule state. We observed a
similar behavior when starting from a fractal globule configu-
ration: within a time much shorter than the expected N3 time
units, one reaches again such a pseudo-equilibrium state. This
can also be seen through inspection by eye of the example
configurations shown in Fig. 13. After N time steps the glob-
ule is basically still demixed on all length scales, no matter
whether we simulate with (upper left) or without chain cross-
ing (upper right). After N2 time steps the structures are mixed
with (lower left) and without chain crossing (lower right).

We speculate that the reason why fractal globules mix so
quickly lies in the absence of entanglements allowing mixing
of the chain on all length scales without hindrance through en-
tanglements. An example for such a move is shown in Fig. 14
for a Moore curve, a variant of the Hilbert curve. The whole
chain consists of four parts that are each folded in the same
way. The left and right parts of the square that is occupied by
the whole chain are only connected by one strand. The curve
can thus be easily opened up in the middle and have the indi-
vidual parts rotated around, such that a new structure emerges,
where large scale rearrangement has taken place. Many sim-
ilar moves exist allowing an effective mixing of the globule.
Obviously the mixing of three-dimensional fractal globules is
even easier to achieve. Altogether this suggests that the con-
cept of a well-defined entanglement length19 might not be
useful for such self-similar unentangled conformations. Be-
cause of this, the concept of fractal globules might be ques-
tionable as well due to the extremely short life time of this
configuration.

Theoretical work by Grosberg et al.1 suggested an anal-
ogy between the dynamics of fractal globules and the prop-
erties of nonconcatenated ring polymers. We do not have any
reason to question the observation that rings are demixed;2, 3

our simulation model has verified this result. However, the
present work does not provide evidence supporting the anal-
ogy. On the other hand, we cannot exclude the possibility that
such an analogy might be useful for describing the dynamics
of fractal globules of sizes that are even bigger than the ones
presented here.
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(a) (b)

(c) (d)

FIG. 13. A polymer of length 4000 in different states. On the left the simulation is done without chain crossing, while polymers on the right are simulated with
chain crossing. The polymers on top are shown after letting the FCC fractal equilibrate for N time steps. The two pictures below are equilibrated for N2 time
steps. The renders are made using the pov-ray package.

Nevertheless, in the simulations presented in Ref. 9 frac-
tal globules have been clearly observed that had been induced
by a polymer collapse. These states were clearly self-similar
and demixed on all length scales. We speculate that the main
reason for the disparity between our respective conclusions is
that our simulation time is much longer. Pictures taken of our
own globules at around N time steps show a lot of similarities
to theirs. The fact that they found a crumpled globule directly
after the collapse could possibly be explained by the speed
of their collapse, which is much higher (and we would argue
unnaturally high) than in our case.

Another question in this context concerns the exponent
characterizing the decay of the contact probability with dis-
tance. Mathematical space filling fractals typically show a
−4/3 slope but the simulated fractal globule of Ref. 9 suggests
pc(g) ∼ g−1. We can compare this with the time development

FIG. 14. One of many possible mixing moves for a Moore curve, a variant
of the Hilbert curve.

of pc(g) that we found when relaxing a fractal globule without
chain crossing, see Fig. 10. Shortly after starting relaxation –
at about N time steps – the contact probability shows at inter-
mediate length scales roughly a −1 power law as a function of
g. If we assume that this intermediate state is an interdigitating
fractal, the structure on the largest length scales had at least to
move by an amount proportional to N1/3, because according
to its definition the interdigitating depth needs to scale as g1/3

for a chain segment of length g. This would, however, take at
least N4/3 time steps (via Rouse dynamics in the absence of
entanglements) and is thus too slow.

Instead we suggest that the −1 slope we found is in fact
an artifact of a relatively broad crossover between Gaussian
chain behavior on short length scales (pc ∼ g−3/2) and still
fractal behavior at long length scales (pc ∼ g−4/3). At first
sight this might seem counterintuitive because −1 is less neg-
ative than both −4/3 and −3/2. The key here is that the two
curves do not connect in one crossover point, but in a “zigzag”
fashion, see Fig. 15. It is not hard to see why this should be
the case. We find that both the original fractal globule and
the newly appearing Gaussian regime show approximately the
same prefactor in their contact probability power law (because
pc(1) = 1 by definition). In addition to this, the prefactor of
the still fractal part (large g) increases over time due to the
roughening of the surface. Thus, it is easy to see that the two
curves will not connect in a point, but instead will have to
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FIG. 15. Contact probability pc as a function of genomic distance g at
t = N0.92, for a polymer of length N = 8000. The lines indicate the perceived
“zigzag” as elaborated in the main text. The full time development is shown
in Fig. 7.

form a “zigzag” like structure. In our simulations we find an
approximate −1 slope, but we are unsure whether this is due
to the limited size of the fractal or not.

In our simulations we found that fractal globules are
rather unstable and quickly move to the pseudo-equilibrium
globule, an ensemble of states that is very hard to discern
from the equilibrium globule with regard to both the con-
tact probability and the monomer-monomer distance. How-
ever, we identify this class from the equilibrium globule by
the amount of self-entanglement that, e.g., manifests itself in
a much faster swelling behavior when the globule is put into
a good solvent.

Interestingly in the context of chromatin the experimen-
tally accessible quantities happen to be the contact probability
(obtained through chromatin conformation capture) and the
monomer-monomer distance (obtained through FISH). The
latter is less conclusive but conformation captures indicates
a decay in the contact probability not substantially faster than
g−1. If we insist on entanglement-free DNA conformations,
this excludes both smooth fractal globules (slope −4/3) and
pseudo equilibrium globules (slope −3/2). On the other hand,
we have not seen any numerical evidence for the existence of
interdigitating globules.

To conclude, our simulations have not given any evidence
that collapsed linear polymers show pc(g) ∼ g−1. This sug-
gests that in order to built large-scale models of interphase
chromatin one might have to move away from models of lin-
ear polymer chains to, e.g., solutions of rings2, 20 or one has
to introduce suitable cross-linking between different parts of
a linear polymer chain.
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APPENDIX: MORE ELABORATE DERIVATION OF
CONTACT PROBABILITY FOR FRACTAL GLOBULES

To derive the contact probability of a “fractal globule”,
we first have to define exactly what we mean by that term.
Here, we define our fractal object as one where at each length
scale the contacts between the 2d neighboring smaller parts
“look” the same: the fraction fI of the surface in between
them divided by the total surface of the individual parts (with-
out taking the contact between the parts into consideration)
is equal for all length scales. The last assumption is that
the blocks build themselves in a fractal way: 2d consecutive
blocks are ordered inside a larger 2 × 2 × 2 block (in the case
of 3 dimensions). The effect of this is that the surface of a
large blob can be fractal with a dimension higher than d − 1.
We define S1 as the surface of the elementary building block
where the globule starts to be fractal.

Using these definitions, we now derive the contact prob-
ability, without even needing to know the fractal dimension
of the globule, which is constrained, though not necessarily
uniquely determined, by the value of fI. Since we are not in-
terested here in these constraints, we will refrain from deriv-
ing them. Our derivation here is neither limited to polymers,
though with the ordering constraint of the blocks, assuming
connected bonds is a rather loose constraint.

Since blocks are connected to each other through their
surface that is determined by the surfaces of the smaller
blocks it constitutes of, we first derive the surface of a block of
g elementary blocks. The first new surface area S2d is a func-
tion of the surface of the elementary blocks and the internal
surface fraction fI:

S2d = (1 − fI )S12d . (A1)

Thus we get for arbitrary g = (2d)k:

Sg = (1 − fI )kS1g. (A2)

Using that k = log (g)/log (2d), we find that

Sg = (1 − fI )log(g)/ log(2d )gS1 = g1+ 1
d

log(1−fI )
log(2) S1. (A3)

For simplicity of the argument we only find the contact
probability of monomers with a block of g monomers, at least
g2−d monomers apart, where the last condition ensures that
monomers are in separate sub-blocks. Thus, the resulting con-
tact probability pc(g) is actually a (weighted) average over the
interval [g2−d, g]. Since we are not interested in a complete
explicit formula, but more in scaling and the dependence on
fI without caring too much about small corrections, this as-
sumption suffices for us.

The total surface of the sub-blocks is given by Sg/(1 − fI),
which follows readily from their respective definitions. Then
the internal surface of all sub-blocks is given by Mg = SgfI/
(1 − fI). To obtain the contact probability, we find the to-
tal number of possible contacts, that can be found between
monomers that are within a g block, more than g2−d apart,
which is given by Qg = 1/2(1 − 2−d)g2. Thus we find for the
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contact probability

pc(g) = Mg/Qg = 2fISg

(1 − fI )(1 − 2−d )g2

= 2fIS1

(1 − fI )(1 − 2−d )
g−1+ 1

d

log(1−fI )
log(2) . (A4)

Thus for the case of a smooth fractal, we have fI = 0.5,
and we get pc ∼ g−1 − 1/d, which is the same as given in the
main text. Since this is the highest possible value of fI, and
we can get anything down to fI = 0, we find for the possible
values of the exponent: −1 > β ≥ −4/3. Note however that
if fI goes to 0, the prefactor also goes to 0. Thus, getting ex-
actly a −1 law is impossible with our assumptions, though we
can approach it arbitrarily close, with an increasingly small
prefactor.
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