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Where the linearized Poisson-Boltzmann cell model fails: spurious phase separation in charged colloidal sus-
pensions, by M. N. Tamashiro and H. Schiessel

A Definition of the model

In this Appendix we give a detailed presentation and discussion of the mean-field PB WS-cell model briefly
introduced in Section 2. In particular, we derive the nonlinear PB equation from the functional minimization
of a free-energy density functional.

As presented in Section 1, one of the simplest theoretical descriptions of charged colloidal suspensions is
the PM, that neglects the molecular nature of the solvent and dielectric discontinuities — even though its
rigorous solution is highly nontrivial. A mean-field approach to the PM, although not thermodynamically
consistent,1–3 is represented by the PB approximation.4–7 This treatment gives a reasonable description in
the weak-coupling (high temperature or small charge densities) limit, when the microionic correlations that
are neglected at the mean-field level are unimportant. But even the mean-field PB approximation for a
suspension of charged polyions is a formidable task8 due to the large asymmetry in size, mass and charge
between the polyions and the small mobile microions. To circumvent this problem, the cell model has been
introduced — originally for the cylindrical geometry9,10 — which reduces the many-body problem to the
study of a (fixed) single polyion inside a WS cell, whose volume is related to the polyion density. In the
WS-cell model the single polyion plays only the role of a boundary condition. Note that this represents a
dramatic simplification to the original PM formulation, where polyions and microions are treated at the same
level. Even though the applicability of the WS-cell model appears at first sight to be only justified for an
ordered crystalline phase, it has also been used to describe the fluid phase,11,12 neglecting thus the polyion
translational entropy, the polyion-polyion interactions and intercell (both microion-polyion and microion-
microion) correlations — intracell microion-microion correlations are neglected because of the mean-field
approximation, which computes only the intracell microion-polyion correlations. To simplify further, the
geometry of the WS cell is usually taken as to match the boundary condition on the polyion charged surface.
For example, for colloidal particles a spherical charged polyion is considered inside a concentric spherical WS
cell. This reduces the problem to the solution of a second-order ordinary (rather than partial) differential
equation. For the spherical geometry this requires the numerical solution of the nonlinear PB equation,
contrary to the planar13–15 and cylindrical9,10,16 cases, when an exact analytical solution to this nonlinear
equation is possible.

Although the derivation of the nonlinear PB equation from a free-energy density functional can be
found elsewhere,6,7, 17 to introduce the notation and to stress the advantages of an explicitly gauge-invariant
approach, it is helpful to rederive it in the following. For simplicity, we present here only the salt-free case
(in the presence of neutralizing counterions only). Generalization of the model including monovalent salt
is straightforward and briefly described in Appendices D and E for the canonical and semi-grand-canonical
cases, respectively. The system to be considered is a hard charged sphere — a spherical polyion that, without
loss of generality, is chosen to be a polyanion — of radius a and total charge −Zq distributed uniformly on
its surface inside a concentric spherical WS cell of radius R > a, where q > 0 is the elementary charge and
Z � 1 is the polyion valence. The radius R of the WS cell is related to the polyion density np such that the
total volume of the suspension is equally distributed between the polyions, i.e. np ≡

(
4πR3/3

)−1
, whose

hard cores occupy a fraction φ ≡ (a/R)3 of the total volume. To ensure the overall WS-cell charge neutrality,
there are Z mobile (positive) point-like counterions, each carrying a charge +q, that are allowed to move
in the spherical shell a < |r| ≤ R, whose volume reads V = (4π/3)

(
R3 − a3

)
. Henceforth, to simplify the

notation, it will be implicit that all integrations are performed over the free volume V unoccupied by the
polyion core — but also including the polyion charged surface at |r| = a — unless otherwise stated. At the
mean-field PB level the counterions are treated as an inhomogeneous ideal gas and are described by their
(continuous) average local number density n+(r) ≡

〈〈∑Z
i=1 δ

3 (r − ri)
〉〉

, where δ3 is the three-dimensional
Dirac delta function and the double brackets denote an ensemble (Boltzmann-weighted) average over all
positions {ri} of the counterions. The total charge number density (counterions plus the negative surface
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charge on the polyion),

ρ(r) = n+(r)− Z

4πa2
δ3(|r| − a), (A1)

is related to the reduced electrostatic potential ψ(r) ≡ βqΨ(r) by the (exact) Poisson equation,

∇2ψ(r) = −4π`Bρ(r), (A2)

where `B = βq2/ε is the Bjerrum length and β−1 = kBT is the thermal energy at temperature T . It is
implicitly assumed that the solvent dielectric constant ε remains the same inside the sphere, so image-charge
effects due to dielectric contrast are absent. The formal solution to the Poisson equation (A2) may be written
in terms of the Green function G3(r, r′) in three dimensions,

ψ(r) = `B

∫
d3r′G3(r, r′) ρ(r′), ∇2G3(r, r′) = −4πδ3(r − r′), (A3)

which in turn allows us to express the mean-field Helmholtz free-energy functional F [n+(r)] of a single WS
cell as

βF [n+(r)] =
∫

d3r n+(r)
{

ln
[
n+(r)ζ3

+

]
− 1
}

+
`B
2

∫
d3r d3r′ ρ(r)G3(r, r′) ρ(r′), (A4)

where ζ+ is the thermal de Broglie wavelength of the counterions. It should be remarked that the mean-field
Helmholtz free-energy functional (A4) can be derived from the underlying PM Hamiltonian in different ways:
as the saddle point of the action in a field-theoretic approach,6 from a Gibbs-Bogoljubov inequality applied
to a trial product state that decouples the original Hamiltonian7 or from a first-cumulant expansion of the
density-functional reformulation of the associated partition function.18 The first term of (A4) represents the
configurational entropy of the inhomogeneous ideal gas of counterions, while the second term corresponds
to the electrostatic energy, βU = 1

2

∫
d3r ψ(r)ρ(r), which may be rewritten as

βU =
1

8π`B

∫
d3r [∇ψ(r)]2 − 1

8π`B

∮
∂V

ψ(r)∇ψ(r) · dS. (A5)

The surface contributions to the electrostatic energy — the last term of the right-hand side of (A5), performed
over the boundary ∂V of the free volume V , which does not include the polyion charged surface at |r| = a,
because it is already incorporated into the free volume V — vanish due to Gauss’ law and the overall WS-cell
charge neutrality, ∫

d3r ρ(r) = 0, or
∫

d3r n+(r) = Z. (A6)

The equilibrium counterion-density profile is obtained by minimizing the mean-field functional F [n+(r)]
with respect to n+(r) under the constraint of overall WS-cell charge neutrality (A6). For this purpose it is
convenient to introduce a translationally invariant (independent of r) virtual Lagrange multiplier βµel and to
define the extended Helmholtz free-energy functional F̃ [n+(r)] including an additional Lagrange-multiplier
term,

F̃ [n+(r)] ≡ F [n+(r)]− µel

∫
d3r ρ(r) = F [n+(r)]− µel

[∫
d3r n+(r)− Z

]
. (A7)

We should remark that the extended Helmholtz free-energy functional F̃ [n+(r)] does not correspond to the
conjugated semi-grand-canonical functional Ω [n+(r)] in the (hypothetical) case of fixed chemical potential
of counterions µ+ (but fixed number of polyions),

Ω [n+(r)] ≡ F [n+(r)]− µ+

∫
d3r n+(r),

∫
d3r n+(r) 6≡ Z. (A8)

In fact, for the salt-free case, it is not even possible to define the semi-grand-canonical functional Ω [n+(r)],
because it violates the global charge-neutrality of the system. Even by modeling the salt-free colloidal
suspension by locally nonneutral cells — whose volume are not directly related to the polyion density — in
electrochemical equilibrium with outer free counterions, as considered in Ref. [19], it is still not possible to
define a true semi-grand-canonical functional Ω [n+(r)], because the (pseudo-)chemical potential µ+ of the
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free counterions is fixed by the global charge-neutrality of the system. We refer the reader to the treatment of
the Donnan-equilibrium problem — the system in electrochemical equilibrium with an infinite salt reservoir,
considered in Appendices E and F — for an extended discussion about the differences between the virtual
Lagrange multiplier µel and the true chemical potentials of microions µ±. We anticipated that, although this
distinction may seem to be rather academic, it is important to stress that overall charge neutrality (ensured
by the Lagrange multiplier µel) and electrochemical equilibrium (imposed by fixed chemical potentials of
microions µ±) are independent constraints. This prevents misinterpretations when treating the Donnan
equilibrium, when both constraints must be simultaneously satisfied.

Functional minimization of βF̃ with respect to n+(r) leads to the Euler-Lagrange or stationary condi-
tion,20

δβF̃

δn+(r)

∣∣∣∣∣
n+(r)=n̄+(r)

= ψ̄(r) + ln
[
n̄+(r)ζ3

+

]
− βµ̄el = 0, (A9)

which yields the equilibrium counterion profile, n̄+(r) = eβµ̄el−ψ̄(r)/ζ3
+. In the above formulas the equilibrium

electrostatic potential, ψ̄(r), is obtained by inserting the equilibrium counterion profile n̄+(r) into ψ(r),
Eq. (A3). The equilibrium Lagrange multiplier is obtained by imposing the charge neutrality constraint (A6),

βµ̄el = ln
(
ncζ

3
+

)
− ln

〈
e−ψ̄(r)

〉
, (A10)

the brackets denoting unweighted spatial averages over V ,

〈X (r)〉 ≡
∫

d3rX (r)∫
d3r

. (A11)

We introduced the effective average density of counterions in the free volume V unoccupied by the polyion
core,

nc ≡ 〈n̄+(r)〉 =
Z

V
, (A12)

in contrast to their nominal mean density in the suspension, ñc ≡ nc (1− φ), which does not take into
account the polyion hard cores. Note that the Lagrange multiplier (A10) may be decomposed into two terms,
a chemical potential corresponding to an ideal gas of uniform density nc and an electrostatic contribution due
to the counterion-cloud polarization, which may be written in terms of an average related to the equilibrium
electrostatic potential, − ln

〈
e−ψ̄(r)

〉
.

We note that the presence of the Lagrange multiplier µ̄el ensures explicitly the gauge invariance of the
equations, that is, physical observables, like the equilibrium counterion-density profile,

n̄+(r) =
Ze−ψ̄(r)∫
d3r e−ψ̄(r)

=
nc exp

[〈
ψ̄
〉
− ψ̄(r)

]〈
exp

[〈
ψ̄
〉
− ψ̄(r)

]〉 , (A13)

and the electric field, E(r) = −∇Ψ(r) = −(βq)−1∇ψ̄(r), clearly do not depend on a particular choice of the
zero of the electrostatic potential ψ̄(r), since observables can always be written in terms of the gauge-invariant
difference βµ̄el− ψ̄(r). In particular, explicitly gauge-invariant forms of the density profiles will be useful to
establish a connection between the nonlinear and the linearized osmotic pressures (cf. Appendices C to E)
and to derive the self-consistent linearized averaged densities for the semi-grand-canonical ensemble (cf. Ap-
pendix F). We should remark that — because consistent theories should always be gauge invariant — the use
of explicitly gauge-invariant forms constitutes just a technical convenience, it does not represent an essential
requirement. However, we believe that it provides a systematic and more transparent way to perform the
calculations and later, the linearization. Henceforth gauge-invariant will be a short-writing for explicitly
gauge-invariant, unless otherwise stated.

The Boltzmann-weighted equilibrium counterion profile, Eq. (A13), together with the Poisson equa-
tion (A2), yields the nonlinear PB equation,

∇2ψ̄(r) = −κ
2
ce−ψ̄(r)〈
e−ψ̄(r)

〉 +
Z`B
a2

δ3(|r| − a), (A14)
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where we introduced the Debye screening length κ−1
c associated with the uniform counterion density nc,

κc ≡
√

4π`Bnc. (A15)

The mean-field Helmholtz free energy (of a single WS cell) F is obtained by inserting the equilibrium
density profile n̄+(r), Eq. (A13), into the mean-field functional F , Eq. (A4),

βF ≡ βF [n̄+(r)] = Z
[
ln
(
ncζ

3
+

)
− 1
]
− Z

2

 ψ̄(r = a) + 2 ln
〈

e−ψ̄(r)
〉

+

〈
ψ̄(r) e−ψ̄(r)

〉
〈
e−ψ̄(r)

〉
 , (A16)

with r ≡ |r|. In Section 3 of Ref. [7] it is shown21 that the nonlinear osmotic pressure P (over pure solvent),
defined as the negative total derivative of the Helmholtz free energy F , Eq. (A16), with respect to the WS-cell
free volume22 V , is simply given by

βP ≡ −dβF
dV

= n̄+(R), (A17)

which is the well-know WS-cell mean-field result that the salt-free osmotic pressure is related to the counterion
density at the WS-cell boundary11 r = R. This simple functional form still remains valid at the PM (beyond
mean-field) level for WS cells of various geometries,23 although the mean-field prediction for the equilibrium
boundary density n̄+(R) will (in general) disagree with the corresponding rigorous PM result due to the
neglect of intracell microion-microion correlations and finite ionic sizes. Henceforth, to simplify the notation
— except in Appendix C, where its use is necessary in order to avoid confusion — we will omit the bar to
denote equilibrium properties.

B Salt-free linearized equations

In this Appendix we present explicit expressions for the salt-free linearized equations, as well as we discuss
the differences between alternative linearized schemes.

In the same way as for the salt-free nonlinear equations derived in Appendix A, in order to ensure
the charge-neutrality constraint (A6), one needs to introduce a Lagrange multiplier µel and to define the
extended Helmholtz free-energy functional F̃DH = FDH − µel

∫
d3r ρ(r). Functional minimization of F̃DH

with respect to n+(r) leads to the linearized equilibrium counterion profile,

n+(r) = nc

[
1 + βµel − ln

(
ncζ

3
+

)
− ψ(r)

]
. (B1)

It follows from Eqs. (A12) and (B1) that the linearized equilibrium Lagrange multiplier βµel is obtained by
adding the uniform counterion-density chemical potential to the average electrostatic potential inside the
WS cell,

βµel = ln
(
ncζ

3
+

)
+ 〈ψ(r)〉 . (B2)

Inserting the linearized equilibrium counterion-density profile (B1) into the Poisson equation (A2), leads to
the linearized DH-like Eq. (7). It should be remarked that this DH-like equation leads to a gauge-invariant
linearized solution for ψ(r), i.e., independent of the choice of the zero of the potential, because it depends
explicitly only on the difference 〈ψ(r)〉 − ψ(r). While the linearized DH-like Eq. (7) may be obtained by
a functional minimization of the linearized free-energy functional (5), this is not the case for the standard
linearized-PB solution,12 when it is disputable how to construct a self-consistent associated functional, from
which the linearized equations may be obtained by a functional minimization — see also discussion in the
last paragraph of this Appendix. Such a functional in the Donnan-equilibrium problem has been proposed
in Ref. [24] for arbitrary expansion densities.

The solution of the linearized DH-like Eq. (7) for an arbitrary WS-cell boundary potential ψ(R) and
under the appropriate boundary conditions,

dψ(r)
dr

∣∣∣∣
r=a

=
Z`B
a2

, and
dψ(r)

dr

∣∣∣∣
r=R

= 0, (B3)
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reads

ψ(r) = ψ(R) +
2Zκ`B

∆2(κR, κa)
− Z`B

r

∆1(κR, κr)
∆2(κR, κa)

, (B4)

∆1(u, v) = ∆+(u)ev −∆−(u)e−v, (B5)
∆2(u, v) = ∆+(u)∆−(v)−∆−(u)∆+(v), (B6)

∆±(u) = (1± u)e∓u, (B7)

with the average electrostatic potential inside the WS cell given by

〈ψ(r)〉 = ψ(R) +
2Zκ`B

∆2(κR, κa)
− 1. (B8)

Inserting the DH-like solution for the electrostatic potential (B4) into the linearized Helmholtz free-energy
functional (5) leads, after some algebra, to the linearized Helmholtz free energy, FDH = FDH[n+(r)]equil,

βFDH = Z
[
ln
(
ncζ

3
+

)
− 1
]

+
Z

2
[〈ψ(r)〉 − ψ(r = a)] = Z

[
ln
(
ncζ

3
+

)
− 3

2

]
+
Z2`B

2a
∆1(κR, κa)
∆2(κR, κa)

. (B9)

It is possible to show that the linearized Helmholtz excess free energy over the ideal-gas entropy of the uniform
reference state, β∆FDH ≡ βFDH − Z

[
ln
(
ncζ

3
+

)
− 1
]
, can also be obtained by a Debye charging process,25

∆FDH = 2
∫ 1

0
dλU(λκ, λ2`B)/λ, of the linearized electrostatic energy U(κ, `B), obtained by inserting the

DH-like solution (B4) into βU = 1/(8π`B)
∫

d3r [∇ψ(r)]2. This is a nontrivial result and confirms thus the
thermodynamic self-consistency of the linearized Helmholtz free energy FDH, Eq. (B9).

In the standard linearized-PB treatment of the spherical WS cell12 the linearization is not performed at
the level of the free-energy functional, but rather by expanding the nonlinear equilibrium profile (A13) about
the WS-cell boundary at r = R, n+(r) = n+(R) [1− ψ(r) + ψ(R)], where the normalization constant n+(R)
is fixed by the charge-neutrality constraint (A6), n−1

+ (R) =
∫

d3r [1− ψ(r) + ψ(R)] /Z. More generally,
by expanding in this approach the nonlinear equilibrium profile about an arbitrary distance a ≤ b ≤ R,
the associated linearized solution to the electrostatic potential is not given by Eq. (B4), but rather by
ψ(r) = ψ(b)+1− (Z`B/r)∆1(κR, κr)/∆2(κR, κa), and the effective Debye screening length κ−1 satisfies the
eigenvalue equation Z`B∆1(κR, κb) = b∆2(κR, κa). In other words, in the standard treatment the screening
length κ−1 depends on the arbitrary distance b about which the nonlinear equilibrium profile is expanded,
contrary to the linearization scheme reported in Subsection 3.1, which is independent on the expansion point
b. While in the standard approach the nonlinear equilibrium profile (A13) is halfway linearized as n+(r) =
nc [1− ψ(r) + ψ(b)] / 〈1− ψ(r) + ψ(b)〉, in the scheme here proposed the denominator is further expanded
and the expansion-point dependence on ψ(b) is cancelled, leading to Eq. (6), n+(r) = nc [1 + 〈ψ(r)〉 − ψ(r)].
One should not confuse the choice of the expansion point with the freedom to choose the gauge. These two
degrees of freedom were coupled in the analysis of Ref. [26], which leads to an incorrect interpretation of the
gauge invariance. Whereas both linearization schemes are gauge invariant, distinct choices of the expansion
point b in the standard approach yield different linearized equations, while here they remain invariant.
We should also remark that the standard linearization procedure is based on an attempt to describe the
asymptotic behaviour of the electrostatic potential in the vicinity of the expansion point at r = b — being
thus a local approach to the linearization — while in the scheme presented in the main text the linearization
is based on a global description of the system, at the level of the whole free energy of the WS cell.

C Formal derivation of the salt-free linearized osmotic pressure

In this Appendix it will be shown that the salt-free linearized osmotic pressure, Eq. (9), is given by a
quadratic expansion of the nonlinear counterion density, Eq. (A13), at the WS-cell boundary,

βPDH = −dβFDH

dV
= nc

{
1 +

〈
ψ̄
〉
− ψ̄(R) +

1
2
[〈
ψ̄
〉
− ψ̄(R)

]2 − 1
2

〈[〈
ψ̄
〉
− ψ̄

]2〉}
, (C1)
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which may be obtained by truncating the expansion of the salt-free nonlinear PB osmotic pressure (4) to
the quadratic terms,

βP =
nc exp

[〈
ψ̄
〉
− ψ̄(R)

]〈
exp

[〈
ψ̄
〉
− ψ̄(r)

]〉 = βPDH + O

([〈
ψ̄
〉
− ψ̄(R)

]3
,

〈[〈
ψ̄
〉
− ψ̄

]3〉)
, (C2)

where the bar denotes equilibrium properties. One route to check that the salt-free linearized osmotic
pressure (9) may be cast in the form (C1) is by using the linearized DH-like solution to the electrostatic
potential (B4) and computing explicitly the spatial averages 〈∆1(κR, κr)/r〉 and

〈
∆2

1(κR, κr)/r2
〉
.

Alternatively, Eq. (C1) may be checked by taking a formal functional derivative with respect to the
WS-cell free volume V — analogously as performed in Section 3 of Ref. [7] for the nonlinear treatment; see
also footnote [21] — of the salt-free linearized Helmholtz free energy functional (5), which is recast in the
form

βFDH[n+(r)] =
∫

d3r f [n+(r)] + Z
[
ln
(
ncζ

3
+

)
− 1
]
, (C3)

f [n+(r)] =
1
2
ψ(r)ρ(r) + nc ln

(
ncζ

3
+

) [n+(r)
nc

− 1
]

+
1
2
nc

[
n+(r)
nc

− 1
]2

, (C4)

where ρ(r) and ψ(r) are defined in Appendix A by Eqs. (A1) and (A3), respectively. The equilibrium coun-
terion profile n̄+(r) that minimizes the linearized version of the extended Helmholtz free-energy functional
F̃DH = FDH − µel

∫
d3r ρ(r), with βµ̄el = ln

(
ncζ

3
+

)
+
〈
ψ̄
〉
, is given by

n̄+(r) = nc

[
1 +

〈
ψ̄
〉
− ψ̄(r)

]
. (C5)

The calculation of the linearized osmotic pressure PDH = −dFDH/dV starting from the explicit form of the
optimized linearized Helmholtz free energy FDH = FDH[n̄+(r)], Eq. (B9), turns out to be nontrivial, because
both the linearized equilibrium counterion profile n̄+(r), Eq. (B1), as well as the linearized equilibrium
electrostatic potential ψ̄(r), Eq. (B4), depend implicitly on the WS-cell free volume V . However, because
βµel was introduced as a Lagrange multiplier to enforce the charge neutrality (A6), it is much easier to
consider the total derivative with respect to the volume of the linearized version of the extended Helmholtz
free-energy functional F̃DH[n+(r)] = FDH[n+(r)] − µel

∫
d3r ρ(r) — but now considering the Lagrange

multiplier µel independent of the WS-cell free volume V — evaluated at the linearized optimized profile
n+(r) = n̄+(r),

dFDH[n̄+(r)]
dV

=
δF̃DH[n+(r)]

δV

∣∣∣∣∣
n̄+(r)

=
∂F̃DH[n+(r)]

∂V

∣∣∣∣∣
n̄+(r)

+
∫

d3r′
δF̃DH[n+(r)]
δn+(r′)

∣∣∣∣∣
n̄+(r′)

dn̄+(r′)
dV

,

(C6)
where the derivatives of F̃DH are taken with fixed µel. Because F̃DH[n+(r)] is stationary with respect to
the optimized profile n̄+(r), δF̃DH[n+(r)]/δn+(r′)

∣∣∣
n̄+(r′)

= 0, only the partial-derivative term contributes

to the linearized osmotic pressure. Furthermore, because the only explicit dependence of F̃DH[n+(r)] comes
from the integration limit,7 we are lead to

∂βF̃DH[n+(r)]
∂V

= −nc − βµel
∂

∂V

∫
d3r n+(r) +

∂

∂V

∫
d3r f [n+(r)] +

dnc

dV

∫
d3r

∂f [n+(r)]
∂nc

. (C7)

Using the explicit form (C5) of n̄+(r), we obtain

βµ̄el

nc

∂

∂V

∫
d3r n+(r)

∣∣∣∣
n̄+(r)

=
[
ln
(
ncζ

3
+

)
+
〈
ψ̄
〉] [

1 +
〈
ψ̄
〉
− ψ̄(R)

]
, (C8)

1
nc

∂

∂V

∫
d3r f [n+(r)]

∣∣∣∣
n̄+(r)

= ψ̄(R)
[
1 +

〈
ψ̄
〉
− ψ̄(R)

]
+ ln

(
ncζ

3
+

) [〈
ψ̄
〉
− ψ̄(R)

]
+

1
2
[〈
ψ̄
〉
− ψ̄(R)

]2
, (C9)

1
nc

dnc

dV

∫
d3r

∂f [n+(r)]
∂nc

∣∣∣∣
n̄+(r)

= ln
(
ncζ

3
+

)
+

1
2

〈[〈
ψ̄
〉
− ψ̄

]2〉
, (C10)
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which yields the salt-free linearized osmotic pressure Eq. (C1).

D Canonical-ensemble equations

In this Appendix we derive and discuss some aspects of the canonical-ensemble equations.
For the nonlinear treatment, the PB Helmholtz free-energy functional,

βF [n±(r)] =
1

8π`B

∫
d3r [∇ψ(r)]2 +

∑
i=±

∫
d3r ni(r)

{
ln
[
ni(r)ζ3

i

]
− 1
}
, (D1)

is minimized with respect to n±(r) under the constraint of overall WS-cell charge neutrality, Eq. (16).
We introduce a Lagrange multiplier µel and define the extended Helmholtz free-energy functional, F̃ =
F − µel

∫
d3r ρ(r). Functional minimization of F̃ with respect to n±(r) yields the Boltzmann factors,

n±(r) = e±βµel∓ψ(r)/ζ3
±. The Lagrange multiplier, βµel = ± ln

(
c±ζ

3
±
)
∓ ln

〈
e∓ψ(r)

〉
, is obtained by us-

ing the effective average definitions (11), which automatically satisfy the overall WS-cell charge neutral-
ity, Eq. (16). Replacing into the Boltzmann factors, we obtain the nonlinear equilibrium density profiles,
n±(r) = c± e∓ψ(r)

/〈
e∓ψ(r)

〉
. The simple ideal-gas relation (A17) between the nonlinear osmotic pressure

and the WS-cell boundary density can be generalized in the presence of added salt. In this case, it can be
shown that the nonlinear osmotic pressure is given by the total microionic density n(r), Eq. (10), evaluated
at the WS-cell boundary r = R,

βP = −
(

dβF
dV

)
s

= n(R) =
c+ e−ψ(R)〈

e−ψ(r)
〉 +

c− eψ(R)〈
eψ(r)

〉
= (1 + 2s)nc

{
1 +

1
1 + 2s

δ1(R) +
1
2
δ2(R)− 1

2
〈δ2(r)〉+ O [δ3(R), 〈δ3(r)〉]

}
, (D2)

where the electrostatic potential differences δν(r) are given by (28). Let us now compare the linearized
canonical osmotic pressure (20) with the quadratic truncation of the expansion of its nonlinear counterpart,
Eq. (D2), about the uniform reference state. Because of the redefinition of the screening length κ−1 in terms
of κ−1

c , the spatial averages 〈∆1(κR, κr)/r〉 and
〈
∆2

1(κR, κr)/r2
〉

needed to evaluate 〈ψ〉 and
〈
ψ2
〉

will be
multiplied by a factor (1 + 2s)−1. Using the explicit DH-like solution to the electrostatic potential (B4), it
is indeed possible to show that the linearized canonical osmotic pressure (20) corresponds to the truncation
of the expansion (D2) up to the quadratic terms, i.e. βP = βP can

DH + O [δ3(R), 〈δ3(r)〉], with βP can
DH =

nDH(R) + (1 + 2s) (nc/2) [δ2(R)− 〈δ2(r)〉], where the first term corresponds to the sum of the linearized
canonical densities at the WS-cell boundary. We see that the linearized canonical osmotic pressure is not
simply given by the linearized boundary density nDH(R), because of the presence of the quadratic terms.

For the linearized treatment, in order to minimize the linearized functional FDH [n±(r)] under the overall
WS-cell charge-neutrality constraint (16), we introduce a Lagrange multiplier µel and define the extended
Helmholtz free-energy functional F̃DH = FDH−µel

∫
d3r ρ(r). Functional minimization of F̃DH with respect

to n±(r) leads to the equilibrium density profiles,

n±(r) = c±
[
1± βµel − ln

(
c±ζ

3
±
)
∓ ψ(r)

]
. (D3)

Using Eqs. (11) and (D3), we obtain that the Lagrange multiplier is related to the uniform-density chemical
potentials and to the average electrostatic potential inside the WS cell,

βµel = ± ln
(
c±ζ

3
±
)

+ 〈ψ(r)〉 , (D4)

analogously to the salt-free case, Eq. (B2). Inserting the equilibrium profiles (D3) into the Poisson equa-
tion (A2), leads to the linearized DH-like Eq. (18). Solving it for ψ(r) leads again to the electrostatic
potential (B4), with the average electrostatic potential inside the WS cell for an arbitrary cell-boundary
potential ψ(R) given by

〈ψ(r)〉 = ψ(R) +
2Zκ`B

∆2(κR, κa)
− 1

1 + 2s
. (D5)
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At this point we should remark that — in the infinite-dilution limit (R→∞, nc → 0), but in the presence
of excess salt (s→∞, finite ns) — the linearized electrostatic potential ψ(r) reduces to the Yukawa screened
electrostatic potential,

lim
R→∞
s→∞

[ψ(r)− ψ(R)] = −Z`Be−κ(r−a)

(1 + κa) r
, κ =

√
8π`Bns, (D6)

which leads to the repulsive electrostatic component of the traditional DLVO interaction potential27,28

between two identical spherical particles of radius a whose centers are a distance r apart,

W (r) = Z2`B

(
eκa

1 + κa

)2 e−κr

r
. (D7)

The phase diagram and dynamical properties of a suspension of spherical particles interacting through
the effective DLVO pairwise potential (D7) were systematically investigated in Ref. [29] using molecular
and lattice dynamics techniques. We should note that the polyion-polyion interaction potential within the
traditional (symmetric) DH framework may be obtained from the exact (non-spherically symmetric) solution
of the Helmholtz equation ∇2ψ(r) = κ2ψ(r) for two spherical charged particles.30 The large-separation
(r →∞) asymptotics of this pairwise potential leads directly to the DLVO interaction potential (D7). One
should also keep in mind that the exact limiting laws (within the RPM) of the underlying DH theory25 —
associated with the Helmholtz equation — are only valid in the asymptotic limit of vanishing ionic strengths
(κ → 0). Most likely this exactness does not apply for the asymmetric case of strongly charged colloids.
Alternatively, the DLVO interaction potential (D7) may also be obtained by the large-separation asymptotics
of the microion-averaged polyion-polyion potential of mean-force, obtained using the MSA integral equation
for the polyion- and the microion-microion correlations in the PM.31

Inserting the linearized equilibrium density profiles (D3) into the linearized Helmholtz free-energy func-
tional FDH, Eq. (15), leads to the linearized Helmholtz free energy,

βFDH = βFDH[n±(r)]equil = (1 + s)Z
{

ln
[
(1 + s)ncζ

3
+

]
− 1
}

+ sZ
[
ln
(
sncζ

3
−
)
− 1
]

+
Z

2

[
Z`B
a

∆1(κR, κa)
∆2(κR, κa)

− 1
1 + 2s

]
. (D8)

The two first terms of (D8) correspond to the ideal-gas entropy of the uniform expansion densities c±, while
the last term represents the linearized excess Helmholtz free energy due to the polarization of the microionic
cloud around the polyion. In the infinite-dilution limit and in the presence of excess salt (R → ∞, nc → 0,
but finite ns),

lim
R→∞
s→∞

Z

2

[
Z`B
a

∆1(κR, κa)
∆2(κR, κa)

− 1
1 + 2s

]
=

Z2`B
2a (1 + κa)

, κ =
√

8π`Bns, (D9)

it coincides with the polyion-counterion interaction free energy (including the polyion self-energy) obtained
in an extended Debye-Hückel-Bjerrum approach for colloidal suspensions — cf. Eq. (2) of Ref. [32]. We
note that the asymptotic electrostatic excess free energy (D9) — obtained by linearization of the PB WS-
cell model functional — can be also obtained by computing the electrostatic work done in charging up the
polyion surface in the framework of the traditional DH theory33 — cf. Ref. [34], pp.339 — which is obtained
by a Güntelberg charging process, where the polyion surface is charged at fixed screening length κ−1. The
Güntelberg35 and the Debye25 charging processes differ by the fact that in the latter the whole system
(including the ionic atmosphere) is simultaneously charged.

The connection between the infinite-dilution (R→∞) limit of the linearized excess Helmholtz free energy
contained in Eq. (D8),

lim
R→∞
finite s

Z

2

[
Z`B
a

∆1(κR, κa)
∆2(κR, κa)

− 1
1 + 2s

]
=
Z

2

[
Z`B

a(1 + κa)
− 1

1 + 2s

]
, (D10)

and the state-independent volume terms obtained by Roij et al.36 was first reported by Warren, cf. Eqs. (7)
and (11) of Ref. [37], followed by Denton, cf. Eq. (55) of Ref. [38]. Subtracting out from Eq. (D10) the polyion
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self-energy, Z2`B/(2a), and multiplying it by the polyion density of the suspension, np =
(
4πR3/3

)−1, yields
the negative contributions of the state-independent volume terms obtained by Roij et al. — cf. Eq. (61) of
Ref. [36],

Znp

2

[
Z`B

a(1 + κa)
− 1

1 + 2s

]
− Z2`B

2a
np = −Z

2`B
2

npκ

1 + κa
− 2π`B

κ2
(Znp)2

. (D11)

It has been claimed36 that these volume-dependent (but state-independent) negative contributions to the
Helmholtz free energy are responsible for driving a gas-liquid phase separation in dilute deionized aqueous
colloidal suspensions.

In Subsection 3.2 it is shown that the linearized canonical osmotic pressure P can
DH , Eq. (20), predicts the

onset of a thermodynamical instability for some range of the parameters. Although it is not worthwhile to
locate the binodal lines, since here the associated phase separation is a spurious result of the linearization,
we would just like to mention how to determine them. For example, the salt-free binodal line that defines
the boundary of the coexistence region is given by the coupled system of equations,

P can
DH (φG, s = 0) = P can

DH (φL, s = 0), µp(φG, s = 0) = µp(φL, s = 0), (D12)

where µp(φ, s = 0) is the salt-free chemical potential of the polyions,

µp(φ, s = 0) ≡ d
dnp

(
FDH

Ṽ

)
s=0

= FDH(φ, s = 0) +
P can

DH (φ, s = 0)
np(φ)

, (D13)

and Ṽ ≡ 4πa3/(3φ) = 1/np is the total WS-cell volume. In the presence of added salt (s 6= 0), the convexity
of P can

DH is a necessary, but not sufficient condition for thermodynamical stability, as shown in Figure 1 by
the comparison between the lines of vanishing canonical inverse compressibility, χ−1

can = 0, and the canonical
spinodal lines, Σ(φ, s) = 0. Addition of salt destabilizes the suspension by increasing the unstable region to
lower values of θ = 3Z`B/a, as also illustrated by the s 6= 0 spinodal lines in Figure 1. The corresponding
binodal lines (not shown) are determined by generalizing Eqs. (D12) to the case of added salt (s 6= 0),

P can
DH (φG, s) = P can

DH (φL, s), µp(φG, s) = µp(φL, s), (D14)

where the chemical potential of the polyions in the presence of added salt, µp(φ, s 6= 0) = FDH(φ, s) −
Zsµs(φ, s) + P can

DH (φ, s)/np(φ), with the chemical potential of salt particles µs(φ, s) given by Eq. (G4).
With added salt, there is (in the coexistence region) a redistribution of microion pairs between the dilute
and the dense phases, which still obeys the WS-cell charge-neutrality constraint (16). Hence, inside the
coexistence region (φG < φ < φL) the two fluid phases will not have the same value of s (corresponding to
the homogeneous system). Their values in the gas (sG) and the liquid (sL) phases are obtained by imposing
the total conservation of salt particles,

sφ (φL − φG) = sLφL (φ− φG) + sGφG (φL − φ) , (D15)

and the equality in both fluid phases of the chemical potential of salt particles µs(φ, s) — as given by Eq. (G4),

µs(φG, sG) = µs(φL, sL). (D16)

An important and useful concept in charged colloidal systems is the charge renormalization39,40 of the
polyion bare charge Z for finite volume fractions φ. For highly charged polyions, i.e. in the σ ≡ Z/(4πa2)→
∞ limit, it has been shown by Alexander et al.12 that the renormalized effective charge Zeff in the salt-free
system approaches a saturation value Zsat ≈ aw(φ)/`B , with w(φ) assuming numerical values12,41 around 9 to
15 in the volume-fraction range 0.01 ≤ φ ≤ 0.1. A self-consistent linearized osmotic pressure including charge
renormalization effects would require the inclusion of additional terms due to the volume-fraction dependence
of the effective charge Zeff = Zeff(V ), since the osmotic pressure is defined as the negative total derivative
of the Helmholtz free energy with respect to the volume V . In other words, the linearized canonical osmotic
pressure P can

DH taking into account charge-renormalization effects is not simply given by replacing Z → Zeff

into Eq. (20). This point will be considered in a future work.42 It is interesting to note, however, that the
linearized critical threshold θcrit given by Eq. (24) is very close to the (largest) salt-free saturation (Z →∞)
effective charge θsat = 3Zsat`B/a ≈ 45 determined by Alexander et al.12 It has been speculated3 that this
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curious coincidence drives suspensions of highly charged colloids close to criticality. This might account for
some of the experimental findings in dilute deionized aqueous suspensions of highly charged colloids,43–45

which then would be explained by the presence of strong density fluctuations near the criticality.3 Another
consequence that effective charges are below the saturation value, and therefore also below the linearized
critical threshold, is that charge renormalization would stabilize the suspension against phase separation,
because the unstable region predicted by linearized theory is unreachable (or at least drastically reduced)
when including renormalized effective charges. This fact was pointed out previously46 using a generalized
Debye-Hückel-Bjerrum approach for charged colloidal suspensions. In the present calculation, however,
the critical behaviour is an artifact of the linearization, which is absent in the full nonlinear treatment.
Therefore, the occurrence of a thermodynamical instability can only be explained beyond the WS-cell mean-
field approximation, by including excluded-volume effects, intercell polyion-polyion, polyion-microion and
microion-microion correlations that are neglected in the WS-cell mean-field PB picture.

E Semi-grand-canonical ensemble osmotic pressure

In this Appendix we discuss the relations between the nonlinear and the linearized versions of the semi-
grand-canonical osmotic pressure.

For the nonlinear treatment, the PB semi-grand-canonical functional Ω ≡ F −
∑
i=± µi

∫
d3r ni(r),

associated to fixed microion chemical potentials βµ± = ln
(
nbζ

3
±
)
,

βΩ [n±(r)] =
1

8π`B

∫
d3r [∇ψ(r)]2 +

∑
i=±

∫
d3r ni(r)

{
ln
[
ni(r)
nb

]
− 1
}
, (E1)

is minimized with respect to n±(r) under the constraint of overall WS-cell charge neutrality, Eq. (16).
We introduce a Lagrange multiplier µel and define the extended semi-grand-canonical functional, Ω̃ =
Ω − µel

∫
d3r ρ(r). Functional minimization of Ω̃ with respect to n±(r) yields the Boltzmann factors,

n±(r) = nbe±βµel∓ψ(r). The Lagrange multiplier µel is obtained by imposing the overall WS-cell charge
neutrality, Eq. (16) — see also Ref. [47] for a detailed derivation of the nonlinear Lagrange multiplier. After
inserting it into the Boltzmann factors, we obtain the nonlinear equilibrium density profiles,

n±(r) =

√
n2

c + (2nb)2α+α− ± nc

2α±
e±〈ψ〉∓ψ(r) =

[
c
(1)
± +

1
4

(1− η2)
nc

η
〈δ2(r)〉

]
×

×
[
1± δ1(r) +

1
2
δ2(r)− 1

2
〈δ2(r)〉

]
+ O [δ3(r), 〈δ3(r)〉] , (E2)

with c
(1)
± , δν(r) and η, given, respectively, by Eqs. (26), (28) and (32) in Subsection 3.3, and α± ≡〈

e±〈ψ〉∓ψ(r)
〉

= 1 + 1
2 〈δ2(r)〉+O [〈δ3(r)〉]. At the nonlinear PB mean-field level the simple ideal-gas relation

between the osmotic pressure and the total microionic density n(r), Eq. (10), evaluated at the WS-cell
boundary r = R is still valid, leading to

βP = −
(

dβΩ
dV

)
µ±

= n(R) =
nc

η

{
1 + ηδ1(R) +

1
2
δ2(R)− η2

2
〈δ2(r)〉+ O [δ3(R), 〈δ3(r)〉]

}
. (E3)

Let us again compare the linearized semi-grand-canonical osmotic pressure (35) with a quadratic expansion
about the zero-th order Donnan densities c(1)

± , Eqs. (26), of its nonlinear counterpart, Eq. (E3). Now,
because of the redefinition of κ, the spatial averages 〈∆1(κR, κr)/r〉 and

〈
∆2

1(κR, κr)/r2
〉

needed to evaluate
〈ψ〉 and

〈
ψ2
〉

are multiplied by a factor η. Using again the explicit DH solution (B4), it is possible to
show that the linearized semi-grand-canonical osmotic pressure (35) corresponds to the truncation of the
expansion (E3) up to the quadratic terms, i.e. βP = βP sgc

DH + O [δ3(R), 〈δ3(r)〉], with βP sgc
DH = nDH(R) +

[nc/(2η)]
[
δ2(R)− η2 〈δ2(r)〉

]
, where the first term represents the sum of the linearized semi-grand-canonical

densities at the WS-cell boundary. We see again that the linearized semi-grand-canonical osmotic pressure
does not correspond to the linearized boundary density nDH(R), because of the presence of the quadratic
terms.
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F Linearized averaged densities for the semi-grand-canonical en-
semble

In this Appendix it will be shown that the self-consistent linearized averaged densities for the semi-grand-
canonical ensemble are given by the state-independent zero-th order Donnan densities, which are obtained
by a self-consistent minimization of the linearized semi-grand-canonical functional under the WS-cell charge-
neutrality constraint.

To obtain the self-consistent averaged densities up to quadratic order we need to expand the nonlinear
semi-grand-canonical functional, Eq. (E1), up to cubic order about the (a priori unknown) effective average
densities 〈n±(r)〉 ≡ (1/V )

∫
d3r n±(r),

βΩ [n±(r)] =
1

8π`B

∫
d3r [∇ψ(r)]2 + V

∑
i=±
〈ni〉

[
ln
〈ni〉
nb
− 1
]

+
∑
i=±

[
〈ni〉 ln

〈ni〉
nb

] ∫
d3r δi(r)

+
1
2

∑
i=±
〈ni〉

∫
d3r δ2

i (r)− 1
6

∑
i=±
〈ni〉

∫
d3r δ3

i (r) + O

[∫
d3r δ4

i (r)
]
, (F1)

where we introduced the relative deviations about the averaged densities,

δ±(r) ≡ n±(r)
〈n±〉

− 1. (F2)

Keeping only quadratic terms in Eq. (F1) is similar in spirit to the quadratic expansion presented in Eq. (13)
of Ref. [24]. However, we want to stress that, in general, the unknown average expansion densities 〈n±〉
depend itself on the ionic profiles. Functional minimization of Eq. (F1) with respect to the profiles n±(r)
must take this fact into account, in addition to the WS-cell charge-neutrality constraint, Eq. (16). Eventually,
for a linearized theory, the self-consistent expansion densities c(1)

± turn out to be indeed independent on the
ionic profiles, cf. Eqs. (26), but this can only be derived a posteriori.

We introduce a Lagrange multiplier µel to ensure the overall WS-cell charge neutrality (16), and define
the extended semi-grand-canonical functional, Ω̃ = Ω − µel

∫
d3r ρ(r). Functional minimization of Ω̃ with

respect to n±(r) leads to the Euler-Lagrange or stationary conditions, δΩ̃/δn±(r) = 0, which may be cast
in the form

n±(r) = 〈n±〉
{

1± [βµel − ψ(r)]− ln
〈n±〉
nb

+
1
2
δ2
±(r) + O

[
δ3
±(r),

〈
δ3
±(r)

〉]}
, (F3)

where we have neglected the cubic averaged contribution, O
[〈
δ3
±(r)

〉]
, because the neglected quartic term

of (F1) will also contributed to it. To obtain the averages 〈n±〉 self-consistently, we integrate n±(r) over the
volume to obtain the consistency relations,

〈n±(r)〉 = nb exp
{
± [βµel − 〈ψ(r)〉] +

1
2
〈
δ2
±(r)

〉
+ O

[〈
δ3
±(r)

〉]}
, (F4)

where the Lagrange multiplier µel is found by imposing the overall WS-cell charge neutrality (16). We
should stress that in addition to the chemical potentials of microions µ± = β−1 ln

(
nbζ

3
±
)

that define the
semi-grand-canonical ensemble, we introduced a Lagrange multiplier µel, whose role is twofold: besides the
overall WS-cell charge neutrality (16), it also ensures the gauge invariance of the electrostatic potential ψ(r).
We should not confuse the chemical potentials of microions µ±, which are fixed by the bulk salt concentration
nb of the reservoir, with the linearized Lagrange multiplier µel, which is associated with the Donnan effect
and ensures the charge neutrality of the WS cell, Eq. (16).

Before we derive the averages consistent with a linearization of the PB equation, let us also obtain the
self-consistent averages corresponding to a quadratic approximation of the nonlinear equation. Noting that
δ±(r) = ±δ1(r) + O [δ2(r), 〈δ2(r)〉] and neglecting cubic terms in Eqs. (F3) and (F4) leads to the quadratic
self-consistent averages, Eqs. (29),

c
(2)
± ≡ 〈n±(r)〉 =

√
n2

c + (2nb)2e〈δ2(r)〉 ± nc

2
, (F5)
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and the quadratic equilibrium density profiles,

n±(r) = c
(2)
±

[
1± δ1(r) +

1
2
δ2(r)− 1

2
〈δ2(r)〉

]
, (F6)

where the electrostatic potential ν-th order difference δν(r) is defined by (28), and the superscript in c
(2)
±

emphasizes the fact that the average densities c± were obtained under a quadratic approximation. These
correspond indeed to the quadratic expansions of the nonlinear PB average densities and equilibrium density
profiles, respectively, and are correct up to δ2(r) (quadratic) terms. Here we may see another advantage
of the gauge-invariant formulation: it provides us a systematic way to consider self-consistent higher-order
approximations of the nonlinear equations, while the fixed-gauge analysis of Deserno and von Grünberg24

does not allow them to extend their calculations to include higher-order terms.
However, in order to be consistent with a linearization of the PB equation one needs to neglect also the

quadratic terms in the approximate Euler-Lagrange conditions (F3), although ensemble invariance associated
with a global self-consistency of the Legendre transformation will require to include them — cf. Appendix G.
It is clear that ignoring these terms will yield the state-independent zero-th order Donnan densities, Eqs. (26),
as the self-consistent linearized averaged densities,

c
(1)
± ≡ 〈n±(r)〉 =

√
n2

c + (2nb)2 ± nc

2
, (F7)

and the linearized equilibrium density profiles,

n±(r) = c
(1)
± [1± δ1(r)] , (F8)

where the superscript in c
(1)
± emphasizes the fact that the average densities c± were obtained under a

linearized approximation. Deserno and von Grünberg24 justify this choice for the expansion densities —
written in terms of an optimal linearization point ψ̄opt defined by c

(1)
± = nbe∓ψ̄opt — by arguing that any

other choice for the linearization point would lead to conflicting inequalities involving nonlinear and linearized
averages. In a gauge-invariant formulation, however, the justification is indeed based on the self-consistent
minimization of the linearized semi-grand-canonical functional ΩDH[n±(r)], which is obtained by truncating
the expansion of the nonlinear functional Ω [n±(r)], given by Eq. (F1), only up to the quadratic terms
and neglecting (consistently under linearization) the quadratic contribution in the approximated averaged
Euler-Lagrange equations, Eq. (F4). Although internal self-consistency (within the semi-grand-canonical
ensemble) is achieved by using the linearized self-consistent averaged densities (26), we show in Appendix G
that global self-consistency under linearization — associated with ensemble-invariant linearized equations
— will also require the inclusion of the quadratic state-dependent terms of the self-consistent averaged
densities (29).

We should remark that compared to the salt-free and canonical cases, cf. Eqs. (B2) and (D4), here the
linearized equilibrium Lagrange multiplier βµel has an additional contribution due to the microion chemical
potentials of the infinite salt reservoir,

βµel = ± ln
[
c
(1)
± ζ3
±

]
+ 〈ψ(r)〉 ∓ βµ±. (F9)

Inserting the linearized equilibrium profiles (F8) into the Poisson equation (A2), leads to the DH-like Eq. (31).
Solving it for ψ(r) leads again to the electrostatic potential (B4), with the average electrostatic potential
inside the WS cell for an arbitrary boundary potential ψ(R) given by

〈ψ(r)〉 = ψ(R) +
2Zκ`B

∆2(κR, κa)
− η. (F10)

Inserting the linearized equilibrium density profiles (F8) into the linearized semi-grand-canonical functional
ΩDH, Eq. (25), leads to the linearized semi-grand-canonical potential,

βΩDH = βΩDH[n±(r)]equil =
∑
i=±

V c
(1)
i

{
ln

[
c
(1)
i

nb

]
− 1

}
+
Z

2

[
Z`B
a

∆1(κR, κa)
∆2(κR, κa)

− η
]

= Z

[
arctanh η − 1

η
− η

2
+
Z`B
2a

∆1(κR, κa)
∆2(κR, κa)

]
. (F11)
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G Legendre transformation at the linearized level

In this Appendix we discuss the differences between the Legendre transformation connecting the canonical
and the semi-grand-canonical ensembles at the level of the linearized functionals (before the functional
minimization) and of the linearized thermodynamic potentials (after the functional minimization). It is
shown that, in order to preserve the ensemble invariance of the linearized equations, quadratic contributions
to the linearized expansion densities should be included in the former case, which are automatically included
in the latter case.

At the nonlinear PB level the osmotic pressures obtained in the two distinct (canonical and semi-grand-
canonical) ensembles are completely equivalent,48 provided we map them using the nonlinear relation

(nc + ns)ns = 〈n+(r)〉 〈n−(r)〉 = n2
b

〈
eψ(r)

〉〈
e−ψ(r)

〉
, (G1)

where ns ≡ 〈n−(r)〉 is the effective average salt concentration in the colloidal suspension. The exact (at the
mean-field level) relation (G1) follows directly from the gauge-invariant forms of the nonlinear average densi-
ties (27). Therefore, up to quadratic order, the linearized osmotic pressures are related by the transformation
of the effective total average density of microions in the two ensembles,

n ≡ nc + 2ns = (1 + 2s)nc → 〈n+(r)〉+ 〈n−(r)〉 =
nc

η

{
1 +

1
2
(
1− η2

)
〈δ2(r)〉+ O [〈δ3(r)〉]

}
. (G2)

Because of the quadratic contribution in Eq. (G2), the linearized osmotic pressures obtained in the two
ensembles do not have the same form when they are mapped using the zero-th order renormalization (1 +
2s) → η−1. In other words, although for the nonlinear equations the Legendre transformation between
the canonical and the semi-grand-canonical ensembles is exact, the same does not hold for the linearized
equations: one needs to use the approximated mapping (G2) and expand consistently the linearized osmotic
pressure up to quadratic-order terms. This introduces an additional source of deviations for the linearized
semi-grand-canonical equations of state. In particular, the thermodynamically-conjugated density — in
the semi-grand-canonical ensemble, where ΩDH = ΩDH(µs, np) — to the (total) chemical potential of salt
particles, µs = µ+ + µ−, that should correspond to the (effective) total average density of microions inside
the colloidal suspension, n ≡ −2 (∂/∂µs) (ΩDH/V ), is indeed given by the right-hand side of Eq. (G2)
neglecting cubic and higher-order contributions. This conjugated density, however, is inconsistent — up to
the quadratic order, but consistent under linearization — with the state-independent zero-th order Donnan
densities (26), i.e. n = 〈n+(r)〉 + 〈n−(r)〉 6= c

(1)
+ + c

(1)
− = nc/η, because of the presence of the quadratic

contribution in Eq. (G2).
An alternative procedure to the Legendre transformation of the linearized Helmholtz free-energy func-

tional FDH[n±(r)] — which is done, as presented in Appendix F, before the functional minimization with
respect to the profiles — is to perform it after the functional minimization, at the Helmholtz free-energy
level, FDH = FDH[n±(r)]equil. Because in the canonical ensemble the total number of positive and negative
microions Q± inside a WS cell are known a priori, the Legendre transformation that maps the linearized
Helmholtz free energy FDH into the linearized semi-grand-canonical potential,49 Ω̂DH = FDH−µ+Q+−µ−Q−,
can then be obtained without any further approximations for the expansion densities. For this purpose it
is convenient to recall the definition of the total volume of the WS cell Ṽ and of the nominal densities of
counterions, polyions and salt particles,

Ṽ ≡ V

1− φ
, ñc ≡ nc (1− φ) , np ≡

1
Ṽ

= φ

(
4π
3
a3

)−1

, ñs ≡ ns (1− φ) . (G3)

It is important to stress that the nominal densities should be used, instead of the effective ones. Introducing
the linearized Helmholtz free-energy density, fDH ≡ FDH/Ṽ = fDH (ñs, np), where FDH in the presence of
added salt is given by Eq. (D8), one may check that the Legendre transformation at the linearized free-
energy level is indeed exact, since the explicit computation of the linearized chemical potentials of polyions
µp ≡ ∂fDH/∂np, and of salt particles,

βµs ≡
∂βfDH

∂ñs
= ln

[
(1 + s)ncζ

3
+

]
+ ln

(
sncζ

3
−
)
− 〈δ2(r)〉 , (G4)
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shows that they satisfy the Euler relation

P can
DH = ñsµs + npµp − fDH, (G5)

where the linearized canonical osmotic pressure entering into Eq. (G5), P can
DH , is given by Eq. (20) and the

quadratic electrostatic-potential deviation in the canonical ensemble reads

〈δ2(r)〉 = − 1
(1 + 2s)2 −

1
1 + 2s

Zκ`B
2∆2

2(κR, κa)
×

×
[

∆1(κR, κa)
κa

[∆1(κR, κa)−∆2(κR, κa)]− 4κa
(
1− κ2R2

)
− 4κ3R3

]
. (G6)

It should also be remarked that Eq. (G4) corresponds to the truncation of the expansion of the exact
nonlinear mapping (G1) up to quadratic-order terms,

βµs = ln

[
(nc + ns)nsζ

3
+ζ

3
−〈

eψ(r)
〉 〈

e−ψ(r)
〉 ] = ln

[
(1 + s)ncζ

3
+

]
+ ln

(
sncζ

3
−
)
− 〈δ2(r)〉+ O [〈δ3(r)〉] . (G7)

The thermodynamical relation (G5) can also be viewed as defining the Legendre transformation. Instead
of obtaining the osmotic-pressure isotherms for a constant number of salt particles inside the WS cell (canon-
ical case, fixed s), we may consider them at fixed chemical potential of salt particles µs (semi-grand-canonical
case), which corresponds to a system in electrochemical equilibrium with an infinite salt reservoir of bulk
density nb, defined by

βµs ≡ βµ+ + βµ− = ln
(
n2

bζ
3
+ζ

3
−
)
. (G8)

Solution of the nonlinear equation defined by (G4) and (G8) yields the Legendre transformation in an implicit
parametric form,

s(φ, nb) =

√
1 + [2nb/nc(φ)]2 e〈δ2(r)〉 − 1

2
, nc(φ) =

3Z
4πa3

(
φ

1− φ

)
, (G9)

with 〈δ2(r)〉 given by Eq. (G6). The linearized semi-grand-canonical osmotic pressure, P̂ sgc
DH = P̂ sgc

DH(φ, nb),
is then obtained by inserting the Legendre transformation s = s(φ, nb) into the linearized canonical osmotic
pressure P can

DH = P can
DH (φ, s), Eq. (20). In other words, if the linearized osmotic pressures would be ensemble

invariant, they would be related by P̂ sgc
DH(φ, nb) ≡ P can

DH [φ, s(φ, nb)]. We should remark that the linearized
semi-grand-canonical osmotic pressure obtained by this procedure, P̂ sgc

DH(φ, nb), which should in principle
agree with P sgc

DH(φ, nb), given by Eq. (35), in fact do not coincide, revealing that their thermodynamic
self-consistency is only satisfied internally to the specific ensemble.

The disagreement between the two distinct linearized semi-grand-canonical osmotic pressures, P̂ sgc
DH(φ, nb) 6=

P sgc
DH(φ, nb) — obtained by Legendre transformations performed pre- and pos-minimization of the linearized

functional FDH[n±(r)] with respect to the profiles — may be traced back to the neglected quadratic contri-
bution in the self-consistent linearized averaged densities (26). Although the neglect of this state-dependent
contribution in the average densities (29) is justified to ensure mathematical consistency of the truncation
under the linearized approximation, in order to obtain global thermodynamic self-consistency (i.e., in or-
der to preserve the ensemble invariance) one needs to keep all terms of the quadratic truncation of the
Euler-Lagrange equations, regardless of its apparent mathematical inconsistency. This leads to the average
densities (29), which include the quadratic state-dependent contribution 〈δ2(r)〉 — in contrast to Eqs. (26),
which neglect it. Compared to the linearized semi-grand-canonical potential ΩDH, Eq. (F11), which uses the
state-independent zero-th order Donnan densities (26) as expansion densities, an augmented version Ω̂DH

using the quadratic average densities (29) will have an additional state-dependent quadratic contribution,

βΩ̂DH (µs, np) = Z

[
arctanh η̂ − 1

η̂
− η̂

2
+
Z`B
2a

∆1(κ̂R, κ̂a)
∆2(κ̂R, κ̂a)

+
1
2η̂
〈δ2(r)〉

]
, (G10)

where the parameter η̂ and the (effective) Debye screening length κ̂−1 in the suspension,

η̂ ≡ nc√
n2

c + (2nb)2e〈δ2(r)〉
, κ̂2 =

κ2
c

η̂
=
κ2

be〈δ2(r)〉/2√
1− η̂2

, (G11)
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are now given implicitly in terms of the quadratic electrostatic-potential deviation in the semi-grand-canonical
ensemble, which is obtained by replacing (1 + 2s) → η̂−1 and κ → κ̂ in the expression of its canonical
counterpart, Eq. (G6). These yield the ensemble invariant, globally self-consistent linearized semi-grand-
canonical equations of state,

n̂ ≡ − 2∂
∂µs

(
Ω̂DH

V

)
=
nc

η̂
=
√
n2

c + (2nb)2e〈δ2(r)〉 = c
(2)
+ + c

(2)
− , (G12)

βP̂ sgc
DH ≡ −

(
dβΩ̂DH

dV

)
µs

=
nc

η̂

{
1 +

Zκ̂`B η̂

4∆2
2(κ̂R, κ̂a)

[
∆1(κ̂R, κ̂a)

κ̂a
×

× [∆1(κ̂R, κ̂a)−∆2(κ̂R, κ̂a)]− 4κ̂a
(

1 +
2
3
κ̂2a2 − κ̂2R2

)
− 4

3
κ̂3R3

]}
, (G13)

where the derivatives must take the 〈δ2(r)〉 parametric implicit dependence of Eqs. (G11) into account,

∂

∂µs
= −η̂

(
1− η̂2

)(
1 +

1
2
∂ 〈δ2〉
∂µs

)
∂

∂η̂
+
κ̂

2
(
1− η̂2

)(
1 +

1
2
∂ 〈δ2〉
∂µs

)
∂

∂κ̂
, (G14)

d
dV

=
∂

∂V
− η̂

V

(
1− η̂2

)(
1 +

V

2
d 〈δ2〉
dV

)
∂

∂η̂
− κ̂η̂2

2V

[
1− V

2

(
1− η̂2

η̂2

)
d 〈δ2〉
dV

]
∂

∂κ̂
. (G15)

The (effective) total average density of microions n̂, Eq. (G12), and the linearized semi-grand-canonical os-
motic pressure P̂ sgc

DH, Eq. (G13), are now fully consistent with their canonical counterparts, given respectively
by n = (1 + 2s)nc and Eq. (20). They are related by the linearized Legendre transformation (1 + 2s) = η̂−1,
where η̂ — given implicitly by Eq. (G11) — also includes quadratic contributions. A further Legendre
transformation of the linearized semi-grand-canonical potential Ω̂DH regains, as it should, the linearized
ensemble-invariant semi-grand-canonical osmotic pressure, P̂ sgc

DH = npµ̂p − Ω̂DH/Ṽ , where the chemical po-

tential of polyions µ̂p ≡ (∂/∂np)
(

Ω̂DH/Ṽ
)

.

The ensemble-invariant linearized osmotic pressure P̂ sgc
DH, Eq. (G13), leads to results qualitatively similar

to those of Eq. (35). In particular, the nonmonotonic behaviour of the spinodal lines for weak screening
(κba � 1) and the intrinsic instability of the low-φ phase are still predicted by P̂ sgc

DH, as shown in Fig-
ure 3, where we compare the spinodal lines associated with the two distinct semi-grand-canonical linearized
osmotic-pressure definitions, given by Eqs. (35) and (G13). We should mention, however, that explicit an-
alytical comparison in the exactly solvable planar case15 does not show any improvement of the agreement
between the nonlinear and linearized equations with the inclusion of the quadratic contribution to the aver-
age densities. Any numerical indications in this direction, which were indeed observed in the planar case,15

are purely fortuitous. In fact, asymptotic expansions in the weak-coupling (`B → 0) and in the counterionic
ideal-gas limit of both linearized osmotic pressures in the planar case, P sgc

DH and P̂ sgc
DH, agree with the full

nonlinear PB version up to the same order of the expansion. However, these results can only be obtained
a posteriori. It is not possible to predict a priori that the inclusion of the quadratic contributions will not
improve the agreement between the linearized and the nonlinear equations. On the contrary, due to its
extended ensemble invariance, one could expect an improvement in the agreement.

H Spinodal lines in the presence of added salt

In this Appendix we discuss the stability criteria for the canonical and the semi-grand-canonical descriptions
of the system. We show that both cases are defined by the same stability condition if they are mapped
by the linearized Legendre transformation introduced at the end of Appendix G, that includes quadratic
contributions and preserves the ensemble invariance of the linearized equations.

In the canonical ensemble at the linearized level, the spinodal-line condition for the two-component
system50 with nominal salt density ñs and polyion density np — which represents the limit of stability of
the stationary point (ñs, np) of the Helmholtz free-energy density fDH (ñs, np) — is defined by the vanishing
of the smallest eigenvalue of associated Hessian matrix, which implies the vanishing of its determinant,(

∂2fDH

∂ñ2
s

)(
∂2fDH

∂n2
p

)
=
(
∂2fDH

∂ñs ∂np

)2

, or
∂µs

∂ñs

∂µp

∂np
=
(
∂µp

∂ñs

)2

=
(
∂µs

∂np

)2

. (H1)
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Using the explicit expressions of the linearized chemical potentials of salt particles µs, Eq. (G4), and of
polyions, µp ≡ ∂fDH/∂np, the canonical spinodal-line condition (H1) may be cast in terms of the vanishing
of the function

Σ(φ, s) ≡
(

1 + 2s
1 + s

− s ∂ 〈δ2〉
∂s

)
4πa2`Bβχ

−1
can − θsφ

(
2

1− φ
− φ ∂ 〈δ2〉

∂φ

)2

= 0, (H2)

where 〈δ2〉, given by Eq. (G6), is expressed in terms of (φ, s) and recalling that the linearized canonical
inverse isothermal compressibility reads

χ−1
can ≡ φ

(
dP can

DH

dφ

)
s

= φ2

(
d2fDH

dφ2

)
s

. (H3)

We should remark that in the canonical ensemble the spinodal-line condition Σ(φ, s) = 0, Eq. (H2), reduces to
the vanishing of the inverse isothermal compressibility, χ−1

can = 0, only in the salt-free limit (s→ 0), when the
macroion suspension (and its neutralizing counterions) is effectively described as a one-component system.
In the presence of added salt (s 6= 0), however, in general one needs to solve the nonlinear equation (H2).

On the other hand, the ensemble-invariant linearized semi-grand-canonical spinodal line is simply related
to the vanishing of the ensemble-invariant linearized semi-grand-canonical inverse isothermal compressibility,

χ̂−1
sgc ≡ φ

(
dP̂ sgc

DH

dφ

)
nb

= φ2 d2

dφ2

(
Ω̂DH

Ṽ

)
nb

= 0, (H4)

with an analogous definition for the internally self-consistent — but not ensemble-invariant — inverse com-
pressibility χ−1

sgc, which is related to P sgc
DH and ΩDH. Although the two spinodal-line conditions, Eqs. (H2)

and (H4), seem to be very different, in fact they describe the same locii on the (φ, θ) plane, if they are
connected by the linearized Legendre transformation including quadratic contributions introduced at the
end of Appendix G, (1 + 2s)→ η̂−1 and κ→ κ̂. In other words, coincidence of the stability analyses in the
canonical and the semi-grand-canonical ensembles — i.e., ensemble invariance — is only achieved if one uses
the linearized Legendre transformation that also includes quadratic contributions.

I Comparison with Deserno and von Grünberg results

In this Appendix we show that the linearized semi-grand-canonical osmotic pressure is intrinsically unstable
in the infinite-dilution limit. We show that this instability is not related to an improper definition of the
linearized osmotic pressure, but rather reflects the breakdown of the linearization scheme when applied
outside its range of validity.

As already pointed out previously in the literature,24,51 the linearized semi-grand-canonical osmotic pres-
sure P sgc

DH defined by Eq. (35) yields artifacts in the low-temperature, high-surface charge or infinite-dilution
(of polyions) limits. In contradiction to the exact nonlinear result (E3), which yields an osmotic-pressure
difference that is always positive,52 β∆P = βP −2nb > 0, the linearized version β∆PDH becomes negative in
the above mentioned limits. In an attempt to define the osmotic pressure in a linearized framework, Deserno
and von Grünberg24 introduced an alternative definition, P1, that has the advantage of being exempt from
any instabilities (in the particular case of symmetric electrolytes) and it is obtained via the partial derivative
of the linearized semi-grand-canonical potential ΩDH with respect to the WS-cell free volume V , keeping the
optimal linearization point ψ̄opt (to be defined below) fixed. Their second osmotic-pressure definition coin-
cides with the linearized version (35) obtained in Subsection 3.3, P2 ≡ P sgc

DH, and it is obtained via the total
derivative of ΩDH with respect to V . These two distinct osmotic-pressure definitions are given, respectively,
by Eqs. (43) and (44) of Ref. [24] for d = 3,

βP1

2nb
= 1 +

(
cosh ψ̄opt − 1

)2
2 cosh ψ̄opt

+
sinh2 ψ̄opt

2 cosh ψ̄opt

(
1− φ
3D
√
φ

)2

≥ 1, (I1)

βP2

2nb
=
βP1

2nb
− sinh4 ψ̄opt

2 cosh3 ψ̄opt

{
1− φ

6φ

[
1
D2
− κa E

D
+ κ2a2

(
1− E

2

D2

)]
− 1
}
, (I2)

D = I3/2(κR)K3/2(κa)−K3/2(κR) I3/2(κa), (I3)
E = I3/2(κR)K1/2(κa) +K3/2(κR) I1/2(κa), (I4)
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where {Iν ,Kν} are the modified Bessel functions53 of the first and the second kind, respectively, and the
optimal linearization point ψ̄opt satisfies the relations

tanh ψ̄opt = −η, cosh ψ̄opt =
(
κ

κb

)2

=
1√

1− η2
, sinh ψ̄opt = − nc

2nb
= − η√

1− η2
. (I5)

In accordance with Eqs. (23) and (26) of Ref. [24], they can be recast in a simpler formal form in terms of
the gauge-invariant electrostatic potential differences δν(r), defined by Eq. (28),

βP1 =
nc

η

[
1− η2

2
+

2Z2κ2`2B
∆2

2(κR, κa)

]
=
nc

η

[
1 + ηδ1(R) +

1
2
δ2(R)

]
, (I6)

βP2 =
nc

η

[
1 + ηδ1(R) +

1
2
δ2(R)− η2

2
〈δ2(r)〉

]
, (I7)

from which one can see that they differ by a term that is quadratic in the electrostatic-potential difference.
Looking at Eq. (C10) of Appendix C, one may trace back that the omitted contribution in P1 originates from
the volume dependence of the optimal linearization point ψ̄opt, in accordance to the interpretation given by
Deserno and von Grünberg24 for the two distinct pressure definitions. We should recall that the linearized
semi-grand-canonical osmotic-pressure (35) coincides with the second pressure definition, P sgc

DH ≡ P2, as
shown in Appendix E by a quadratic expansion of the nonlinear osmotic pressure. It corresponds indeed
to the negative total derivative of the linearized semi-grand-canonical potential ΩDH with respect to the
WS-cell free volume V , which we thus believe to be the thermodynamically consistent and correct definition
of the osmotic pressure.

It is convenient to introduce the dimensionless linearized osmotic-pressure differences,

Πi ≡
β∆Pi
2nb

=
βPi
2nb
− 1, i = 1, 2. (I8)

In the vanishing volume fraction of polyions (infinite-dilution) limit, φ = (a/R)3 → 0, we may write the
asymptotic linearized osmotic-pressure differences in terms of θ ≡ 3Z`B/a and â ≡ κba,

Π1 =
θ4φ4

8â8
+ O

[
φ5, θ2φ2/3 exp

(
−2âφ−1/3

)]
, (I9)

Π2 = − θ4φ3

12â5(1 + â)2
− 5θ4φ4

8â8

[
2â3

5 (1 + â)2 − 1

]
+ O

[
φ5, θ2φ2/3 exp

(
−2âφ−1/3

)]
, (I10)

which lead to the asymptotic linearized inverse isothermal compressibilities in the semi-grand-canonical
ensemble,

βχ−1
1 ≡ 2nbnp

(
dΠ1

dnp

)
nb

=
Znpθ

3φ3

2â6
+ O

[
φ4, θφ−2/3 exp

(
−2âφ−1/3

)]
, (I11)

βχ−1
2 ≡ 2nbnp

(
dΠ2

dnp

)
nb

= −Znpθ
3

{
φ2

4â3(1 + â)2
+

5φ3

2â6

[
2â3

5 (1 + â)2 − 1

]}
+O

[
φ4, θφ−2/3 exp

(
−2âφ−1/3

)]
. (I12)

While neglecting the contribution of the last quadratic term in the linearized osmotic pressure P1 always leads
to positive isothermal compressibilities, limφ→0 χ1 > 0, its inclusion in P2 always yields negative isothermal
compressibilities in the infinite-dilution limit for nonvanishing `B , limφ→0 χ2 < 0. This means that the
pressure definition P2 predicts that the infinite-dilution phase is unstable, in contrast to the canonical case,
as shown in Figure 3. Therefore the thermodynamically consistent linearized osmotic pressure P2 intrinsically
fails at infinite dilution, leading to negative isothermal compressibilities in this limit. This fact was first
noticed for the spherical case in Ref. [51] and generalized to WS cells in d-dimensions in Ref. [24]. For
finite densities, in contrast to the canonical case (Figure 1), the low-φ dilute (gas) phase may only be stable
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for sufficiently small bulk salt concentrations, as shown in Figure 3. For sufficiently large κba the finite-
temperature critical point — located in the vicinity of the salt-free critical point (the black circle in Figure 3)
— disappears. Note the nonmonotonic behaviour of the spinodal lines associated to P2 for κba = 10−1 and
κba = 102 (inset), which leads to oscillating osmotic pressures — i.e., Π2 changes sign more than one time.
We should note, however, that the WS-cell model ceases to be meaningful for such high volume fractions in
the latter case of strong screening. Finally we should remark that beyond the linearized PB WS-cell model
approximation the thermodynamical instability at the infinite-dilution limit will be removed by taking into
account the translational entropy of the polyions, which yields an osmotic-pressure contribution that is linear
in φ and, therefore, overcomes the negative cubic leading term in the asymptotic linearized osmotic-pressure
difference (I10). However, because our analysis restricts to the linearization of the PB WS-cell model, the
effect of this stabilizing entropic contribution — which may drastically alter the spinodal lines, specially
in the low-volume fraction region — is not considered here. Note that the PB WS-cell model, in its full
nonlinear version, is fully stable54 even without invoking this stabilizing contribution.

Let us stress again that thermodynamic consistency and stability are independent concepts. This can be
illustrated by inspecting the two linearized osmotic-pressure definitions proposed in Ref. [24]. The linearized
osmotic pressure Π2, although not fully stable, is self-consistent with quadratic expansions of the nonlin-
ear osmotic pressure. The unstable region of Π2 just reflects the breakdown of the linearization scheme
to the nonlinear PB equation. On the other hand, Π1, that displays positive isothermal compressibilities
in the infinite-dilution limit and does not present any instabilities for symmetric electrolytes, is not ther-
modynamically consistent, its stability being purely fortuitous. This can be further fortified by comparing
the exact analytical expressions of the nonlinear osmotic pressure for the planar geometry15 with the two
corresponding linearized versions. In this related paper15 we show that both linearized expressions, Π1 and
Π2, approach asymptotically the exact nonlinear result in the appropriate (weak-coupling, `B → 0) limit.
Their convergence, however, are very different and it is the self-consistent definition Π2 that gives a better
approximation to the full nonlinear equation. Although analytical proofs can only be obtained for the planar
case, we believe the same argument applies for any geometry.
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