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Abstract – The loop extrusion theory predicts that the loops of chromosomes are produced by
cohesin molecules that uni-directionally extrude a chromatin fiber. We here use an extension
of the Rouse model to predict the chain conformational dynamics driven by the loop extrusion
process. Our theory predicts that in a bulk solution, the mean square distance between the
starting and ending sites of the loop extrusion process decreases with a constant rate. This is
because the tension generated by the loop extrusion process drives the displacement of the starting
site towards the ending site. In contrast, when the cohesin is entrapped at an interface, the mean
square distance does not decrease until the tension generated by the loop extrusion process arrives
at the ending site. This theory highlights the fact that the chain dynamics strongly depends on
the mobility of the chain segments bound by cohesin.

Copyright c⃝ EPLA, 2019

Introduction. – In the interphase, chromosomes are
composed of so-called topologically associated domains
(TADs), contiguous regions of enriched contact frequency
that are isolated from neighboring regions [1,2]. In many
cases, there are peaks of contact frequency at the bound-
aries of TADs, implying that TADs are loops of chromatin
fiber [3]. Recent theory predicts that the chromatin loops
are produced by the loop extrusion process, with which
cohesin, a ring-shaped protein complex, uni-directionally
extrudes the chromatin fiber until it collides with a pro-
tein factor, called CTCF (CCCTC-binding factor) [4,5].
CTCF proteins at the boundary of TADs are oriented to-
wards the interior of the domains [3]. Indeed, most loops
are lost when the loading of cohesin to chromosomes is
suppressed [6]. The loop extrusion theory captures the
features of TADs for a window of parameters [4,5].

Typically, to start transcription (that is the process to
synthesize messenger RNA), the binding of two distant
DNA sequences, such as promoters and enhancers, is nec-
essary. The binding rate of these sequences is governed
by the chain conformational dynamics of the chromatin

fiber between the sequences [7,8]. How does the loop ex-
trusion process modulate the chain dynamics? Simulation
models of chromatin fibers, on which cohesin drives a loop
extrusion process, were constructed to predict the con-
tact frequency map [4,5]. An analytical theory by using a
simple model may be useful to understand the feature of
the chain dynamics that is driven by the loop extrusion
process.

Many of the simulations treat chromatin fibers in a uni-
form solution [4,5]. However, recent experiments have
shown that droplets of the condensate of transcriptional
activators and coactivators are stabilized by phase separa-
tion and superenhancers, DNA regions condensed with en-
hancer sequences, are associated with the droplets [9,10].
Other regions tend to be excluded from the droplets [11].
These experiments imply that chromatin stabilizes a struc-
ture analogous to microemulsions and cohesin may ex-
trude chromatin at the surface of the droplets. Recent
simulations of the loop extrusion process on chromosomes
that show microphase separation did not emphasize the
difference of the dynamics between chains in the bulk and
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Fig. 1: Chains in a bulk solution (a) and at an interface (b).
Cohesin (the green hoop) is loaded on the chain and drives
the loop extrusion process. In the bulk solution, all the chain
segments are freely mobile, whereas at the interface, the chain
segment occupied by the cohesin is trapped at the interface
because this cohesin binds the two segments that favor different
environments. We set the z-direction to be the normal to the
interface.

those at an interface [12]. It is thus of interest to theoreti-
cally predict the chain dynamics of chromatin in the bulk
and at an interface.

We here use an extension of the Rouse model to predict
the mean square of the distance between the starting and
ending sites of the loop extrusion process, when a cohesin
is loaded on the starting site at t = 0. Our theory pre-
dicts that in the bulk solution, the mean square distance
decreases with constant rate as soon as the cohesin starts
the loop extrusion process. This reflects the fact that the
loop extrusion process stretches the chain and generates
the elastic force that displaces the starting site towards the
ending site. In contrast, at an interface, the mean square
distance does not change until the tension generated by
the loop extrusion process arrives at the chain end. This
happens because the starting site, which is embraced by
cohesin, cannot escape from the interface and the mean
square distance thus does not change until the ending site
moves towards the starting site.

Model. – We treat the dynamics of a very long chain in
a bulk solution and at an interface, see fig. 1. We use the
bead-spring model [13] that treats the chain as beads that
are linearly connected by springs, see fig. 2. The chain
has a region, composed of N beads, that is delineated by
two CTCF molecules (of the converging orientations [3]).
Cohesin is loaded on the chain from a site in the vicinity
of a CTCF molecule, where a cohesin loader, Nipbl, is lo-
calized. The cohesin then starts extruding the chain with
a constant rate τ−1

c until it reaches the other CTCF site.
The cohesin embraces two beads —one is the bead at the
starting site and another changes as the cohesin extrudes
the chain. At each extrusion process, cohesin pulls the
chain so that the bead at the nearest neighbor displaces
to the position of the cohesin, while the cohesin keeps em-
bracing the starting site, see fig. 2. The asymmetric ex-
trusion has been observed by single-molecule techniques
for condensin [14,15], whose structure is analogous to co-
hesin, and it is also implied from Hi-C experiments [16].
We predict the mean square of the distance between the

S
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Fig. 2: We use the bead and spring model to treat the dynamics
of the chain. A cohesin (shown by the green bar) is loaded on
the chain from a site (S) and embraces the starting site and the
m-th site (C). At each extrusion process, the cohesin applies
forces to capture the bead at the nearest neighbor. The cohesin
operates the loop extrusion process with a constant rate τ−1

c
until it reaches the ending site (E).

starting and ending sites of the loop extrusion process
when a cohesin is loaded on the chain at t = 0, assum-
ing that the chain is in the equilibrium for t < 0.

The chain at the interface is composed of two types of
blocks, one tends to be associated with the droplet and
one is excluded from the droplet. Although the genomic
position of the starting site may depend on experimental
systems, cohesin may eventually arrive at the boundary
between the two blocks. Because cohesin embraces the
beads of different type, it is entrapped at the interface,
analogous to surfactants. To highlight the role played by
the interface in the dynamics of the chain, we treat the
case in which the starting site is at the boundary between
the two types of blocks. In the bulk solution, the system
is isotropic and thus it is enough to treat the dynamics
of the beads in one direction, see fig. 1(a). At the interface,
the bead that is bound by the cohesin does not move in
the normal to the interface (the z-direction); the presence
of the interface is manifested in the dynamics of the chain
in the z-direction, see fig. 1(b). In the following, we thus
treat the dynamics of the beads in the z-direction.

We use an extension of the Rouse model [13] to treat
the dynamics of the chain. The Rouse model takes into
account the connectivity of the chain, but neglects the
hydrodynamic interactions and excluded-volume interac-
tions between chain segments. With this model, the posi-
tion zn(t) of the n-th bead in the chain is derived by using
the force balance equation

ζ
∂

∂t
zn(t) = k

∂2

∂n2zn(t) + Fm(t)δnm + fn(t), (1)

where n (= 1, 2, . . . , N) counts the beads from the starting
site to the ending site. The left side of eq. (1) is the friction
force between the bead and the solvent. The first term of
the right side is the elastic force generated by the springs
that are connected to the bead. The second term is the
force generated by the loop extrusion process when the
cohesin is at the m-th bead (δmn = 1 if m = n and 0 oth-
erwise). The third term is the force caused by the random
collisions of solvent molecules with the bead. ζ is the fric-
tion constant of the bead and k ( = 3kBT/b2) is the spring
constant of the springs that connect the beads (kB is the
Boltzmann constant, T is the absolute temperature, and
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b is the Kuhn length). fn(t) is the Gaussian random force
with ⟨fn(t)⟩ = 0 and ⟨fm(t)fn(t′)⟩ = 2ζkBT δmnδ(t − t′).
The form of the force Fm(t) due to the loop extrusion
process is shown later, see eqs. (6) and (7). Equation (1)
predicts that the relaxation time of a chain composed of
N segments is the Rouse time [13] defined by

τN =
N2ζ

π2k
. (2)

The Green function of eq. (1) is defined by the solution
of the equation [17]

∂

∂t
G(n, m, t) =

k

ζ

∂2

∂n2G(n, m, t) + δmnδ(t). (3)

The solution of eq. (3) has the form

G(n, m, t) =
(

ζ

4πkt

)1/2

e−ζ(n−m)2/(4kt) (4)

for an infinitely long chain. The solution of eq. (1) thus
has the form

zn(t) = zn(0)+
1
ζ

∫ t

0
dt′ G(n, m, t − t′)Fm(t′)+rn(t), (5)

where rn(t) is the displacement due to the random force.
In the following, we neglect the displacement rn(t) for sim-
plicity. Equation (5) implies that the n-th bead is not af-
fected by the force Fm(t) until the tension, generated by
the force Fm(t), diffuses to this bead.

Equation (5) predicts that in the bulk solution, the force
Fm(t) that is necessary to displace the m-th bead by um

during the loop extrusion process has the form

Fm(t) =
ζum√

π

√
rτc

τ1
δ(t), (6)

where r is the duty ratio of cohesin and τ1 is the monomer
relaxation time, see eq. (2) with N = 1. Equation (6)
is an asymptotic form of the extrusion force for t > rτc.
Equation (6) is derived by assuming that cohesin generates
a constant force on the m-th bead only during the time
rτc and that the force displaces the bead by a distance um,
see the first paragraph of sect. S3 in the Supplementary
Material Supplementarymaterial.pdf (SM). The bead is
freely mobile for t > rτc, reflecting the fact that the bead
is in the bulk solution. At the interface, the force Fm(t)
has the form

Fm(t) =
1

π3/2
1

√
τ1

ζum√
t

. (7)

Equation (7) is the force to displace the m-th bead by
a distance um and keep the bead at the position for time
t, see the first and second paragraphs of sect. S2 in the
SM for the derivation. The interface is introduced in the
boundary condition, with which cohesin and the bead oc-
cupied by the cohesin are entrapped at z = 0 until the
cohesin extrudes the next bead.

By using eqs. (5), (6), and um = zm−1(mτc) − zm(mτc),
the position zn(t) of the n-th bead at time t (mτc < t <
(m + 1)τc) is derived in the form

zn(t) − zn(0) = −
m∑

l=2

(zl(lτc) − zl−1(lτc))

×K(n, l, t − lτc), (8)

with the function K(n, m, t) =
√

rτc
πτ1

G(n, m, t) for the
bulk solution, see sect. S3 in the SM for the derivation.
The form of the position zn(t) for the interface is derived
by using zl−1(lτc) = 0 and K(n, m, t) = erfc(π(n−m)

√
τ1

2
√

t
)

to eq. (8) (erfc(x) = 2√
π

∫ ∞
x dt e−t2 is the complementary

error function), see sect. S2 in the SM for the derivation.
By using eq. (8), one derives the relationship

zm(mτc) − zm−1(mτc) =
m∑

l=1

Γml(zl(0) − zl−1(0)), (9)

where Γmn is the solution of the equation

Γmn = δmn −
m−1∑

l=n

Γln [K(m, l, (m − l)τc)

− K(m − 1, l, (m − l)τc)] . (10)

The position zn(t) is derived as a function of the positions
zl(0) (l = 1, 2, . . . , n) of the beads at t = 0 by substituting
eq. (9) into eq. (8).

The mean square distance ⟨P2(t)⟩ between the starting
and ending sites

⟨P2(t)⟩ = ⟨(zN (t) − zm=t/τc(t))
2⟩ (11)

is derived by using the initial condition, with which the
chain is ideal for t = 0 (⟨ ⟩ is the average with respect to
the initial positions of the beads). Indeed, at the inter-
face, the initial distribution of the beads is not Gaussian
because the beads of the chain are not distributed equally
to the two domains [18]. However, we here use the Gaus-
sian beads distribution for both in the bulk and at the
interface to highlight the roles played by the entrapment
of the beads to the dynamics of the chain.

Results. – The mean square distance ⟨P2(t)⟩ is a func-
tion of the number N of beads in the looping region and
the ratio of the time scales that is defined by

α =
τN

τex
, (12)

where τex (= Nτc) is the time scale of the loop extrusion
process.

Our theory predicts that in the bulk solution, the mean
square distance ⟨P2(t)⟩ decreases approximately with a
constant rate, as soon as the cohesin starts the loop ex-
trusion process. This is because the loop extrusion process
stretches the chain region between the site embraced by
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Fig. 3: The mean square distance ⟨P 2(t)⟩ between the starting
and ending sites of the loop extrusion process (rescaled by the
equilibrium value) is shown as a function of time t (rescaled
by the time scale τex of loop extrusion) for α = 0.1 (cyan), 1.0
(black), and 5.0 (magenta) (α is defined by eq. (12)) when the
chain is in a bulk solution. The broken curves are the local
equilibrium values. These curves are derived by numerically
calculating eq. (10). We used N = 50 and r = 0.5 for the
calculations.

cohesin and the ending site, and the elastic force generated
by this process displaces the starting site towards the end-
ing site, see fig. 2. In the first approximation, the mean
square distance is thus the local equilibrium value,

3⟨P2(t)⟩
Nb2 ≃ 1 − t

τex
. (13)

The mean square distance is indeed slightly larger than
the local equilibrium value because the chain is stretched
by the loop extrusion process, see fig. 3. The deviation
⟨δP2(t)⟩ from the local equilibrium value increases with
time until the tension generated by the loop extrusion
process arrives at the ending site, see fig. 4. The time
at which the tension arrives at the ending site decreases
with the increase of the ratio α. This reflects the fact that
the distance by which the tension propagates scales as t1/2

and the distance by which the cohesin extrudes scales as t.
The deviation ⟨δP2(t)⟩ has an asymptotic form

3⟨δP2(t)⟩
Nb2 = − r

2παβ

(
1 − e2Nβt/τex

)

×
(
1 − e−(π2α+Nβ)(1−t/τex)

)2
(14)

for large values of the ratio α (with β = log(
√

r/2)).
At the interface, the mean square distance ⟨P2(t)⟩ does

not change when the cohesin starts the loop extrusion
process, see fig. 5. This is because the starting site is
entrapped at the interface and thus the mean square dis-
tance ⟨P2(t)⟩ does not change until the tension generated
by the loop extrusion arrives at the ending site. The
time at which the tension arrives at the ending site de-
creases with increasing the ratio α. For large values of α,
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Fig. 4: The deviation ⟨δP 2(t)⟩ of the mean square distance
from the local equilibrium value (the difference between the
broken curve and the curves of corresponding color in fig. 3) is
shown as a function of time t (rescaled by the time scale τex of
the loop extrusion process) for α = 0.1 (cyan), 1.0 (black), and
5.0 (magenta), where α is defined by eq. (12). These curves are
derived by numerically calculating eq. (10). We used r = 0.5
and N = 50 for the calculations.

the mean square distance ⟨P2(t)⟩ has an asymptotic form

3⟨P2(t)⟩
Nb2 = 1 − 4

π2
N

α

(
2

t

τex
− 1

)
e−π2α(1−t/τex) (15)

for t/τex > 1/2 and 3⟨P 2(t)⟩
Nb2 = 1 for t/τex < 1/2. For

small values of α, the mean square distance asymptotically
approaches the local equilibrium value, see eq. (13).

Discussion. – We used an extension of the Rouse
model to predict the dynamics of a chain in the bulk so-
lution and at an interface, when the chain is extruded by
cohesin with a constant rate. This system has two char-
acteristic features: i) the bead to which forces are applied
changes as a function of time and ii) the displacement of
the beads due to the loop extrusion process depends on the
history of the chain dynamics. The first feature is shared
by the problem of polymer translocation through a small
pore in a membrane. A scaling theory predicts that the
end of the polymer is not influenced by the force applied
at the pore until the tension arrives at the end [19,20],
analogously to the loop extrusion at the interface. When
the ratio α of the time scale is large, the motion of the
cohesin is faster than the diffusion of the tension gener-
ated at the starting site. The stretching of the chain is
amplified as the cohesin extrudes the loop. This second
feature is taken into account in the recursion relationship,
eq. (10).

Our theory predicts that the mean square distance be-
tween the starting and ending sites of a chain decreases
approximately with a constant rate in the bulk. In con-
trast, at an interface, the mean square distance does not
change until the tension generated by the loop extrusion
process diffuses to the ending site. The difference of the
mean square distance between the chains in the bulk and
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Fig. 5: The mean square distance ⟨P 2(t)⟩ between the starting
and ending sites (rescaled by the equilibrium value) is shown as
a function of time t (rescaled by the time scale of loop extrusion
τex) for α = 0.1 (cyan), 1.0 (black), and 5.0 (magenta). These
curves are derived by numerically calculating eq. (10). We used
N = 50 for the calculations.

those at an interface increases with the increase of the rate
of the loop extrusion process. Recent simulations showed
that the size of the extruded loops decreases with the in-
crease of the rate of the loop extrusion process [12]. These
features reflect the non-equilibrium nature of this process.

In our theory, we have used a few assumptions: i) we
model the chromatin fiber as a Rouse chain that does
not take into account the hydrodynamic interactions and
excluded-volume interactions between the chain segments;
ii) we neglected the tension propagation along the loop,
which may be significant for the case of the loop extrusion
in the bulk solution; iii) cohesin extrudes the chain with
a constant rate; iv) the surface tension is large enough so
that the shape of the interface is not perturbed by the
loop extrusion process; v) cohesin is loaded at t = 0 onto
the chain which is at that point in equilibrium; and vi) the
displacement due to the random force is omitted by preav-
eraging eq. (5). These assumptions are useful to simplify
the model to highlight the roles played by the entropic
elasticity of the chain and the fact that the chain dynam-
ics significantly depends on the mobility of the bead that
is embraced by cohesin. We could even derive the ana-
lytical form of the mean square distance for large values
of α, see eqs. (14) and (15). An extension of our the-
ory may be useful to study more biologically (and experi-
mentally) relevant problems, such as the dynamics of the
promoter-enhancer binding and the steady-state confor-
mation of chromatin at larger scales.

Because of its simplicity, our theory may be better
tested by in vitro experiments. In contrast to cohesin,
condensin was shown to act as a molecular motor that ex-
trudes DNA loops [14,15]. The Rouse model is (thought to
be) effective to treat the dynamics of a chain in a concen-
trated solution (in which the excluded volume interactions
and the hydrodynamic interactions are screened) on long
time and length scales [13]. Our theory is thus best tested
by an experiment that measures the end-to-end distance

(or the radius of gyration) of DNA in a concentrated solu-
tion. Taking into account hydrodynamic interactions in an
extension of our theory treats the loop extrusion of DNA
in a dilute solution. A scaling theory predicts that hydro-
dynamic interactions (and excluded-volume interactions)
only change the scaling exponent of the dynamics of ten-
sion propagation [21]. This implies that the dynamics of
DNA in the bulk solution is very different from that at the
interface even when hydrodynamic interactions (and/or
excluded-volume interactions) are significant. However, it
is of interest to theoretically predict how such long-range
interactions change our results.

Recent single-molecule experiments indicated that co-
hesin may not show uni-directional motion [22–24]. One
experiment suggests that the cohesin ring is not large
enough to accommodate two chromatin fibers and thus
cohesin molecules have to form dimers to produce a chro-
matin loop [22]. We have proposed the osmotic mechanism
with which the uni-directional motion of cohesin dimers is
driven by the osmotic pressure that is generated by cohesin
monomers [25]. Marenduzzo and coworkers proposed
a similar mechanism, but only with cohesin dimers [26].
The dynamics of a chain extruded by an osmotic mecha-
nism is different from the dynamics of a chain extruded
by a motor mechanism in the following points: First, the
extrusion rate is a function of time. It also depends on the
loading rate of cohesin monomers (and dimers). The dy-
namics of the chain also influences the dynamics of cohesin
dimers. Second, the time scale of the loop extrusion pro-
cess scales as N2/Dc, where Dc is the diffusion constant
of cohesin monomers/dimers. Third, when the motion of
the two units of a cohesin dimer is completely random,
these units may move in the same direction, relative to the
starting site. In this case, the dimer does not decrease the
average square end-to-end distance significantly. When
each unit of a dimer can move in each side of the start-
ing site, dimers decrease the average square end-to-end
vector significantly. However, the maximum number of
dimers that are loaded on the chain is limited by the dis-
tance between the starting site and the domain boundary
due to the excluded-volume interactions between cohesin
monomers/dimers. The uni-directional motion of cohesin
may be driven by RNA polymerase (or other motors) that
pushes cohesin during transcription [27]. Our theory is ef-
fective for the case in which these motors push cohesin all
the way along the domain. When a domain is composed
of multiple transcription units, the dynamics of a cohesin
molecule switches between thermal motion and episodes
of uni-directional motion caused by transcription.
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