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Abstract. We consider DNA-cationic lipid complexes that form lamellar stacks of lipid bilayers with parallel
DNA strands intercalated in between. We calculate the electrostatically induced elastic deformations of the
lipid bilayers. It is found that the membranes undulate with a periodicity that is set by the DNA interaxial
distance. As a consequence the lamellar repeat distance changes resulting in a swelling or compression of
the lamellar stack. Such undulations may be responsible for the intermembrane coupling between DNA
strands in different layers as it is observed experimentally.

PACS. 68.10.-m Fluid surfaces and fluid-fluid interfaces – 64.70.Md Transitions in liquid crystals

1 Introduction

Electrostatic adsorption of polyelectrolytes onto oppo-
sitely charged surfaces, such as lipid membranes, has been
the subject of intense experimental and theoretical re-
search in the last decade. Of particular interest is the spon-
taneous complexation of DNA with both cationic and neu-
tral lipids due to their possible application to gene therapy
[1,2]. These so-called “lipoplexes” show a diversity of equi-
librium and metastable structures [3–13]. For example, it
has been shown through X-ray diffraction analysis [5,7,13]
that DNA molecules and lipids can form lamellar com-
plexes with DNA intercalated in between lipid bilayers.

Several theoretical studies help to understand many of
the phenomena observed for lipoplexes [14–28], however
many more remain to be elucidated. An important prob-
lem is the dependence of the interaxial spacing of DNA
rods in lamellar complexes on the DNA/lipid composi-
tion. Bruinsma [19] presented an analytical approach that
is applicable to lipoplexes with weakly charged bilayers.
The numerical study of Harries et al. [22] predicts the in-
teraxial spacing also for higher charge densities. According
to both studies the isoelectric point of the lipoplex (the
point at which the anionic charges of the DNA balance
the cationic charges of the lipids) is unstable to further
adsorption of DNA or lipids. The formation of say an
isoelectric complex is driven by the release of the small
counterions that were “condensed” on the highly charged
DNA and on the charged bilayer before complexation. A
lipoplex close to the isoelectric point is very susceptible to
the uptake of further cationic lipids or DNA – if available
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– since this will be accompanied by the release of the cor-
responding counterions into the lipoplex1. The theoretical
predictions show good agreement with a recent experi-
mental study [13].

A different approach to the problem of the distance be-
tween DNA strands was given by Dan [14]. In this study
the preferred distance was predicted to be the result of
two competitive mechanisms, electrostatic repulsion be-
tween the strands and their membrane-induced attraction
due to the perturbation of the lipid packing in the mem-
brane close to the adsorbed DNA. The model assumes
DNA strands adsorbed on a single membrane as it was
investigated experimentally by Fang and Yang [6] using
atomic force microscopy experiments. They found that the
distance between DNA strands was about 5 nm, a distance
that was predicted by Dan within her model [14].

In that model it is assumed that the membrane (that
is supported by a solid surface) is locally perturbed close
to the DNA in such a way that the monolayer thickness
is slightly increased [14]. It should be expected that for
lamellar lipoplexes one also has perturbations. Since the
membranes are allowed to undergo shape changes freely
(no supporting layer) one might expect undulations lead-
ing to a compression or swelling of the whole lamellar stack

1 A similar instability is also expected for the complexation
of charged spheres and oppositely charged polyelectrolytes. A
single highly charged chain will wrap around a single sphere
forming a complex that is beyond the isoelectric point (“over-
charging”) and this effect is driven by the release of counterions
from the wrapped chain [29]. On the other hand, a chain in a
solution of highly charged spheres will complex more spheres
than necessary to be isoelectric, and this effect is driven by the
release of counterions of the complexed spheres [30].
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as depicted in Figure 2. Such undulations might lead to
an intermembrane coupling between DNA rods in differ-
ent layers – resulting in a 3D ordering of the DNA rods.
Lipoplexes with a 3D rectangular ordering of the DNA
molecules were indeed observed experimentally [8,10].

Most experiments on lamellar lipoplexes indicate that
such a type of perturbation of the membranes around the
DNA molecules – if present – is small [5,7]. Undulations
of the membranes should lead to a lamellar repeat dis-
tance that is larger or smaller than the sum of the bi-
layer thickness and the diameter of the DNA molecule
(including a hydration shell). Considering complexes at
the isoelectric point and changing the ratio of charged
to neutral lipids it was observed that the lamellar repeat
distance stays always close to a value that indicates flat
membranes [5,7]. Thus even though the lipid dilution ex-
periments lead to a considerable increase of the interaxial
spacing between DNA rods, the undulations remain too
small to be non-ambiguously detected. On the other hand,
for more flexible membranes where detectable membrane
undulations could be expected the system switches to the
inverse hexagonal phase instead [9].

Recently Subramanian et al. [31] studied the complex-
ation of the anionic polypeptide poly-glutamic acid with
a mixture of cationic (DDAB) and neutral (DLPC) lipids.
It was observed that the lipid organizes in a multilamellar
phase with the polypeptide chains intercalated in between
the membranes. Compared to the DNA complexes dis-
cussed above, the polypeptides do not show any in-plane
ordering even though it is assumed that they are in the
α-helical state. As for the DNA lipoplexes a “lipid dilu-
tion” experiment was performed for isoelectric polypep-
tide lipoplexes. Contrary to the outcome for the DNA
complexes, a considerable increase of the lamellar spac-
ing was found when the cationic lipids were diluted by
neutral ones. For high lipid dilution the spacing saturated
at a constant value of 60 Å which coincides with the equi-
librium value of pure DLPC membranes. Subramanian
et al. [31] suggested that this behavior could be due to
a “pinching mechanism” including membrane undulations
similar to the ones depicted in Figure 2 (case h > 0). The
pinching sites are formed due to the electrostatic inter-
action between the negatively charged poly-glutamic acid
and the cationic DDAB lipids. Away from the pinched re-
gions the properties of the lipoplex are dominated by the
properties of the pure DLPC membranes.

Whether it is possible to have pinches in a lipoplex
was studied by one of the authors [23]. By comparing the
gain in electrostatic free energy with the bending energy
of forming a pinch, the parameter range was estimated at
which pinching can be expected. It was shown that this
effect should occur if the line charge density of the rods is
sufficiently high and the membranes are sufficiently flexi-
ble, a situation that might be fulfilled for the polypeptide
lipoplex considered in reference [31].

A different approach to the pinching problem is taken
in the present study. We start out with a perfectly flat
lamellar lipoplex as depicted in Figure 1. The DNA rods
are assumed to be ordered within a 3D rectangular lattice

as it was observed by Battersby et al. [8] and by Artzner
et al. [10]. Our goal is to calculate how the electrostatic
interaction between the negatively charged “rods” and the
positively charged membranes modifies the conformation
of the membranes. We calculate the electrostatic free en-
ergy within the Debye-Hückel approximation which is the
linearized version of the Poisson-Boltzmann theory (as it is
used in Refs. [19,22]); this allows us to calculate this com-
plicated geometry on an analytical level. We show that
there are in principle two possibilities, namely a compres-
sion of the lamellar stack as depicted in Figure 2 (h < 0) or
an expansion as depicted in the same figure (case h > 0).

In the next section we introduce the model system and
calculate its electrostatic and bending free energies for ar-
bitrary but small periodic undulations of the membranes.
By minimizing the free energies of the undulation with re-
spect to its Fourier components we show in Section 3 that
the electrostatic interaction usually favors a compression
of the lamellar complex – at least if the underlying as-
sumptions of our model are fulfilled. These assumptions
are discussed in Section 4 where we also present some
conclusions.

2 Free energy of model lipoplex

The aim of the following calculation is to determine the
electrostatic contribution to the undulations of a lamellar
stack of membranes with DNA molecules intercalated in
between. Our model system consists of two constituents,
the membranes and the DNA molecules. The membranes
have a uniform thickness t and carry positive charges on
both sides. The surface charge density is given by σ/2
on each side of the bilayer and is assumed to be uni-
form. In our model the membranes are perfectly trans-
parent for the electric field lines, i.e., we have a homo-
geneous dielectric constant throughout the lipoplex. The
bilayers are flexible with a bending rigidity kc. The DNA
molecules are modeled as infinitely long rigid rods of ra-
dius r. For simplicity, we assume the negative charges of
the DNA molecules to be located along their middle axis
with the linear charge density −ρ. Following the experi-
mental observation of a lamellar stack with DNA forming
smectic arrays we arrange the components of our model
in the following way (cf. Fig. 1). All membranes are par-
allel to the XY -plane with their midplanes at the posi-
tions z = 0,±2 (r + t/2) ,±4 (r + t/2) ... The DNA rods
are aligned in the Y -direction. The interhelical spacing
between neighboring DNA molecules is constant and is de-
noted by d = 2π/q. Excluded volume requires that d ≥ 2r.
The rods in one layer are located at x = 0,±d,±2d..., in
the neighboring layers they are displaced by d/2, i.e., they
are at the positions x = ±d/2,±3d/2, ... etc. Furthermore,
the rods are assumed to be always attached to the two
neighboring membranes.

The electrostatic interaction between the charges is
calculated within the Debye-Hückel approximation. In this
approximation the potential Φ is determined by ∆Φ =
κ2Φ with the appropriate boundary conditions. Here κ−1

denotes the Debye screening length that is given by
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Fig. 1. Schematic view of the model lipoplex for the case of
flat membranes (see text for detail).

κ−1 = (8πnslB)−1/2 where ns is the bulk salt concentra-
tion and lB = e2/εkBT is the Bjerrum length (e is the
unit charge, kBT is the thermal energy and ε the dielectric
constant; ε ≈ 80 in an aqueous solution). The total elec-
trostatic contribution Fel to the free energy of the system
is given by the sum of the (screened) electrostatic inter-
actions and the translational entropy of the small mobile
ions (electrolyte ions and counterions) [32,33]:

Fel =
1
2

∫
dSσ′Φ. (1)

The integration extends over all charged surfaces of the
system with σ′ being the corresponding charge densities.

We ask the following question: How are the membranes
deformed by the electrostatic interaction? In order to an-
swer this question we will calculate the induced undula-
tions of the membrane up to the first order in the defor-
mation amplitude.

Consider the membrane at z = 0. Electrostatics in-
duces a deformation z = u (x) around the flat state, z ≡ 0.
Due to the symmetry the deformation profile is of the form

u (x) =
∑̂
n

an cos (nqx) (2)

where the hat denotes summation over odd n only. This
undulation leads to the following curvature energy fbend =
(kc/2)

(
∇2u

)2 (per area A):

fbend =
kc

2

∑̂
n
a2
nn

4q4. (3)

In order to calculate the electrical free energy, equa-
tion (1), we compute first the electrical potential
Φ

(u)
M (x, z) induced by the charges on the upper surface

of the membrane (note that Φ(u)
M is translational invari-

ant in Y -direction). At that charged surface, i.e., at z =
t/2 + u (x), we have the boundary condition ∂Φ

(u)
M /∂n =

−2πσ/ε which is here of the form

−∂Φ
(u)
M

∂x

∑̂
n

annq sin (nqx) +
∂Φ

(u)
M

∂z
= −2πσ

ε
(4)

(up to terms of the order a2
n). By expanding Φ

(u)
M up to

first order in the amplitudes an we find the following form
of the potential above the membrane (z > t/2 + u (x))

Φ
(u)
M (x, z) = ϕ(0) (x, z) +

∑̂
n

anϕ
(n) (x, z) . (5)

Each ϕ(n) fulfills the Debye-Hückel equation sep-
arately. They can be expanded in Fourier series
ϕ(n) =

∑
mB

(n)
m (z) cos (mnqx) where B

(n)
m (z) =

b
(n)
m exp (−κnmz) with κnm =

√
κ2 + (nmq)2. The coef-

ficients b(n)
m follow from the boundary condition at the

membrane together with the fact that due to symmetry
Φ

(u)
M (x, z < t/2) ≡ Φ

(u)
M ((π/q)− x, t− z). We find that

only the coefficients b(n)
1 are non-vanishing and are given

by b(n)
1 = πσκ/εκn. This leads to (for z > t/2):

Φ
(u)
M (x, z) =

πσ

εκ

[
e−κ(z−t/2)

+
∑̂
n

an
κ2

κn
e−κn(z−t/2) cos (nqx)

]
. (6)

The total potential ΦM induced by the membrane at z =
u (x) is the sum of the contributions of the upper charged
boundary, Φ(u)

M , cf. equation (6), and of the lower one,
Φ

(l)
M : ΦM = Φ

(u)
M + Φ

(l)
M . Using Φ

(l)
M (x, z) = Φ

(u)
M (x, z + t)

we find:

ΦM (x, z) =
2πσ
εκ

[
cosh

(
κt

2

)
e−κz

+
∑̂
n

an
κ2

κn
cosh

(
κnt

2

)
e−κnz cos (nqx)

]
.

(7)

Furthermore, the potential induced by the line charge of
the rod has the form

ΦR (R) = −2ρ
ε
K0 (κR) (8)

where R is the distance from the line and K0 is a modi-
fied Bessel function with K0 (x) ' − lnx for x � 1 and
K0 (x) ' (π/2x)1/2 exp (−x) for x � 1. The total electri-
cal potential Φ is the sum of the potential Φ1 that follows
from all membranes and the potential Φ2 that is due to
all the rods: Φ = Φ1 + Φ2.

We calculate now the total electrostatic contribution
to the free energy per unit cell. A unit cell has the width d
(in X-direction) and a height that corresponds to the (av-
erage) distance between neighboring layers (for the case
of a flat membrane – depicted in Figure 1 – this height
equals 2r + t). According to equation (1), we obtain the
total electrostatic energy (per unit cell) by integrating the
total potential over all charged surfaces that lie within
this cell. The unit cell in Figure 1 contains three charged
surfaces, S(u)

M , S(l)
M and SR. S(u)

M is a stripe of the upper
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surface of one bilayer that is uniformly charged with the
density σ/2. S(l)

M is the corresponding lower charged sur-
face. SR is the surface carrying the charges of one rod;
we assume this to be the surface of a cylinder with radius
δr � r and charge density −σR = −ρ/2πδr. It follows
that the electrostatic energy (per area) has three contri-
butions: The inter-(and intra-) membrane interaction fM,
the membrane-rod interaction fMR and the interaction be-
tween the rods fR. Thus

fel = fM + fMR + fR =
σ/2
2A

∫
SM

dSΦ1

− σR

A

∫
SR

dSΦ1 −
σR

2A

∫
SR

dSΦ2. (9)

Here we made use of the identity −
∫
SR

dSσRΦ1 =∫
SM

dS σ2Φ2.
We start by calculating the change of the membrane-

membrane interactions FM induced by their undulations
(up to first order in an). The position of the midplane of
the kth membrane is given by

uk (x) = 2k (r + t/2 + h) + (−1)k
∑̂

n
an cos (nqx) (10)

with k = 0,±1,±2, ... and h = −
∑̂
nan. Figure 2 shows

schematic views of lamellar structures that are compressed
– case (a) with h < 0 – and swollen – case (b) with h > 0.
Denote the contribution of kth membrane to the potential
by Φ(k)

M . Then

fM =
qσ

4π

∞∑
k=−∞

∫ 2π/q

0

dxΦ(k)
M

(
x,
t

2
+
∑̂

n
an cos (nqx)

)

' πσ2

εκ

cosh
(
κt
2

)
cosh (κr)

sinh (κ (r + t/2))
+
πσ2 cosh2

(
κt
2

) ∑̂
nan

ε sinh2
(
κ
(
r + t

2

)) ·
(11)

Equation (11) shows that a swelling of the system (h =
−
∑̂
nan > 0) decreases the membrane-membrane interac-

tion whereas a compression (h < 0) is unfavorable. Note
that we neglected terms of second order in the an. As can
be seen from equation (3) terms of the form a2

n lead to a
renormalization of the bending constant, k′c = kc + δk|el.
It can be shown that δk|el = 3πσ2/8εκ3 ≈ T/κ3lBλ

2
GC

(λGC = e/2πlBσ is the Gouy-Chapman length)[35–43].
For a wide range of parameters one has δk|el � kc. In
the following we use the bare bending rigidity kc, keeping
in mind that it has to be replaced by k′c when δk|el is
comparable to kc.

We estimate now the contribution of the membrane-
rod attraction. Consider the rod at the position x = 0
and z = −r − t/2 − h. The rod is located within an in-
finite stack of membranes. This can be accounted for by
simply summing twice over the contributions of all the
membranes that are located above the rod, i.e. fMR =
− (2ρ/d)

∑∞
k=0 Φ

(k)
M (0,−r − t/2− h). From equation (7)

0<h

0>h

(a)

(b)

Fig. 2. Membrane undulations in lipoplexes. Shown are the
two cases (a) h < 0: compression and (b) h > 0: swelling of the
lamellar stack.

follows that Φ(k)
M (0, z) is given by (note that z < 0)

Φ
(k)
M (0, z) ' 2πσ

εκ
cosh

(
κt

2

)
eκ(z−2k(r+t/2+h)) + (−1)k+1

× 2πσκ
ε

∑̂
n

an
κn

cosh
(
κnt

2

)
eκn(z−2k(r+ t

2)).

(12)

The contribution of the first term of equation (12) to FMR

is of the form:

f
(1)
MR ' −

σρq

εκ

cosh (κt/2)
sinh (κ (r + t/2))

− σρq

ε

coth
(
κ
(
r + t

2

))
sinh

(
κ
(
r + t

2

)) cosh
(
κt

2

)∑̂
n
an. (13)

The second term of equation (12) leads to the following
expression:

f
(2)
MR =

σρqκ

ε

∑̂
n

cosh (κnt/2)
κn cosh (κn (r + t/2))

an. (14)

The total membrane-DNA contribution fMR = f
(1)
MR+f (2)

MR
favors a compression of the lamellar stack – thus constitut-
ing a competing mechanism to the membrane-membrane
repulsion.

We are left with the calculation of the interaction en-
ergy between the rods. We focus here one two important
cases. Case 1: κt � 1 and κd � 1 (“vertical screening”):
In this case the interaction between rods in different layers
is negligible compared to the rod-rod interaction within
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the same layer. Then it is sufficient to sum over the con-
tributions of all rods to the left and to the right of the
given rod:

fR =
ρ2q

πε

∞∑
k=1

K0 (κdk) ' ρ2q

πε

∫ ∞
0

dkK0 (κdk) =
ρ2q2

4πεκ
·

(15)

Case 2: κt� 1 and κd� 1 (weak screening): In this case
all rods contribute to the interaction energy. After some
algebra we arrive at

fR '
ρ2q2

4πεκ2 (r + t/2)
+

ρ2q2

4πεκ2 (r + t/2)2

∑̂
n
an. (16)

As expected, in both cases the repulsive rod-rod interac-
tion favors swelling.

3 Undulations in isoelectric complexes

We consider first the lamellar complex in equilibrium with
a solution of free DNA strands. We ask: What is the inter-
axial distance d between the DNA strands in the lipoplex
that minimizes the electrostatic free energy of the com-
plex? As pointed out by Bruinsma [19] and in the intro-
duction to this paper counterion release will control d in
complexes that are assembled from highly charged compo-
nents. This effect is not included in a simple Debye-Hückel
theory. Therefore we consider first weakly charged rods
with a linear charge density below the Manning threshold.
We then argue below that our model can also be applied
to highly charged rods.

We neglect entropic changes due to the adsorption of
free DNA strands into the lipoplex. We will show that,
as a result of the geometry, such a system will equilibrate
at the isoelectric point – if the electrostatic interaction is
sufficiently long-ranged. In the following we only account
for the contributions independent of the an’s and treat the
contribution of membrane bending afterwards as a pertur-
bation.

Let us first consider the case of high ionic strength
where κr � 1 (strong screening). Then the free energy
per area is given by

ftot ' −
4πσρe−κr

εκd
(17)

i.e., by the membrane-rod attraction, equation (13); other
terms are negligible. It follows that the minimum is at
d→ 0. Excluded volume interaction between the rods will
lead to d = 2r. Clearly, in the case of strong screening as
a result of the short range of the electrostatic interaction
the lipoplex is equilibrated far from the isoelectric point.
The resulting complex is “overcharged” by the DNA rods.
(A similar situation occurs for the adsorption of rods on
an oppositely charged surface, cf. Refs. [44] and [45].)

We discuss next the two cases introduced above.
Case 1 : κt � 1 and κd � 1 (vertical screening): From

equations (13) and (15) we find (up to terms of the order
κd)

ftot ' −
2πσρ
εκd

+
πρ2

εκd2
(18)

ftot is minimized for d = diso = ρ/σ which corresponds
to the isoelectric point of the complex, i.e., the point at
which the charges of the cationic lipids and of the DNA
are exactly balanced. Case 2 : κt � 1 and κd � 1 (weak
screening): From equations (13) and (16) follows

ftot ' −
2πσρ

εκ2 (r + t/2)d
+

πρ2

εκ2 (r + t/2)d2
· (19)

Again the free energy is minimized at the isoelectric in-
terhelical spacing d = diso = ρ/σ.

Thus in the limiting case κ→ 0 (no salt, no screening)
the lipoplex is forced to be at the isoelectric point. We
assumed above that the rods are weakly charged. DNA
molecules are beyond the Manning threshold and thus
the release of condensed counterions upon adsorption of
DNA rods modifies the situation. A discussion of such ef-
fects is given in reference [45] for the case of adsorption of
DNA on a planar, oppositely charged surface; the authors
find that with increasing screening length more and more
counterions are released and that the interhelical spacing
approaches the isoelectric one. This limiting case should
carry over to lipoplexes as well. In the following we will
restrict ourselves, for simplicity, to isoelectric complexes
and assume a complete release of all condensed counteri-
ons into the bulk salt solution, the later assumption being
asymptotically correct for weak screening. At finite salt
concentrations a partial counterion release should be ex-
pected (cf. also the discussion on the end of this paper).

We consider now the undulations occuring in
lipoplexes in general and then focus again on the iso-
electric point. The change of the total electrostatic free
energy as a function of the deformation follows from the
equations (11, 13–16):

∆fel '
(
πσ2

ε
− σρq

ε

)∑̂
nan for κt� 1, κd� 1(

πσ2

ε −
σρq
ε + ρ2q2

4πε

) cP
nan

κ2(r+ t
2)2 for κt� 1, κd� 1.

(20)

The change of the total free energy due to bending is given
by the sum of the electrical contribution ∆fel and the
bending energy fbend, equation (3). Minimizing ftot with
respect to the amplitudes an leads to an ' A/n4 with

A '
{

σρq−πσ2

εkcq4
for κt� 1, κd� 1

σρq−πσ2−ρ2q2/4π

εkcq4κ2(r+t/2)2 for κt� 1, κd� 1.
(21)

Thus the deformation modes decrease rapidly with in-
creasing n. Now we are in the position to calculate the
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deformation of the membranes. Inserting an = A/n4 into
equation (2) we find the following deformation profile

u (x) = A
∑̂

n

cos (nqx)
n4

= A

(
π4

90
− π2x2

12
+
πx3

12
− x4

48

)
(22)

where the polynomial expression is valid for 0 ≤ qx ≤ π
(the continuation outside this interval follows from the
symmetry of the configuration). A good approximation
for all values of x (relative error smaller than 1.5%) is
given by u (x) = A cos (qx).

The coefficientA at the isoelectric point of the complex
2πσ/q = ρ is given by

A '
{

πσ2

εkcq4
for κt� 1, κd� 1

0 for κt� 1, κd� 1.
(23)

In the case of vertical screening we find a positive (and
κ-independent) value of A and thus a negative value of h,
h = −π4A/90, corresponding to a compression of the iso-
electric lamellar stack. Interestingly, in the case of weak
screening the undulations disappear. In fact, as long as the
vertical screening is operative the membrane–membrane
repulsion is smaller than the membrane-rod attraction in
the isoelectric lipoplex and therefore we find a compres-
sion of the lamellar stack. For weak screening, the rod-rod
repulsion between different layers cancels this net attrac-
tion, cf. equation (20). Let us consider typical values for ρ,
σ, ε and kc, say ρ = e/1.7 Å (DNA), σ = e/100 Å2, ε = 80
(water) and kc = 20kBT . For these values we find (in the
case of vertical screening) h ≈ −1 Å, a minute account
compared to the other dimensions in the system. This in-
dicates that it might be difficult to experimentally de-
tect these electrostatically induced undulations. However,
since severe approximations were involved to arrive at our
model system these undulations might be detectable in
certain experimental situations (cf. also the discussion at
the end of the paper).

Finally, we estimate how the undulations of the iso-
electric complex disturb the interaxial spacing between
the rods and in turn move the complex away from its
isoelectric point. We consider the case of vertical screen-
ing (Case 1, κt � 1, κd � 1). In this case the ampli-
tudes of the undulations depend strongly on the interhe-
lical distance, namely A ∼ d4, cf. equation (23). Inserting
an = A/n4 into equations (3) and (20) we find two correc-
tion terms to equation (18), namely π2σ4d4/

(
2880ε2kc

)
from the membrane bending and −π2σ4d4/

(
1440ε2kc

)
from the electrostatics. Evidently, the bending contribu-
tion favors smaller values of d that lead to smaller un-
dulations, whereas the electrostatic free energy is lowered
for larger undulations, i.e., larger values of d are favor-
able. Since the electrostatic contribution is larger than the
bending term the complex is slightly moved away from the
isoelectric point towards a larger value of the interhelical
distance d = diso +∆d, with

∆d =
π

1440
κρ5

εkcσ3
· (24)

Note that for κ→ 0 this effect vanishes and the complex
is forced to be at the isoelectric point (as expected). For
the above given typical values we find ∆d ≈ 50 Å/κ−1. In
that sense the undulations lead to an effective repulsion
between the DNA strands proportional to d3 (as long as
one is close enough to the isoelectric point). Undulations
are one of several mechanisms that might be responsible
for the increase of the interhelical spacing with increas-
ing salt concentration as it is observed experimentally (cf.
Ref. [13] for details).

4 Discussion

The main idea of the preceding analysis is to give a simple
estimate of the role of the electrostatic interactions in a
lamellar lipoplex. In many instances some of the underly-
ing assumptions are not fulfilled. But even in this case our
model might give an idea about what the contributions of
the electrostatics to the overall conformation might be.

One severe approximation is the assumption of a trans-
parent membrane. The lipid bilayer represents a low di-
electric slab that – depending on its thickness – might
screen most of the electrical field so that charges (say of
phosphate group on a DNA molecule) are not “seen” on
the other side of the membrane. As a rule of thumb, a
membrane that is much thinner than the distance D of
a charge from the membrane might be considered to be
transparent for this charge whereas a thicker membrane
(of thickness t > D) is opaque and can be approximated
by an infinitely thick slab. In that case the effect of the
low dielectric lipid can be accounted for by the use of an
appropriate image charge – which is a simple task for a
flat membrane but difficult to handle for an undulating
one. The two cases t < D and t > D are elaborated in
some detail in Footnote 2 in reference [23]. The typical
thickness of a lipid membrane is 24 Å which is of the
order of the diameter of the DNA rod (20 Å), i.e., one
is in the crossover regime between the two cases. In any
case, the presence of the low-dielectric lipid will lead to a
modification of the simple situation discussed in this pa-
per. It should be expected that the partial confinement of
electrical field lines emanating from the DNA rods by the
neighboring membranes favors a swelling of the lamellar
stack.

Another feature not considered in this study is the
demixing of neutral and charged lipids within the bilayers.
There might be at least three effects. (i) The electrostatic
attraction drives the cationic lipids towards the DNA rods,
resulting in a depletion of charged lipids in the mem-
brane parts in between two neighboring rods in the same
layer. This reduces the membrane-membrane repulsion be-
tween neighboring membranes resulting in an increase of
the compression of the lipoplex. This effect should be im-
portant if the average mole fraction of cationic lipids in
the bilayers is low. (ii) For the opposite limit of highly
charged membranes their surface charge density σ might
exceed the surface charge density ρ/2πr of the rods. In this
case an enhancement of neutral lipids close to the DNA
is expected that allows for a better matching of the two
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charge densities. These two effects were indeed observed
in the numerical study by Harries et al. [22] (cf. Fig. 7
in that paper). (iii) Finally, membrane undulations may
also affect the charge densities on each side of the bilayer
and vice versa. A depletion of cationic lipids on one side
of the membrane will be accompanied by an enhancement
on the other side due to the symmetry of the arrangement
of DNA rods, cf. Figure 1. This might lead to a sponta-
neous curvature of the bilayer of either sign which in turn
affects the membrane undulations discussed in our study.
It is clear that the competition of these three effects can
lead to a rather complex behavior of the charge density
profile of the lipids along the X-direction. In our model
we do not account for these effects. We expect that our
approach has to be modified especially when a large frac-
tion of the lipids is neutral. In that case the description
of local, highly charged pinches [23] might be more appro-
priate (cf. the discussion of the polypeptide lipoplex [31]
given in the Introduction of our paper).

The charges of the DNA molecule in our model were
arranged along a single line instead of being located on
the surface of a finite-size cylinder. This is an excellent
approximation as long as the screening length is much
larger than the radius of the cylinder, i.e., as long as κr �
1. For the opposite limiting case (not further discussed in
this paper) the potential around the cylinder is different
for the two arrangements of charges, cf. the discussion in
reference [44].

We used in this study the Debye-Hückel theory to de-
scribe the electrostatic interaction in the lipoplex. This
theory should be reasonable for weakly charged systems
where it follows from a linearization of the Poisson-
Boltzmann equation. This equation itself is a mean-
field equation and is therefore not able to describe
ion-correlation effects that become important at short
distances, especially in the presence of multivalent salt (cf.
Ref. [46] and references therein). For monovalent salt it is
generally believed to provide a reasonable description of
the electrostatics. The use of its linearized form relies on
the assumption that the electrostatic potential acting on
an elementary charge does not exceed the thermal energy
at any point in the system. At high charge densities as en-
countered in a typical lipoplex the use of the Debye-Hückel
approximation is therefore questionable. However, we ex-
pect it to be a reasonable description when one accounts
also consistently for counterion condensation [47,48]: A
fraction of the counterions is assumed to condense on the
polyions and reduces its effective charge density, the re-
maining non-condensed counterions form a Debye-Hückel
cloud around it. The amount of condensed counterions
changes upon adsorption in the lipoplex. How many coun-
terion will be released depends on the charge density of
the cationic membrane, the demixing of lipids close to
the adsorbed DNA molecules, the dielectric contrast be-
tween the membrane and the water gap etc. When we
gave numerical examples in this paper we assumed com-
plete counterion release; the numerical values, especially
for ρ, have to be modified accordingly if there is only par-
tial counterion release. This should, however, not change

the qualitative behavior of the system. A more detailed
study of the role of counterion release in such systems is
in progress.

Recently it has been possible to non-ambiguously de-
tect undulations in a lipoplex [49]. From a careful analy-
sis of the data on the lipoplex presented in reference [10]
if was possible to construct an electron density map re-
vealing its high resolution structure. The structure shows
undulations with an amplitude of a few Angstrom leading
to a compression of the lamellar structure as depicted in
Figure 2a. Furthermore, the amplitudes show a sharp in-
crease for larger interhelical spacings. Both observations
are in qualitative and semi-quantitative agreement with
the results of our model calculation, cf. equation (23). It
is worth noting that the lipids of these lipoplexes form a
lipid-gel phase [10]. In this phase the lipid bilayers show
a high compressibility allowing the DNA-induced defor-
mations to cross nearly unperturbed through the bilayer
(as implicitely assumed in our model). The induced un-
dulations might be the prevailing mechanism for the in-
terlayer coupling that leads to the rectangular columnar
superlattice of the DNA strands observed for this class of
lipoplexes.

We wish to thank J.O. Rädler for sharing experimental results
prior to publication. We would like to acknowledge useful con-
versations with A. Ben-Shaul and S. May.
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