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Supplementary Methods

Model: The model used in this work to predict nucleosome affinity is based on that of Segal et al.
(1), which is a model for the thermodynamic probabilities for 147-base-pair sequences to reside in a
nucleosome. That is, it provides a method to calculate the probability P(S) of a sequence S related to
the energy cost E of using a DNA molecule with this sequence to form a nucleosome:

(1)

This probability depends on every one of the nucleotides that make up the sequence S. If we define
S as a set of Si with i an index running from 1 to 147, we can write

(2)

Using the chain rule of probabilities, this can be rewritten as

(3)

This equation expresses the probability of the whole sequence as simply the product of all  the
separate base pairs  in the sequence.  The catch is  that the probabilities of the base pairs  are all
interdependent; the probability for Sn depends on the values of S1 through Sn-1. 

The way the model of Segal et al. is obtained is by assuming that long-range correlations between
base pairs can be neglected in the expression above. Specifically, they assume that the probability
distribution of Sn depends only on the value of  Sn-1 and not on any base pairs further away, so that

(4)

If we apply this assumption, we obtain the model of Segal et al.

For the model to make predictions, it needs to be parameterized. Segal  et al. and follow-up work
(1–3) produced  experimental  thermodynamic  ensembles  of  sequences  with  high  affinity  for
nucleosomes. The probability of a given sequence in such an ensemble should be described by the
model above, so one counts the prevalences of the dinucleotides and mononucleotides at  every
nucleosomal position in this average to produce the probability distributions needed to inform the
model.

We here repurpose this model for a somewhat different endeavor. Another common approach to
investigating nucleosome affinity is to model the energetics of the nucleosome directly. This can be
done with a  DNA model  such as  the  Rigid  Base  Pair  model  (4) and a  suitable  model  for  the
nucleosome. We have made use here of the nucleosome model presented in (5). This model can also
be used to predict  nucleosome affinity,  based on the local  elastic properties of base pair  steps.
Unfortunately, this model is computationally very expensive and cannot be used to analyze large
numbers of sequences, such as entire genomes.
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Such  a  model  can,  however,  in  a  reasonable  amount  of  time,  be  used  to  generate  sequence
ensembles of the same kind as employed to parameterize the Segal  et al. model and follow-ups.
Using a recently published computational method (Mutation Monte Carlo,  (5)) we were able to
generate ensembles large enough that probability distributions of mono-, di- and even trinucleotides
could be calculated. When we plug those distributions into the Segal et al. model, we find that we
have a  good approximation  of  the predictions  made by the full  underlying  nucleosome model,
which is computationally far less expensive and allows us to analyze whole genomes.

We finally note that we used not the dinucleotide-based model of Segal et al., but we have extended
it to trinucleotides:

(5)

In this case, we make the assumption that the probability of  Sn depends on the values of Sn-1 and Sn-2.
This assumption on the correlations between base pairs is less stringent than that of the dinucleotide
model  and should  therefore  provide  a  better  approximation.  The  downside  is  that  many  more
probability  values  need  to  be  calculated,  and  a  correspondingly  larger  sequence  ensemble  is
required. However, we found that we were able to create a large enough ensemble (10^7 sequences)
that the trinucleotide model provided a significant improvement over the dinucleotide model. When
predicting the affinities of all 147-base-pair subsequences of the first chromosome of S. cerevisiae,
the  trinucleotide  model  came to  a  root-mean-square  deviation  of  0.85  kT when  comparing  its
predictions  with  those  of  the  underlying  energetic  model.  The  dinucleotide  model  yielded  a
deviation of 1.08 kT, so the trinucleotide model reduces the deviation by about 20%.

For the underlying nucleosome model, we chose the same model presented in  (5). However, we
have made an important alteration to the model in order to perform the analyses presented here.
Previously, a hybrid parameterization was chosen for the Rigid Base Pair Model (6) that underlies
the  nucleosome  model  presented  there.  In  this  hybrid  parameterization  (7),  the  intrinsic
deformations of the base pair steps are derived from crystal-structure data, and the stiffnesses of the
steps from all-atom molecular dynamics similations. 

This hybrid model had previously been found to approximate reality best by Becker et al. (7). Those
authors,  however,  used only short  sequences to  test  the different  parameterizations.  Hence they
primarily  tested  the  local  accuracies  of  the  parameterizations,  for  which  the  correct  oscillatory
behavior of the predicted energy with the helical repeat of DNA is most important.

However, we are interested not in the local changes in affinity, but in long-range effects on the order
of  tens  of  helical  repeats.  For  this  purpose,  we  found  that  the  hybrid  parameterization  yields
unsatisfactory results. Although it gives correctly phased dinucleotide probability distributions, the
average abundances of AT-rich dinucleotide steps in high-affinity sequences are overestimated with
respect to those of GC-rich steps. It is known that high GC content correlates with high affinity, but
the hybrid model ascribes higher affinity to AT-rich sequences. See Fig. S1. The result is that the
model is unable to detect the nucleosome-depleted regions in S. cerevisiae promoters. 
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We  find  that  when  using  a  parameterization  where  both  the  intrinsic  deformations  and  the
stiffnesses are derived from crystal-structure data (4), the model does correctly ascribe high affinity
to high GC content. See Fig 1b. When using this pure parameterization for our model, we find we
do detect the NDR in yeast.

We speculate that the two parameterizations can fulfill complementary roles. The hybrid model may
be most accurate when considering local changes in affinity, but its performance in detecting long-
range  effects  is  lacking.  Conversely,  the  pure  crystallography  parameterization  may  not  be  as
realistic locally (7), but it is able to capture long-range effects much more accurately. For this work
we therefore applied the pure parameterization.
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Fig. S1: Dinucleotide step frequencies and their 11-bp averages in high-affinity nucleosome 
ensembles. Left: Using the hybrid parameterization, AT-rich dinucleotide steps are enriched, 
while GC-rich steps are depleted. Right: In the pure parameterization, GC-rich steps are 
enriched, in line with experimental evidence.



Supplementary Results

Full set of mechanical signals: In this section we supply the full set of nucleosome positioning 
signals centered on transcription start sites. The signals are plotted in Figs. S2-S7, with organisms 
grouped together under a number of headings.
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Fig. S2: Nucleosome positioning signals in the promoter regions of a number of Archaea.
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Fig. S3: Nucleosome positioning signals in the promoter regions of a number of fungi.

Fig. S4: Nucleosome positioning signals in the promoter regions of a number of plants.
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Fig. S5: Nucleosome positioning signals in the promoter regions of C. elegans and a number of 
other nematodes.
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Fig. S6: Nucleosome positioning signals in the promoter regions of D. melanogaster and a number 
of other flies.



GC content as signal predictor: Finally we wish to note that, in terms of classifying these signals as 
we have done in Fig. 2 in the main manuscript, one might also look at the signals in the GC content,
which are depicted in Fig. S8. The visual similarity with Fig. 2 is of course striking.

We would warn against relying on GC content alone for the purpose for which we have applied our 
model here. The first reason is that, obviously, GC content in itself does not tell us anything about 
the numerical values of the nucleosome occupancy without some sort of calibration. Our model, on 
the other hand, has no free parameters, and is built on physical principles. 

Secondly, we have also found that, using the Mutation Monte Carlo method with the Eslami-
Mossallam nucleosome model [5], we can create sequences with very different mechanical 
properties by only changing the order of the sequence, while keeping GC content fixed, which 
shows that GC content is only part of the story.

That said, statistically, signals in GC content in promoter regions may also be a fruitful way to 
classify organisms. This will require further study.
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Fig. S7: Nucleosome positioning signals in the promoter regions of human, chimpanzee, mouse and
zebrafish genomes.
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Fig. S8: Average GC content around the transcription start sites for the same organisms as 
presented in Fig. 2. Curves have been shifted such that the value at -1000 is zero, and have been 
smoothed using a 147-bp running average.
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