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1. INTRODUCTION

The simplest decay behaviors are exponential, such as the dielectric relaxation
associated with Debye and the mechanical relaxation named after Maxwell.
Exponential decays depend on a single mode (or, equivalently, a single
characteristic time). But most relaxation processes are governed by a large
variety of characteristic times, see references [1-4] for reviews, and vast types of
decay patterns follow, most popular being stretched exponentials (Kohlrausch-
Williams-Watts [2,5,6]) and power law behaviors. In this review we focus on the
cases in which the decay function follows a power law for reasonably extended
time or frequency intervals. Note that too short time or frequency windows do
not allow to distinguish between different decay patterns [7].
The transition from the glassy relaxation zone to the transitional zone in the case
of stress relaxation of a glassy polymer is an example for power-law relaxation.
Consider polyisobutylene at the reference temperature T0 = 25°C: In Figure 1(a)
we reproduce, following reference [8] its shear storage and loss moduli G' and
G'' as a function of the frequency ω; in Figure 1(b) we display the corresponding
shear relaxation modulus G and the shear creep compliance J as a function of
time. As is evident by inspection, the high modulus plateau is followed by a
power law that covers about four decades in time (Figure 1(b)) and frequency
(Figure 1(a)). Then a second plateau zone (called the entanglement plateau)
shows up. This transition from one plateau to another, generally via a power law,
is characteristic for amorphous polymers.
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Figure 2. Storage modulus ′G  and loss modulus ′′G  of unmodified (PB300) and
urazole modified polybutadiene (PB302 and PB304) vs. the reduced frequency
aTω . The molecular weight of all samples is MW = 31 kg/mol; the samples 302
and 304 correspond to the 2 mol % and to the 4 mol % modification,
respectively.
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Figure 1(a). Storage modulus ( )′G ω
and loss modulus ( )′′G ω  for polyiso-
butylene as a function of frequency.
The data are from Tobolsky and
Catsiff [8].
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Figure 1(b). Relaxation function ( )G t
and creep function ( )J t  for polyiso-
butylene (as in figure 1(a)) as a func-
tion of time.
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Furthermore, power law behaviors also appear in the terminal relaxation zone
of polymers. In the case of a single relaxation time one has a sharp transition
from the entanglement plateau to the flow zone, which obeys a typical liquid-like
behavior, namely ′ ∝G ω 2  and ′′ ∝G ω . Physically or chemically cross-linked
polymers [9], polymers with star-, H-, or comb-like topologies (see e.g. [10-19])
show a more general pattern, namely an intermediate power-law domain with

′ ∝G ω α  and ′′ ∝G ω β , where α and β lie between zero and one. In Figure 2 we
contrast the behavior of neat, monodisperse polybutadiene to that obtained by
attaching to its backbone active groups, which are able to form H-bonds. While
for neat polybutadiene the shear storage and loss moduli obey ′ ∝G ω 2  and

′′ ∝G ω , the moduli of the modified polymers follow more general power laws.
The reason for this behavior is that the active groups form temporary, random
links between the polymers, fact which renders the relaxation process multimodal
and cooperative; this leads here to power laws. Such laws are not the hallmark of
polymers only; vast classes of substances, which range from inorganic glasses to
proteins show such behaviors [1], and we like to recall the early works of
Meinardi et al. [20-22] on power law relaxation in metals, in rocks and in glasses.

In this chapter we focus on the possibility to portray such complex
viscoelastic features of polymers by means of fractional calculus, a formalism
which turns out to be exceedingly well-suited for this purpose. To this effect we
start here by illustrating, using a simple example, how fractional calculus comes
into play as a result of the superposition principle. We start with ( )G t , the shear
relaxation modulus of a linear system. Now ( )G t  is defined as the response of
the shear stress ( )τ t  to a jump in the shear strain ( )γ γt t= 0Θ( )  where ( )Θ t  is the
unit step function. We assume that ( )G t  obeys a power law, i.e.

G t
E t

( )
( )

=
−







−

Γ 1 β λ

β

(1)

with 0 1≤ <β . In equation (1) E and λ are constants and Γ ( )x  denotes the
Gamma function [23]; for convenience we chose in equation (1) the prefactors in
such a way as to conform to the main body of the Chapter. Due to the linearity
of the system, the response of the stress to a previous history of deformations
γ ( )t  is given by the superposition integral [24,25]:

τ γ( ) ( ) ( )t dt G t t d t
dt

t

= ′ − ′
′

′−∞
∫  . (2)
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Inserting G t( )  given by equation (1) into equation (2) we have

τ λ
β

γβ
β( )

( )
( ) ( )t E dt t t d t

dt

t

=
−

′ − ′
′

′
−

−∞
∫Γ 1

(3)

Now equation (3) can be rewritten in the following compact form

τ λ
γβ

β

β
( )

( )
t E

d t
dt

=  , (4)

in which d dtβ β  denotes the fractional derivative of order β [26,27] (see section 2
for details). Equation (4) with 0 1< <β  interpolates between Hooke’s law
describing solid behavior (β = 0), i.e.

τ γ( ) ( )t E t= (5)

and Newton's law describing fluid behavior (β = 1 )

τ η
γ

( )
( )

t
d t

dt
= . (6)

Equation (4) is an example of a rheological constitutive equation (RCE) with
fractional derivatives. As we proceed to show below, a whole series of complex
behavior patterns (including crossover situations as discussed above) can be
described by relatively simple fractional RCEs.

This Chapter is organized as follows: In the next section we give a brief
introduction to fractional calculus. After surveying the historical development of
fractional RCEs in section 3, we discuss in section 4 the representation of such
RCEs by mechanical analogues. In section 5 we highlight the usefulness of the
formalism by applying the fractional Maxwell and Kelvin-Voigt models to a
variety of polymeric systems. In section 6 we discuss more complex fractional
models. Finally, we conclude with a summary in section 7 and relegate some
important but more mathematical expressions to the Appendix.
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2. FRACTIONAL DIFFERENTIATION AND INTEGRATION

The straightforward extension of classical calculus to its fractional counterpart
is most readily visualized by using a notation which unifies ordinary integration
and differentiation:

d f t
dt

f t
f t

dt dt dt f t
t t t

α

α

α

α α

α
α

α
α

( )
( ) , , , ,...,

( ) , ,

... ( ) , , , ,...

( )

=
=
=

= − − −








 −∞ −∞ − −−∞∫ ∫ ∫

− −

for 
for 

for 

1 2 3
0

1 2 31 2
1 1

(7)

together with the Weyl integral [27]:

d f t
dt

dt f t
t t

tα

α αα
( )

( )
( )

( )
=

−
′

′
− ′ +

−∞
∫

1
1Γ

(8)

One has only to realize that for α = − − −1 2 3, , ,... equation (8) is nothing but
Cauchy's formula for repeated integration [26,27]; hence for these values of α
equations (7) and (8) are equivalent. Now, the basic idea is that equation (8) can
be readily extended to all α < 0 ; this defines fractional integration. The
extrapolation to the positive α–range, α > 0 , is obtained by first picking an
integer n, n > α , then performing a fractional integration of order α − n ,
followed by an ordinary differentiation of order n, i.e. [26,27]

d f t
dt

d
dt

d f t
dt

n

n

n

n

α

α

α

α

( ) ( )
=







−

−  . (9)

Equation (9) defines fractional differentiation.
Let us note that also another version of fractional calculus, the so-called

Riemann-Liouville (RL) formalism [26,27], is of widespread use in rheology. In
RL the lower limit of the integrals in equations (7) and (8) is set to 0. The RL
formalism is particularly suitable for studying the transient response of materials
after switching an external perturbation on, say at t = 0 , so that τ γ( ) ( )t t= ≡ 0
for t < 0 . In this spirit the RL version can be understood as being the restriction
of the Weyl formalism to a special class of initial value problems. In the following
we will use the Weyl formalism; the translation into the RL version is
straightforward.
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Weyl's fractional calculus turns out to be algebraically very convenient: the
composition rule for differentiation and integration obeys the simple form

d
dt

d f
dt

d f
dt

µ

µ

ν

ν

µ ν

µ ν=
+

+ (10)

for arbitrary µ and ν [27]. Furthermore, the Fourier transform

{ }f t f dt f t i t( ) ~( ) ( ) exp( )= = −
−∞

∞

∫ω ω (11)

turns the operation d dtα α  into a simple multiplication [26,27]

( )d f t
dt

i f
α

α
αω ω









= ( )
~

( )  . (12)

Let us illustrate the usefulness of these properties using the above-mentioned
rheological example. A quick comparision of equation (3) with the Weyl integral,
equation (8), leads immediately to the fractional stress-strain relation

τ λ γβ
β

β( ) ( )t E d
dt

d t
dt

=
−

−

1

1  . (13)

Furthermore using the composition rule, equation (10) with µ β= − 1  and
ν = 1 , equation (13) turns into equation (4), as stated in the previous section.

The behavior of fractional derivatives under Fourier transformation is
especially useful in determining the dynamical response functions. Let us
consider the complex shear modulus

G i dz G z i z*( ) ( )exp( )ω ω ω= −
∞

∫0

(14)

which describes the response of the stress to a harmonic strain excitation
γ γ ω( ) exp( )t i t= 0 . From equation (2) it follows by the change of variables
z t t= − ′  that ~( ) *( ) ~( )τ ω ω γ ω= G . Using the multiplication rule, equation (12),
one finds, say from equation (4):
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G E i*( ) ~( ) / ~( ) ( )ω τ ω γ ω ωλ β≡ =  . (15)

From the complex modulus G*( )ω  follow the storage and the loss moduli,
′ =G G( ) Re( *( ) )ω ω  and ′′ =G G( ) Im( *( ) )ω ω , the complex shear compliance

J G*( ) / *( )ω ω= 1  as well as storage and the loss compliances, ′J ( )ω
( )= Re *( )J ω  and ′′J ( )ω ( )= −Im *( )J ω . Furthermore, we also consider the

shear creep compliance J t( )  (the response of the strain to a stress jump
τ τ( ) ( )t t= 0 Θ ), which is given here by

( )
( )

J t
E t

=
+







−1

1Γ β λ

β

.
(16)

As a direct consequence of the multiplication relation, equation (12), we can
easily derive the harmonic response functions G*( )ω  and J*( )ω  of a given
fractional RCE. On the other hand, the analytical evaluation of the step response
functions, namely of G t( )  and J t( ) , turns out to be a hard task in many cases.
Nevertheless these responses can be derived explicitly for a whole series of
fractional RCEs of practical importance, cf. sections 5 and 6.

3. HISTORICAL SURVEY OF RCEs WITH FRACTIONAL DERIVA-
TIVES

To our knowledge, the mathematically sound use of fractional differentiation to
describe rheological properties of materials starts with Gemant [28,29]. He
modified the Maxwell model by introducing the semiderivative of the stress (i.e.
α = 1  and β = 1 2  in equation (30), vide infra) in order to portray the properties
of an 'elasto-viscous' fluid under oscillatory excitations. Nutting, on the other
hand, pioneered power laws such as equation (1) to depict experimental results
[30,31], although at that time the relation between power laws and fractional
derivatives was not clear to the materials' science community. Other examples for
the use of power laws are the works by P. Kobeko, E. Kuvshinskij and G.
Gurevitch [32] (an expression used by them is equivalent to the Cole-Davidson
function of dielectric relaxation) and by Alexandrov and Lazurkin [33]. There are
even claims that stretched exponentials turn into power laws for exponents
smaller than 0.4 [34], see, however also reference [7].
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In rheology Scott-Blair et al. [35-38] made an extensive use of fractional
integrodifferentiation to depict through power-laws the creep and relaxation in
wide classes of materials. Their works rendered clear the intimate relationship
between power laws and fractional calculus, and also introduced fractional
generalizations of Newton's and Hooke's models, in which the fractional elements
(FE) of this chapter were viewed as arising from 'quasi-properties', representing
non-equilibrium states. Thus, in their notation, property X obeys generally an
expression of the following type:

( )
X

d

d d d t
≡

α

β β α

τ

γ
 .

(17)

Viewing τ as stress and γ as strain, the property X is an extension of the usual
definition of viscosity, for which α β= = 1 . Bosworth [39] made first
considerations concerning the use of equation (17).

After these basic pioneering works, rheology experienced a renewed surge of
activity on fractional calculus starting at the end of the '60ies. Thus Slonimsky
[40] applied the calculus to study rheological phenomena of polymers, a
materials' class of growing importance. He described by a fractional relation the
force acting on a polymer segment and the displacement experienced by it; in
fact the operator used by him can be represented as an infinite series of simple
fractional derivatives. Then Smit and deVries [41] investigated several material
functions, such as the complex shear modulus of the fractional Kelvin-Voigt
model (having a fractional derivative of the strain) and compared the results with
experimental data. Next, Meinardi and Caputo [20-22] developed the ideas of
fractional calculus further; they provided expressions for several material
functions for the fractional standard solid model (see below), for which the order
of fractional differentiation was the same for the stress and the strain. The
evaluation of the relaxation in this case was an important step towards the
understanding of the basic properties of the whole class of fractional models.
These results were not widely noticed, and later rederived in rheology by
Friedrich [11-13] and Nonnenmacher [42-44], who also solved the general case,
in which the two fractional derivatives are of different order. Meinardi and
Caputo used their expressions [20-22] to describe relaxation measurements of
rock materials, metals and glasses.

A study of the fractional versions of the Maxwell and Kelvin-Voigt models,
where only the derivative of the stress was replaced by a fractional counterpart
was performed by Koeller [45]. He also considered the generalization to parallel
and serial arrangements, and also pointed out the close connection between the
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Rabotnov calculus [46] and fractional integrodifferentiation. The Rabotnov
calculus, developed in the USSR in the '60ies, is based on the Rabotnov-
operator ℜ−

−
α
β ( )f  (also called fractional-exponential operator), and was used

widely for portraying relaxation phenomena in solid mechanics [46]. Friedrich
and Hazanov poined out the relation between ℜ−

−
α
β ( )f  and fractional

integrodifferentiation [47]. One has namely:

( ) ( )ℜ = − ℜ =−
− −

−

−
=

∞

−

−

−∑α
β

α

α α

α

αβf
d f
dt

f
d f
dt

k
k

k
k

( )
( )

( )
1

1

1
1

0
1

1and
(18)

where 0 1≤ <α  and β ≥ 0 .
More recently, one of the goals of research in our field was the detailed

analysis of the fractional Maxwell and Kelvin-Voigt models. It was soon clear
that the analytical determination of the response functions of these models is a
mathematically difficult task (see below). Bagley and Torvik [48] connected the
molecular theory of viscoelasticity to the fractional calculus, and showed that
some aspects of the theory are mirrored by the fractional Kelvin-Voigt model.
Friedrich and Heymann [15,16] pointed out the intimate relation between the
order of differentiation in a fractional Kelvin-Voigt model and the degree of
conversion for the sol-gel transition of a crosslinking polydimethylsiloxane.

Later, in 1986, Bagley and Torvik [49] considered the fractional standard solid
model in more detail. They established that this model, which contains two
fractional derivatives – one of the stress and one of the strain – is compatible
with thermodynamics if the order of both derivatives is identical.
Thermodynamical admissibility of fractional order models was also analyzed by
Friedrich for several models [12].

In 1983, Rogers [50] formulated general RCEs containing a large number of
sums or products of fractional derivatives, both of the stress and also of the
strain. The analysis of these models was restricted to those containing mainly two
fractional derivatives, and dealt with (the more accessible) frequency domain.
Another use of fractional derivatives was put forward by VanArsdale who
generalized the Rivlin-Ericksen and White-Metzner tensors by including fractional
orders of differentiation [51].

Only in 1991 did Friedrich [11] as well as Glöckle and Nonnenmacher [42]
succeed in obtaining ( )G t  and ( )J t  for the fractional Maxwell model containing
two fractional derivatives of different order. They showed that this solution can
be expressed through a special class of mathematical functions which will be
discussed later in this Chapter. The derivation in references [44,52] is based on
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an integral fractional representation of the standard solid model, whereas
Friedrich's derivation uses the differential picture. Friedrich pointed out that the
differential fractional version is thermodynamically admissible for wide ranges of
parameters, whereas the parameter range of the fractional integral version is very
restricted [17]. In subsequent works Glöckle and Nonnenmacher clarified the
mathematical basis of fractional calculus by pointing out its relation to the so-
called Fox-functions [42]. Moreover, they explained the interrelation between
fractional relaxation functions and the time-temperature superposition principle
[52]. We note that these models were successfully applied to the description of
the viscoelastic properties of filled polymers [53].

In general, much of the very recent work is characterized by the search for the
physical background underlying fractional calculus. The relation of this calculus
to the classical spring-dashpot representation of complex viscoelastic materials is
a central aspect of the works by Schiessel and Blumen [54-58], as well as by
Heymans and Bauwens [59-61]. These works showed how power law relaxation
follows from exemplary arrangements of springs and dashpots. Schiessel and
Blumen succeeded in explaining the process of polymer cross-linking on the
basis of such mechanical networks; they also investigated terminated ladder
arrangements which mimic pre- and postgel behavior [56]. Such mechanical
analogs also showed the way how physically reasonable fractional RCEs can be
constructed, aspects discussed by Schiessel, Metzler, Blumen and
Nonnenmacher [58] and by Heymans [61]. By employing a formal analogy
between linear viscoelasticity and diffusion in a disordered structure Giona,
Cerbelli and Roman derived a fractional equation describing relaxation
phenomena in complex viscoelastic materials. This analogy leads to a power law
expression, which is in agreement with the experimental results [62]. At the
moment we are still far from being able to relate in a reductionistic way the
empirical models to a microscopic background. Nevertheless, as will become
evident in section 4 of this Chapter, the representation of fractional derivatives
through spring-dashpot analogs is helpful in understanding a series of phenomena
which underlie the fractional calculus formalism.

Another line of research, widely pursued nowadays, is the phenomenologically
oriented, pragmatic modeling. An example for this is the work by Stastna,
Zanzotto and Ho [63] who provided a relation between the Kobeko function [32]
and fractional calculus and used it to model rheological data of asphalts. Stastna
et al. found a general inversion scheme which generalizes Rogers' results [50]; it
allows the representation of the complex shear modulus in the form:
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( )
( )

G i
i

i

kk

m

kk

n*( )ω η ω
ω λ

ω λ

β

=
+

+















=

=

∏
∏0

11

21

1

1
 . (19)

In equation (19) λ1k and λ2k are two sets of characteristic times. The authors of
reference [63] succeeded in deriving the corresponding fractional RCE. Note that
for m = 0  and n = 1  one recovers the Kobeko function [24].

We close this section by noting that nowadays fractional calculus is of
widespread use in describing different rheological phenomena for wide classes of
materials. As examples from the polymer literature we refer to [19,53,64-67]. In
the following section we analyze under which circumstances spring and dashpot
arrangements lead to power law relaxations.

4. THE REPRESENTATION OF RCE WITH FRACTIONAL DERI-
VATIVES BY MECHANICAL MODELS

Fractional RCEs may be formally derived from ordinary RCEs by replacing
the first-order derivatives (d dt ) by fractional derivatives (d dtβ β ) of non-integer
order (0 1< <β ). This formal procedure can, however, not assure a priori that
the resulting expressions are always physically reasonable. This aspect was
pointed out, for instance, in references [11,42,54]. Thus it is useful to have a
procedure at hand that automatically guarantees mechanical and thermodynamical
stability.

As a first step Schiessel and Blumen [54-57] and Heymans and Bauwens [60]
have demonstrated that the fractional relation, equation (4), can be realized
physically through hierarchical arrangements of springs and dashpots, such as
ladders, trees or fractal structures (which we will discuss in this section). The
idea is that (disregarding for the moment the specific structure of the hierarchical
constructions, these will be detailed later) equation (4) is obeyed by a fractional
element (FE) which is specified by the triple ( )β λ, ,E . We symbolize the FE by a
triangle, as shown it Figure 3(c), where also its classical counterparts are
depicted: the spring (cf. Figure 3(a)) obeying equation (5) and the dashpot (cf.
Figure 3(b)) with the stress-strain relationship equation (6). Then, as a second
step, more complicated RCEs can be constructed by combining two or more
FEs in serial, parallel or more complex arrangements; this was proposed by
Schiessel et al. [58] and by Heymans [61]. We will make use of this method in
sections 5 and 6.
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Figure 3. Single elements: (a) elastic, (b) viscous and (c) fractional.

0E

E

E

E

1

2

n

η

η

η

η

0

1

2

n

Figure 4. A sequential spring-dashpot realization of the fractional element.

Let us now consider different realizations of FEs. In reference [54] Schiessel
and Blumen proposed a ladder-like structure with springs (having spring
constants E E E0 1 2, , , . ..) along one of the struts and dashpots (with viscosities
η η η0 1 2, , , . . .) on the rungs of the ladder (cf. Figure 4). As shown in reference
[54] the complex modulus ( )G* ω  admits a continued fraction expression,
namely

G
E i i iE E E

*( )
( ) ( ) ( )

... ,ω
ω ω ωη η η=

+ + + +

− − −

0

1 1 1

1 1 1 1

0

0

1

0

1

1 (20)
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where we use a standard notation for continued fractions,
( )[ ] ( )a b f a b f+ = + , cf. reference (23). Choosing in equation (20)

E E E0 1= = =. ..  and η η η0 1= = =. ..  it can be shown (by comparing terminating
approximations of the continued fraction with the binomial series) that the
complex modulus of the infinite arrangement is given by

G E
i

i
*( )

( ) )
( )

ω
ωλ

ωλ
=

+ −−

−

4( 1 1
2

1 1 2

1 (21)

where we set λ η= E . For ωλ << 1  equation (21) reduces to the form
G E i*( ) ( )ω ωλ≅ 1 2 . Therefore having the same spring constants and viscosities
for the whole arrangement one gets a complex modulus with β = 1 2 , and thus the
ladder model with equal springs and dashpots leads to a FE with the parameters
( )1 2, ,E λ . To extend the ladder model to arbitrary values of β with 0 1< <β , a
suitable distribution for the spring constants and viscosities has to be chosen;
thus an algebraic k-dependence of the material constants of the form

E kk k∝ ∝ −η β1 2 (22)

leads to a FE specified by ( )β λ, ,E  [54].

2

G
G

G

G

G
n

n n

n n2 +1

Figure 5. Recursive construction of the iterated mechanical networks of Heymans
and Bauwens [60].
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Heymans and Bauwens [60] and Schiessel and Blumen [56] demonstrated that
values of β with β ≠ 1 2  can also be attained by arranging equal springs and
dashpots into a network with a more complex structure. Thus reference [60]
focuses on a class of iterated networks which are generalizations of a fractal tree
model; each FE ( )β λ, ,E  can be represented by such an arrangement to any
desired accuracy. We show in Figure 5 the recursive construction of the model:
One starts from an element having the complex modulus G1; this element gets
then represented by four elements, two of which have G1 , the two others G2  and
G3  as moduli (cf. Figure 5 with n = 1 ) so that the ensuing structure still has G1

as complex modulus. From Figure 5 it is easily seen that the relation between the
complex moduli of the elements has to be G G Gn n n= +2 2 1 . In principle the
iteration proceeds for each element indefinitely. By this the complex modulus G1

of the whole arrangement is

( )G G G1 2 3
1 2= ( )= =G G G G4 5 6 7

1 4 ... ( )Gk

n

k n

n 1 2

2

2 1 1

=

+ −∏ (23)

At each level n of decomposition one replaces some of the elements Gk

( k n n= −+2 2 11, . . . , ) by either purely elastic elements, i.e. springs with spring
constant E, or purely viscous elements, i.e. dashpots with viscosity η. For these
elements one has to replace Gk  in equation (23) by E or iωη  and stop their
further decomposition. Let Nn  denote the number of springs at the nth level of
decomposition and Mn  the corresponding number of dashpots. From equation
(23) it follows:

( ) ( )G E i E iN Mn
n

n
n

1
2 2= =∑ ∑ωη ωλ β (24)

with β = ∑ Mn
n

n
2  and λ η= E . Thus one can reach any preset, arbitrary β,

0 1< <β  to any desired accuracy by a sufficiently fine decomposition. As a
special case, by taking G E2 =  and G i3 = ωη  we obtain a binary tree. This
network, which we depict in Figure 6, is again a FE with the parameters
( )1 2, ,E λ .
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Figure 6. A special case of the iterated networks shown in Figure 5: binary
spring-dashpot tree.

The advantage of the "binary decomposition" of elastic and viscous elements
is its simple analytical tractability; in many cases, however, it leads to
complicated networks whose properties are difficult to grasp intuitively. Thus it
is also desirable to work with networks whose structural properties (such as the
connectivity) and the exponent β are related in a more obvious fashion.

In reference [56] Schiessel and Blumen showed that for given fractal networks
this relation is straightforward when the springs and dashpots are suitably
chosen. The construction starts by connecting each site ri  of the given network
to neighboring nodes rj  by equal springs (with spring constant E) and linking

each ri  to the ground via a site-dependent dashpot (with viscosity ( )η ηi iz= r ,

where ( )z ir  is the coordination number of node ri ). Furthermore, the nodes'
motion is perpendicular to the ground. To give an example we show in Figure 7 a
section of the infinite mechanical network constructed from the Sierpinski gasket.
The analogy to random walks can now be seen by comparing the stresses acting
on node ri  (whose displacement is γ i )

( ) ( ) ( )[ ]
( )

η γ γ γi i j i
j i

t E t t& = −∑ (25)

with the master equation

( ) ( ) ( )[ ]
( )

dP t
dt

w P t w P ti
ij j ji i

j i

r
r r

,
, ,= −∑ (26)
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which governs the probability ( )P tir ,  of having a random walker at site ri . In
Eqs. (25) and (26) the sums run over all nearest neighbors rj  of ri . The

transition probabilities wij  in Eq. (26) obey ( )z w wj ijr = = constant . Now one

can identify formally ( )η γi i t  with ( )P tir , . Furthermore, the probability for a
random walker to return to the origin at time t follows an algebraic form:

( )P t t ds∝ − 2 (27)

where ds  is the spectral dimension of the network [68]. A power law behavior of
the complex modulus, Eq. (15), follows, with β = −1 2ds  (cf. Ref. [56] for
details). The ladder model, Figure 2, is the special case of a one-dimensional
lattice with ds = 1 and thus β = 1 2; the Sierpinski gasket in 2d (cf. Figure 7) has

( ) ( )ds = 2 3 5ln ln  and hence ( ) ( )β = − ≅1 3 5 0 317ln ln . .

Figure 7. Section of the infinite spring-dashpot arrangement based on the
Sierpinki gasket.

An interpretation of the sol-gel transition in terms of such mechanical networks
can be found in Ref. [56].
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5. FRACTIONAL MAXWELL AND KELVIN-VOIGT MODELS

Figure 8(a) shows the standard Maxwell model, in which a spring and a
dashpot are arranged in series [24,25]. Now this model can be generalized by
replacing these elements by the FEs ( )α λ, ,E1 1  and ( )β λ, ,E2 2 , as shown in
Figure 8(b). Due to the sequential construction the stress ( )τ t  is the same for
both elements. Their respective stress-strain relations are

( ) ( ) ( ) ( )γ λ τ γ λ τα
α

α
β

β

β1 1
1

1 2 2
1

2t E d t
dt

t E d t
dt

= =− −
−

−
− −

−

−, (28)

where both expressions follow from the composition rule, Eq. (10). Due to the
sequential construction of the fractional Maxwell model (FMM), we have

( ) ( ) ( )γ γ γt t t= +1 2 , from which it follows that

( ) ( ) ( )
τ

λ
λ

τ
λ

γα

β

α β

α β
α

α

αt
E
E

d t
dt

E
d t

dt
+ =

−

−
1 1

2 2
1 1  . (29)

Let us assume without loss of generality that α β> . Eq. (29) can be further

simplified by setting ( ) ( )
λ λ λα β α β

=
−

E E1 1 2 2

1
 and ( )E E= 1 1λ λ α . This leads to

( ) ( ) ( )τ λ τ λ γα β
α β

α β
α

α

α
t d t

dt
E d t

dt
+ =−

−

− (30)

which is the RCE of the FMM [11,43,58].

η

E ( ),E ,β λ

(a) (b)

( ),E ,α λ

2 2

1 1

Figure 8. The (a) ordinary and (b) the fractional Maxwell model
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When one arranges the spring and the dashpot in parallel one obtains the
standard Kelvin-Voigt model [24,25], depicted in Figure 9(a). Its generalization,
which has two FEs, is shown in Figure 9(b). Because of the parallel arrangement,
the stresses acting on the two elements are additive. Following a procedure
similar to that for the generalized Maxwell model (vide supra), one finds for the
RCE of the generalized Kelvin-Voigt model (FKVM) [58]

( ) ( ) ( )τ λ γ λ γα
α

α
β

β

βt E d t
dt

E d t
dt

= + (31)

where we have used the same parameters λ and E as for the FMM.

,E ,,E ,ηE

(a) (b)

( )λ( )β λ α2 2 1 1

Figure 9. (a) The Kelvin-Voigt model and (b) its fractional generalization.

The basic material functions of the FMM and the FKVM were derived
elsewere [58]; we will restrict ourselves to their succinct display and to the
discussion of their basic properties. Table 1 presents for both models their
fundamental response functions.
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Table 1
Material functions of the fractional Maxwell and Kelvin-Voigt models

FMM FKVM

( )G t ( ) ( )( )E t E tλ λβ
α β β

α β−
− −

−−,1 (32) E t E t
Γ Γ( ) ( )1 1−





 +

−






− −

α λ β λ

α β

(33)

( )J t E t E t− −

+


 


 +

+


 




1 1

1 1Γ Γ( ) ( )α λ β λ

α β
(34) ( ) ( )( )E t E t−

− +
−−1

1λ λα
α β α

α β
,

(35)

( )G* ω
( )
( )

E
i
i
ωλ
ωλ

α

α β1 + − (36) ( ) ( )E i E iωλ ωλα β+ (37)

( )J* ω ( ) ( )E i E i− − − −+1 1ωλ ωλα β
(38)

( )
( )

E
i
i

−
−

−+
1

1
ωλ
ωλ

β

α β (39)

In Table 1 ( )E zα β,  denotes the generalized Mittag-Leffler function of argument z,
whose definition and basic properties are given in the Appendix. This function is
of great importance for fractional RCEs, since it occurs in many material
functions in the time domain. The harmonic response functions, equations (36) to
(39), follow simply from the RCEs, equations (30) and (31), by means of the
multiplication rule, equation (12). Due to the sequential (parallel) construction of
the FEs in the FMM (FKVM), the response ( )J t  ( ( )G t ) is simply the sum of the
corresponding responses of its structural parts, which obey equation (16)
(equation (1)).
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Figure 10. Description of the data of Figure 1(a) by the fractional Maxwell model
(solid lines) and the fractional Kelvin-Voigt model (dashed lines).

Table 2
Material parameters used in Figure 10

log E log λ α β

FMM 9.09 -8.36 0.583 0.593

FKVM 5.75 -2.96 0.057 0.885

Using the asymptotic expansions of the Mittag-Leffler function and focussing
on the behavior of the dynamic moduli and of the dynamic compliances it
becomes clear that both the FMM and the FKVM describe two power law
regions which intersect each other at the characteristic time t = λ . In the case of
the relaxation function ( )G t  the FMM describes first a flat decrease (of slope
−β ) followed by a steeper decrease (of slope −α ), whereas for the FKVM the
flat decrease follows the steeper decrease. The compliance of the FMM shows a
flat increase with slope β followed by a steeper increase with slope α; for the
FKVM the situation is reversed.

Thus it follows that in the time domain the FMM can be used to describe
relaxation functions which start from a plateau region and decrease according to
power laws, whereas the FKVM is able to describe the relaxation via a power law
to a plateau. The situation is correspondingly reversed in the frequency domain.
Note, however, that a so-called S-shaped transition between two plateaus which
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are connected by a power law cannot be described by means of FMM or of
FKVM.

An example for the use of FMM is presented in Figure 10, in which the
dynamic moduli of polyisobutylene are redrawn from Figure 1(a). These are
compared to the results of FMM with the parameters given in Table 2. Note the
good agreement between the experimental data and the analytical expressions for
FMM. On the other hand FKVM is unable to describe the observed features
even qualitatively. This is especially true for the ( )′′G ω  data where FKVM can
not follow the decline found experimentally in the range of very low frequencies.

In Figure 11 (which is redrawn from Figure 2) we provide another example
which stresses the possibilities offered by FMM to depict relaxation data.
Whereas Figure 1 is concerned with polymers in the glassy and transitional
zones, here we deal with relaxation from the plateau towards the terminal
relaxation zone. Figure 11 shows the storage moduli, both of two modified
polybutadienes (PB302 and PB304) and also of the neat polymer, on which the
modifications were performed (PB300) [64]. Note that the FMM with the
parameters given in Table 3 describes in a quantitative way the observed
relaxation – the focus lies here on the power law behavior of the modified PBs at
very low frequencies. We note furthermore that both the storage and the loss
module of the neat polymer melt are quantitatively depicted by this model. The
same holds true for polystyrene, as shown in the following example, taken from
reference [65]. The situation is depicted in Figure 12; as is obvious, the storage
moduli of polystyrene filled with different amounts of silicagel (N20) follow a
power law in an intermediate region. Here the slope of the low frequency plateau
is zero; consequently the system can be modeled by adding a Hookean spring
(of strength Ge ) in parallel to the two FEs. The agreement between this model
and the experimental data is very good. The Ulm group [44,53] used a similar
model (the integral version of the FMM) to describe the complex moduli of filled
polymers.

 On the other hand, the example of Figure 12 demonstrates the need to go to
models having more than two FEs in order to describe more complex behavior
patterns, such as S-shaped transitions. Such extensions are the focus of the next
section.
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Figure 11. Description of the data of Figure 2 by the fractional Maxwell model
(solid lines).

Table 3
Material parameters used in Figure 11

log E log λ α β

PB300 5.52 -1.87 0.882 0.994

PB302 5.60 -0.344 0.553 0.632

PB304 5.48 0.720 0.478 0.590
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Figure 12. Storage modulus ( )′G aTω  for aerosil-filled polystyrene. The solid
lines give the description through the fractional Maxwell model. The aerosil
concentration increases from below.

Table 4
Material parameters used in Figure 12

log E log λ α β log Ge

PS100 4.97 -0.877 0.812 1.000 - ∞

0.5 vol. % 5.07 -1.06 0.808 0.988 1.54

1 vol. % 5.17 -1.08 0.749 0.907 2.62

2 vol. % 5.26 -1.12 0.718 0.867 3.09

3 vol. % 5.40 -1.03 0.649 0.784 3.99

4 vol. % 5.47 -1.15 0.597 0.725 4.15

5 vol. % 5.49 -0.814 0.613 0.768 4.85
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6. MORE COMPLEX MODELS

6.1 Models based on combinations of 3 fractional elements
Here we present more complex models, which are combinations of three FEs.

We dispense with considering the fully parallel or the fully linear combination of
FEs. We view as much more interesting the parallel arrangement of the FMM
with a third FE or the sequential combination of the fractional Kelvin-Voigt model
with a third FE. We call these models the fractional Zener model (FZM, also
fractional standard solid model) and the fractional Poynting-Thomson model
(FPTM), respectively. We stop to note that Heymans [61] has also analyzed
more complex models, which are composed of FEs and additional conventional
elements.

The constitutive equations of FZM and of FPTM (these being our basic,
simplest models containing 3 FEs) can be derived along the lines of the previous
section.

,E ,
η

E

(a) (b)

( ),E ,λ
( )γ λ

β
E

,E ,( )α λ1 1

2 2

3 3

1

3

Figure 13. The (a) ordinary and (b) fractional Zener model.

We start with the analysis of the FZM. The mechanical representation of the
FZM is displayed in Figure 13; it consists of an FMM (with the same parameters
as in Figure 8) in parallel to an FE specified by ( )γ λ, ,E3 3 . The stresses on the
left and right branches of the arrangement, τL  and τR, obey the following stress-
strain-relationships:

( ) ( ) ( )τ λ τ λ γα β
α β

α β
α

α

αL
Lt d t

dt
E d t

dt
+ =−

−

−  , (40)
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cf. equation (30) and, equation (4),

( ) ( )τ λ γγ
γ

γR t E d t
dt

= 3 3  . (41)

Both stresses add, which leads to the RCE of the FZM:

( ) ( ) ( ) ( ) ( )τ λ τ λ γ λ γ λ γα β
α β

α β
α

α

α
γ

γ

γ
γ α β

γ α β

γ α βt d t
dt

E d t
dt

E d t
dt

E d t
dt

+ = + +−
−

−
+ −

+ −

+ −0 0 (42)

Here we set ( )E E0 3 3= λ λ γ
.

,E , ,E ,ηE

(a) (b)

( )λ ( )β λα 2 21 1

E ,E ,( )γ λ3 3

1

3

Figure 14. The (a) Poynting-Thomson model and (b) its fractional generalization.

The FPTM consists of a serial arrangement of the FKVM (with the same
parameters as in Figure 9) and an FE ( )γ λ, ,E3 3  (cf. Figure 14). The RCE of this
arrangement can be derived by noting that the deformations of the Kelvin-Voigt
element and of the FE simply add, which leads to:

( ) ( ) ( ) ( ) ( )
τ λ

τ
λ

τ
λ

γ
λ

γα γ
α γ

α γ
β γ

β γ

β γ
α

α

α
β

β

βt
E
E

d t
dt

E
E

d t
dt

E
d t

dt
E

d t
dt

+ + = +−
−

−
−

−

−
0 0

(43)
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where we again set ( )E E0 3 3= λ λ γ
.

We again summarize (now in Table 5) the relaxation material functions of the
two models. For the detailed derivation of the expressions given in the Table we
refer the reader to [58]. Here we note only that the dynamic moduli as well as the
dynamic compliances follow directly from the corresponding RCEs by means of
the multiplication rule, equation (12). Moreover, the relaxation modulus (creep
compliance) of the FZM (FPTM) is simply the sum of the moduli (compliances)
of the corresponding substructures. On the other hand, the creep compliance
(relaxation modulus) of the FZM (FPTM) is only known analytically for the
special cases γ α=  or γ β= , cf. [58]; in Table 5 the case γ β=  is presented.

The constants C1  and C2  of Table 5 are ( )( ) ( )
C E E E1 0 0

1
= +

−α β
 and C2

( )( ) ( )
= +

−
E E E0

1 α β
.

Table 5
Material functions of the fractional Zener and the Pointing-Thomson models

FZM FPTM

( )G t ( )G t G tFMM FE( ) + (44)
( )

E
E

C G C t

E
E E

G t

0
2

2
2

2
1

0







+
+

=

− −α β

γ β

FMM

FE for

( )

,
(45)

( )J t

( )

E
E

C J C t

E
E E

J t

0

2

1
2

1

0

0









+
+

=

−α β

γ β

FKVM

FE for

( )

,

(46) ( )J t J tFKVM FE( ) + (47)

( )G* ω ( )G E i* ( )FMM ω ωλ γ+ 0
(48) ( ) ( )

( ) ( )
i i

E E i E i
ωλ ωλ
ωλ ωλ

α β

α γ β γ

+
+ +− − − − −1

0
1

0
1

(49)

( )J* ω ( ) ( )
( ) ( )
i i

E E i E i
ωλ ωλ

ωλ ωλ

α β

γ α γ β

− −

− −

+
+ +0 0

(50) ( )J E i* ( )FKVM ω ωλ γ+ − −
0

1 (51)



27

The FZM can describe S-shaped transitions from one plateau to another via a
power law. For instance, it can be shown [58] that ( )G t  displays three regimes
for 0 ≤ ≤ <γ β α  and E E>> 0 :

( )G t

t t

t t

t t

∝

<<

<<









−

−

−

β

α

γ

λ

λ λ

λ

for

for << <<

for
1

1 .

(52)

where ( ) ( )λ λα γ
1 0

1≈ −E E . In section 5 we have already presented an example
where the FZM fits experimental data very well for the special case γ = 0  (cf.
Figure 12).

6.2 Other models
Another approach which extends the use of FE-based models is pragmatic.

The previous sections dealt with the exact solutions (relaxation functions) of
models created by combining an increasing number of FEs in parallel and/or in
series. The approach which we discuss here is the direct empirical modification
(based on experimental findings) of the basic relaxation functions of the FE
models. We now provide examples taken from the literature for such
modifications.

6.2.1 Modification of the relaxation function
As already mentioned (see Figure 2) the ( )′G ω  and ( )′′G ω  of monodisperse

linear polymers show a sharp transition from a ′ ∝G ω 2 , ′′ ∝G ω  behavior to a
′ ∝G ω α , ′′ ∝ −G ω β  behavior. In the example of Figure 2 β ≅ 1 4  and α is

positive and close to zero, hence ′G  displays a quasi-plateau. In the
corresponding relaxation experiment the stress decays then first according to a
power law with slope −α , which is followed by an exponential relaxation at
longer times. Figure 15 shows the relaxation function ( )G t  of a modified
polybutadiene [64] where the appearance of an intermediate power-law domain is
clearly evident. In Figure 15, due to experimental limitations, the plateau can not
be seen directly but it can be infered from its dynamic modulus (especially from
the range aTω > 10 ), displayed in Figure 16. Now, fluid behavior is associated
with the termination of all relaxation processes, say at the time λm, and thus λm is
a natural cut-off. This can be achieved phenomenologically by multiplying the
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corresponding decay function with an exponential. As an example, starting from
( )G tFMM  (cf. equation (32)) in reference [18] the following 6-parameter relaxation

function was put forward

( ) ( ) ( )( ) ( )G t G t E t t m= − −−
− +0 1λ λ λα β

α α β
α

, exp  . (53)

In equation (53) G0  is a constant, λ  and λ m  are time constants (with λ λm >> )
and Eα α β, − +1  denotes the generalized Mittag-Leffler function (α and β are related
to the parameters α FMM  and β FMM  of equation (32) via α α β= −FMM FMM  and
β α= FMM ). From the asymptotic expansion of the Mittag-Leffler function for
β < 1  it follows that for t << λ  (plateau regime) ( )G t t∝ −βα  and for λ λ<< <<t m

(intermediate regime) ( )G t t∝ −β . Moreover, thermodynamic stability requires
that the power law exponents obey 0 1< ≤ ≤α β . The cut-off function,

( )exp − t mλ , guarantees the fast release of stresses for t m> λ  and hence
induces a fluid-type behavior. A detailed discussion of this model is given in
references [10] and [18]. We only provide here the main formulae.

Thus the dynamic moduli associated with equation (53) are

( )
( )

G G i
i

i
m

m

*( )ω ωλ
ωλ λ λ

ωλ λ λ

β

α=
+

+ +

−

0

1

1
(54)

and

( )
( )

J
i

G i i
m

m

*( )ω
ωλ λ λ

ωλ ωλ λ λ

α

β=
+ +

+ −

1

0
1  . (55)

Especially the dynamic moduli turn out to be particularly useful, since they
lead to equations which are easy to use for fits to the data. Figure 16 shows
exemplarily both the data and the obtained fits. For the PB202 sample we obtain
β = 0 578.  and log .λ m = 2 48 . This is in good agreement with the parameters
β = 0 556.  and log .λ m = 2 24  which are determined by fitting equation (53) to
the relaxation function of the sample displayed in Figure 15.

In Figure 15 the glassy short-time behavior (with the plateau modulus G0 ) is
not in the experimentally accessible range. In such a case the data may be fitted
by a simpler relaxation function, which one obtains from equation (53) by letting
λ → 0 . This leads to
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( ) ( ) ( )G t G t tm m= ⋅ −−
01 λ λβ exp (56)

with G m01 0= η λ , where η0  is the zero-shear viscosity, ( )η0 0
=

∞

∫ G t dt .

Equation (56) is an empirical relaxation function of widespread use; thus its
dynamic moduli were often used in fitting data (cf. reference [24]).
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Figure 15. Relaxation function G(t) of a modified polybutadiene (PB 202, MW =
21 kg/mol). The solid line is equation (56) with log G01 = 4.68 Pa, log λm = 2.24
s and β = 0.556.

10-3 10-2 10-1 100 101 102 103 104
101

102

103

104

105

106

aTω / rad s-1

G
' /

 P
a

PB200

PB204
PB202

Model

Tref = 30 °C

Figure 16. Storage modulus ( )′G aTω  for unmodified (PB200) and modified
(PB202 and PB204) polybutadiene. The solid lines represent the fit of the
generalized fractional Maxwell model according to equation (54) to the data.
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As another example we present in Figure 17 the dynamic moduli of a partly
cross-linked polybutadiene, PB 18, in the pregel stadium [9,69]. PB 18 is a
polymer with a branched structure; it is gratifying to note that also in this case
fractional relaxation provides a very good description of the experimental
observations.
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Figure 17. Storage ( )′G aTω  and loss modulus ( )′′G aTω  for polybutadiene
(PB18), for details see reference [69]. The solid lines represent the fit of the
generalized fractional Maxwell model according to equation (54) to the data.

Let us now turn to the RCE associated with the relaxation function, equation
(53). Starting from equation (54) it can be shown by means of the multiplication
rule, equation (12), that the RCE has the following form [10]:

( ) [ ] ( )τ λ τ λ
γα λ

α

α
λ β λ

β

β
λt e

d
dt

e t G e
d
dt

e
d t

dt
t t t tm m m m+ = 





− −
−

−
/ / / /( ) 0

1

1 . (57)

Equation (57) contains an explicit time dependence that can be removed using the
product rule for fractional differential operators (cf. equation (5.5.2) of [26]). In
this way, the RCE, equation (57) takes the form [10]:
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( ) ( ) ( ) ( )τ λ τ λ γα α β βt w d t
dt

G w d t
dtj

i
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b
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j

j
+ =

=

∞
−

=

∞

∑ ∑
0

0
1

0

( )
(58)

with a ii = −α , b jj = −β  and w m= λ λ .

A RCE with a structure similar to equation (57) was given in reference [63]. A
mechanical model composed of spring, dashpots and fractional elements is not
known for this RCE.
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Figure 18. Storage ( )′G aTω  and loss modulus ( )′′G aTω  for an unmodified (PB)
and a sidechain modified polybutadiene (PB-M2), for details see reference [70].
The solid lines represent the fit according to equation (59) to the data.

6.2.2 Modification of ( )G* ω  and of associated material functions

Another modification of polybutadienes leads to yet another behavior in the
vicinity of the terminal region; instead of approaching the flow region after leaving
the power law zone, a second power law is observed. We present in Figure 18
this behavior, which was the research object of reference [70]. Figure 18 shows
the dynamic moduli of a polybutadiene which carries sidechains in a comb-like
manner; the sidechains are mesogens, and are attached to the backbone via a
flexible spacer. The polymer is in the isotropic state, but its branched molecular
architecture and the interactions between the mesogens lead to a dynamic
behavior quite different from that of linear chains, as can be seen from Figure 18.
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Here the necessary modification to the material functions starts from the
complex modulus ( )G* ω . The two power law regions at the lowest frequencies
are depicted by the FMM; multiplying ( )G *FMM ω  with an additional relaxation
term leads to:

( ) ( )
( ) ( )

G E
i

i i
* ω

ωλ

ωλ ωλ

α

α β γ=
+ +−

1

1 21
1

1
(59)

Now the other relaxation functions of the model can be calculated following
the procedures outlined above. The relaxation modulus ( )G t  and the creep
compliance ( )J t  turn out to be complex expressions, which can be found in
reference [70]. Figure 18 shows that equation (58) reproduces successfully the
data, as indicated by the fitting curve. We close by giving the RCE belonging to
equation (58) [70]:

( ) ( ) ( ) ( ) ( )τ λ τ λ τ λ λ τ λ γα
α

α
γ

γ

γ
α γ

α γ

α γ
β

β

βt d t
dt

d t
dt

d t
dt

E d t
dt

+ + + =
+

+1 2 1 2 1  . (60)

Hence the mechanical representation of this model is a combination of 4 FEs in
series; these are of the form ( )x E, ,λ , with x = β , β α− , β γ−  and β α γ− − .

7. CONCLUSIONS AND OUTLOOK

In this chapter we have shown how fractional calculus allows a physically
sound generalization of classical models from the linear theory of viscoelasticity
(see also the review by A. I. Leonov in this book). From a mathematical point of
view, the operation of fractional integrodifferentiation is well defined and can be
easily handled in Fourier or Laplace space. Viewed technically,
integrodifferentiation allows, for instance, to interpolate smoothly between
Hooke’s and Newton’s laws. Moreover, we have introduced the simplest form
of a fractional rheological model, which we call fractional element (FE), and we
have provided for it several mechanical analogs, namely arrangements made out
of springs and dashpots. In these (infinite) networks the order of fractional
integration or differentiation can be adjusted in several ways; say, by varying the
material constants of the springs and dashpots involved, or by changing the
structure of the arrangement.
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Furthermore, we have shown how parallel or serial combinations of FEs lead
to more complex models; in particular we have studied extensions of the
Maxwell, the Kelvin-Voigt, the Zener and the Poynting-Thomson models. The
relaxation patterns of these models can be used to fit the experimental results for
large classes of materials. Particularly noticeable candidates are polymeric
materials which display ramified structures (such as cross-linked polymers) or
whose dynamics is characterized by cooperativity (i.e. glasses). Using fractional
elements one can tailor viscoelastic models with given properties, while keeping
the number of parameters involved relatively low.

The representation of generalized viscoelastic models by fractional analogues
also allows a deeper insight into the physics behind fractional stress-strain
relations. Nevertheless, we are still far from a reductionistic understanding of the
fractional relaxation laws. Here, as well as in related areas, we expect much
additional work in the coming years.
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APPENDIX

Here we display some mathematical relations which are helpful in
understanding the physical models of the Chapter. We start with the generalized
Mittag-Leffler function which occurs, for instance, in the relaxation function of
the fractional Maxwell model (equation(32)) or in the creep compliance of the
fractional Kelvin-Voigt model (equation (35)). The generalized Mittag-Leffler
function ( )E zµ ν,  is defined by [71]:

E z
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µ ν µ ν
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∑ Γ
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0
(61)

The special case ν = 1  yields the usual Mittag-Leffler function ( )E zµ . On the
basis of this definition, the generalized Mittag-Leffler functions for some special
cases, in which µ and ν equal 0.5, 1 or 2, follow readily:
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All generalized Mittag-Leffler functions increase monotonically for z > 0 . To
obtain monotonically decreasing functions one goes to the domain of negative z.
In the parameter range ( ]µ ν, ,∈ 0 1  the following asymptotic expansions for
z >> 1  are of interest [26]:
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Consider now the relaxation function ( )G t  of the FMM, equation (32). Here the
generalized Mittag-Leffler function has the parameters µ α β= −  and ν β= −1 .
From definition (61) and the asymptotic expansion (63) one obtains for the two
power-law regimes:
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(64)

In Figure 19 we show the relaxation function of the FMM, equation (32), for
α = 1  and β = 0 5. . For the sake of comparison two other relaxation functions
are added, which are different from the double power-law relaxation in the long
time range.



35

-4 -3 -2 -1 0 1 2 3 4 5
-10

-8

-6

-4

-2

0

2

 β  = 0.5

α = 1.0

(c) Γ(0.5) x-0.5E0.5,0.5(-x0.5)

(b)  x-0.5 e-x0.5

(a)  x-0.5 e-x

lo
g 

(G
/G

0)

log t/λ

x = t/l

Figure 19. Dimensionless relaxation function ( )G t G0  vs dimensionless time
t / λ  for three models corresponding to different asymptotic behaviors: (a)
exponential, (b) stretched exponential and (c) power-law.
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Figure 20. Comparison of a Mittag-Leffler function, lhs. of equation (65), with
one of its Padé approximants, rhs. of equation (65).
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The use of the generalized Mittag-Leffler function in numerical calculations is
hampered due to the sometimes slow convergence of the series in equation (61).
This can be taken care of by using a functional approximation; it turns out that
Padé approximants allow to evaluate the generalized Mittag-Leffler functions
almost exactly and without much effort. The procedure is described in [13]; in
the lowest order approximation it yields exemplarily for α = 1  and β = 0 5. :

Γ ( . ) ( ). , .
.0 5

1
1 20 5 0 5

0 5E x
x

− ≈
+

 . (65)

The result is presented in Figure 20; note that deviations from the exact result are
small and are restricted to the transition region between the power-law domains.
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