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Second Quantization

1. Introduction and history

Second quantization is the standard formulation of quantum many-particle theory. It is
important for use both in Quantum Field Theory (because a quantized field is a qm op-
erator with many degrees of freedom) and in (Quantum) Condensed Matter Theory (since
matter involves many particles).

Identical (= indistinguishable) particles−→ state of two particles must either be symmetric
or anti-symmetric under exchange of the particles.

|a⊗ b〉B =
1√
2

(|a1 ⊗ b2〉+ |a2 ⊗ b1〉) bosons; symmetric (1a)

|a⊗ b〉F =
1√
2

(|a1 ⊗ b2〉 − |a2 ⊗ b1〉) fermions; anti− symmetric (1b)

Motivation: why do we need the “second quantization formalism”?

(a) for practical reasons: computing matrix elements between N -particle symmetrized
wave functions involves (N !)2 terms (integrals); see the symmetrized states below.

(b) it will be extremely useful to have a formalism that can handle a non-fixed particle
number N , as in the grand-canonical ensemble in Statistical Physics; especially if
you want to describe processes in which particles are created and annihilated (as
in typical high-energy physics accelerator experiments). So: both for Condensed
Matter and High-Energy Physics this formalism is crucial!

(c) To describe interactions the formalism to be introduced will be vastly superior to
the wave-function- and Hilbert-space-descriptions.

Some historical remarks

1927: Dirac - Field theory of the electromagnetic field using creation and annihilation
operators.
1927: Jordan & Klein and 1928: Jordan & Wigner - Note that Dirac’s description is also
useful for many-particle systems in which particles may interact (!).
1932: Fock - Invented Fock space
For more history see an article in Physics Today, Oct.’99, about Pascual Jordan (1902-
1980; who never received a Nobel prize; Dirac received his in 1933, Wigner in 1963).
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The spin-statistics theorem: Particles of integer spin (0, h̄, 2h̄, . . .) are bosons, particles of
half-integer spin (h̄/2, 3h̄/2, 5h̄/2, . . .) are fermions.
The proof of this theorem needs the relativistic theory of quantized field and is beyond the
scope of this course. Also: the proof is very complicated, which is unfortunate for such a
fundamental, important result of theoretical physics.

2. The N-boson system

One-boson Hilbert space E1

complete set of physical properties k̂; quantum numbers k;
basis: {|k〉}.

N bosons: product space: EN = E (1)
1 ⊗ E

(2)
1 ⊗ · · · ⊗ E

(N)
1

basis states: |k(1)
1 k

(2)
2 . . . k

(N)
N 〉

(Note: all ki can take on all values in k̂-spectrum)

Subspace of fully symmetrized states: E (s)
N

|k1 . . . kN〉 ≡ Ŝ|k(1)
1 k

(2)
2 . . . k

(N)
N 〉 =

1

N !

∑
P

|k(1)
P1k

(2)
P2 . . . k

(N)
PN 〉 (2)

Ŝ is the symmetrization operator, working on a general N -particle state.
The set of symmetrized states is complete:

completeness
∑

k1...kN

|k1 . . . kN〉〈k1 . . . kN | = 1̂ in E (s)
N , (3)

but not normalized(!):

〈k1 . . . kN |k′1 . . . k′N〉 =
1

N !

∑
P

δ(kP1, k
′
1)δ(kP2, k

′
2) . . . δ(kPN , k

′
N) (4)

Notation: In formula (3) and in the following sums over k should be read as integrals
over k in case the spectrum of k̂ is continuous. Even though a sum is written the for-
mulae should be understood as covering both the cases of discrete and continuous spectra.

Remark: The symmetrized states are not orthonormal because the RHS (right-hand side)
of (4) will in general be smaller than 1, i.e. the basis vectors are shorter than 1.

k̂-spectrum: {a, b, c, . . .}
occupation numbers: na, nb, nc, . . . with

∑
k nk = N

Notation for state in occupation number representation: {na, nb, nc, . . . ;N} ≡ {nk;N}

Orthonormalized, complete set of states:

∣∣∣{nk;N}〉 ≡ |na, nb, . . . ;N〉 =

(
N !∏
k nk!

)1
2

|k1 . . . kN〉 (5)
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NB: This only works for a discrete spectrum! (for obvious reasons). One can show
orthonormality and completeness for these states:

orthonormality 〈{nk;N}|{n′k;N}〉 =
∏
k

δnkn
′
k

(6)

completeness
∑
{nk;N}

∣∣∣{nk;N}〉〈{nk;N}∣∣∣ = 1̂ in E (s)
N , (7)

For ease of notation and because it works for both discrete and continuous spectra, we
will work with the (non-orthonormal) symmetrized basis {|k1 . . . kN〉} in the following.
Physical properties for the N -boson system:
one-body operator:

F̂N =
∑
i

f̂ (i) , (8)

where f̂ (i) is a one-particle operator, e.g. p̂2/2m.
two-body operator:

ĜN = 1
2

∑
i 6=j

ĝ(i,j) , (9)

with ĝ(i,j) = ĝ(j,i) a two-particle operator, e.g. V
(
|~̂ri − ~̂rj|

)
.

In the k-representation in E (s)
N the operators F̂N and ĜN take the form:

F̂N = N
∑
k1k′

1

∑
k2...kN

|k1k2 . . . kN〉f(k1, k
′
1)〈k′1k2 . . . kN | (10)

with f(k1, k
′
1) ≡ 〈k1|f̂ (1)|k′1〉. Similarly:

ĜN =
N(N − 1)

2

∑
k1k′

1k2k
′
2

∑
k3...kN

|k1k2k3 . . . kN〉g(k1, k2; k′1, k
′
2)〈k′1k′2k3 . . . kN | (11)

with g(k1, k2; k′1, k
′
2) ≡ 〈k(1)

1 k
(2)
2 |ĝ(1,2)|k′(1)

1 k
′(2)
2 〉.

Note that because of the use of symmetrized states and the symmetric form of the oper-
ators F̂N and ĜN , these operators can be expressed in terms of matrix elements of one-
and two-body operators between one- and two-particle states, respectively.

In this section, we have been concerned with the complication of the requirement of
symmetrization, in the next section we will tackle the unifying description for an arbitrary
number of particles, which is the actual purpose of the formalism.

3. The many-boson system

a. ”The big picture”

a1. Fock space

E = E0 ⊕ E1 ⊕ E (s)
2 ⊕ E

(s)
3 ⊕ · · · (12)

The space E0 consists of only one state: the vacuum state: |0〉.
A linear operator Â on E is represented as a very big matrix, which can be subdivided
into (N,N ′)-blocks, with N,N ′ the corresponding fixed-particle-number subspaces of E .
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a2. Creation- and annihilation-operators

Creation- and annihilation-operators â†(k) and â(k) will be introduced. These will have
non-zero matrix elements only in (N,N ′) blocks which differ by one in particle number.

a3. Many-body operators Ô

All many-body operators can be expressed in the fundamental operators, the creation-
and annihilation-operators.
Example: The Bose-Hubbard model (or: boson Hubbard model)

ĤBH = −
∑
〈i,j〉

tij
(
b̂†i b̂j + b̂†j b̂i

)
+
U

2

∑
i

n̂i(n̂i − 1) (13)

where n̂i = b̂†i b̂i is the number operator, counting the number of bosons on site i of a
lattice. There will be an interaction energy U if there are two bosons on a site. The first
term is a hopping term for bosons hopping between neighboring sites j and i.

b. ”Details” (getting specific)

b1. Creation- and annihilation-operators

Definition of creation operator:

â†(k)|0〉 = |k〉 (14a)

â†(k)|k1 . . . kN〉 =
√
N + 1 |kk1 . . . kN〉 (14b)

Therefore:

|k1 . . . kN〉 =
1√
N !
â†(k1) . . . â†(kN)|0〉 (15)

Matrix for â†(k): From this definition for â†(k) one can derive the matrix elements of

â†(k) in Fock space: (take N ′ = N − 1)

〈k1 . . . kN |â†(k)|k′1 . . . k′N−1〉 =
√
N〈k1 . . . kN |kk′1 . . . k′N−1〉

=

√
N

N !

∑
P

δ(kP1, k)δ(kP2, k
′
1) . . . δ(kPN , k

′
N−1)

=

√
N

N !
(N − 1)!

{
δ(k1, k)〈k2 . . . kN |k′1 . . . k′N−1〉+ δ(k2, k)〈k1k3 . . . kN |k′1 . . . k′N−1〉+ · · ·

}

=
1√
N

{
N∑
i=1

δ(ki, k)〈k1 . . . ki−1ki+1 . . . kN |
}
k′1 . . . k

′
N−1〉 (16)

In the first two steps we have used equations (14b) and (4), respectively. In the third
step, we split the sum over permutations (N ! terms) into N sums with (N − 1)! terms
each, in which the first sum is over all permutations with P1 = 1, the second sum over all
permutations with P1 = 2, etc. In the second term, P2 to PN then take values 1, 3, . . . N .
In the last step, the expression is written more compactly.
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Matrix for â(k): Now the matrix elements of â(k) are easily derived by making use of:

〈ω′|â|ω〉 = 〈ω|â†|ω′〉?. For the (N,N ′ = N + 1) block we find:

〈k′1 . . . k′N−1|â(k)|k1 . . . kN〉 = 〈k1 . . . kN |â†(k)|k′1 . . . k′N−1〉? =

= 〈k′1 . . . k′N−1|
{

1√
N

N∑
i=1

δ(ki, k)|k1 . . . ki−1ki+1 . . . kN〉
}
, (17)

from which it follows how â(k) operates in Fock space :

â(k)|0〉 = 0 (18a)

â(k)|k1 . . . kN〉 =
1√
N

N∑
i=1

δ(k, ki)|k1 . . . ki−1ki+1 . . . kN〉 (18b)

Note that (18b) is more complicated than the lowering operator for the simple harmonic
oscillator, â|n〉 =

√
n|n− 1〉, because there is more choice in what to lower/annihilate. If

all ki equal k, one recovers a similar result as for the simple harmonic oscillator.

It is important to note that (14a) implies:

〈k| = 〈0|â(k) (19)

(therefore the annihilation operator working to the left acts as a creation operator; these
names are therefore just a convention!)

b2. Commutation relations

From the results in section b1. the fundamental algebraic relations, i.e. the commutation
relations, between the â†(k) and â(k) follow directly (work this out for yourself!):[

â†(k), â†(`)
]

= 0̂ (20a)

[â(k), â(`)] = 0̂ (20b)[
â(k), â†(`)

]
= δ(k, `) 1̂ (20c)

NB1: The commutation relation (20c) only takes on this elegant form because of the
factor

√
N + 1 in the definition of â†(k), (14b).

NB2: The commutation relations (20) are now just as we saw them for phonons and
independent harmonic oscillators before.

NB3: The commutation relations are a consequence of symmetry! Note that the same
in a certain sense is true for the canonical commutation relation [X,P ] = h̄i1̂ (see
Ch. 8 of Le Bellac).
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b3. Many-body operators F̂ and Ĝ in Fock space

F̂ =
∞∑
N=1

F̂N =
∞∑
N=1

∑
i

f̂ (i) (21)

Now use:
|k1〉〈k′1| = â†(k1)|0〉〈0|â(k′1) (22)

and:
N |k1k2 . . . kN〉〈k′1k2 . . . kN | = â†(k1)|k2 . . . kN〉〈k2 . . . kN |â(k′1) (23)

Using formula (10), F̂ is found to be:

F̂ =
∑
k1,k′

1

â†(k1)f(k1, k
′
1)

|0〉〈0|+∑
k2

|k2〉〈k2|+ · · ·

 â(k′1) (24)

The expression between the large brackets [,] is precisely the identity in E , because of the

completeness of the basis of symmetrized states in E (s)
N . The final result for the general

form of a many-body operator constructed from one-particle operators in the second
quantization formalism therefore is:

F̂ =
∑
k1,k′

1

â†(k1)f(k1, k
′
1)â(k′1) (25)

Using more ink and formula (11), but completely analogously (peeling off two k’s) one
derives the general form for the many-body operator constructed from two-particle oper-
ators:

Ĝ = 1
2

∑
k1,k2,k′

1,k
′
2

â†(k1)â†(k2)g(k1, k2; k′1, k
′
2)â(k′2)â(k′1) (26)

4. Identical spin-0 particles

Application of the preceding: form of operators in Second Quantization for identical par-
ticles with mass m and spin 0 (bosons!).

Discrete ~k-representation

In E1: ~̂k-basis:
{
|~k〉
}

discrete ⇔ periodicity volume V = L3

~k = 2π
L
~n with nx, ny, nz integer numbers.

The creation- and annihilation-operators are written as: â†~k and â~k

a. What is the form of many-body operators F̂?

General procedure: (i) determine matrix elements

f(~k,~k′) = 〈~k|f̂ (1)|~k′〉 (27)
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(ii) Using (i):

F̂ =
∑
~k,~k′

â†~kf(~k,~k′)â~k′ (28)

Examples

1. f̂ = |~k〉〈~k| −→ f(~k′, ~k′′) = 〈~k′|~k〉〈~k|~k′′〉 = δ~k′,~kδ~k,~k′′ −→

F̂ =
∑
~k′,~k′′

â†~k′ δ~k′,~k δ~k,~k′′ â~k′′ = â†~k â~k ≡ n̂~k (29)

operator: number of particles with wave vector ~k

2. f̂ = 1̂ −→ (Use 1. and 1̂ =
∑
~k |~k〉〈~k|)

F̂ =
∑
~k

n̂~k ≡ N̂ (30)

operator: total particle number

3. f̂ = ~̂p
2

2m
−→ f(~k,~k′) = h̄2

2m

(
k2
x + k2

y + k2
z

)
δ~k,~k′

F̂ = · · · =
∑
~k

εk n̂~k ≡ Ĥ(0) (31)

where εk ≡ h̄2k2/2m.
operator: kinetic energy of many-boson system

4. (Non-diagonal in ~k-representation) external potential u(~r)

To compute the necessary (~k,~k′) matrix element it is convenient to switch to the
~r-representation (insert two complete sets of states):

〈~k|u(~r)|~k′〉 =
∫
V
d~r
∫
V
d~r ′ 〈~k |~r〉〈~r |u(~r)|~r ′〉〈~r ′ |~k′〉

with:

〈~r |~k〉 =
1√
V
ei
~k·~r (?)

and use that ∫
V
d~r |~r 〉〈~r | = 1̂

Defining the Fourier components, c.q. transform, as follows:

u~q =
1√
V

∫
V
d~r e−i~q·~r u(~r) (32a)

(as a result:

u(~r) =
1√
V

∑
~q

u~q e
i~q·~r (32b) ),



10

one finds (this is one of the problems in Problem Session 6):

F̂ −→ Û =
1√
V

∑
~k,~k′

â†~k u~k−~k′ â~k′ =
∑
~q

u~q√
V

∑
~k′

â†~k′+~q
â~k′ (33)

operator: potential energy of many-boson system

NB: The Fourier component that appears in the potential energy is the one correspond-
ing to the difference wave vector ~k − ~k′ of the two wave vectors of the creation- and
annihilation-operators: interaction happens with conservation of momentum.

b. Intermezzo: Change of representation and continuous ~k-representation

(i) The basic formula for a change of representation is:

â†(q) =
∑
k

â†(k) 〈k|q〉 (I.1)

It’s Hermitian conjugate is:

â(q) =
∑
k

〈q|k〉 â(k) (I.2)

Note that we only need the scalar product 〈k|q〉 of one-particle basis states to switch
representation, even for a description of many-body systems.

The above can be shown very elegantly in Dirac notation, as follows. For the q-representation
we have:

â†(q)|0〉 = |q〉 (I.3a)

â†(q)|q1 . . . qN〉 =
√
N + 1|qq1 . . . qN〉 (I.3b)

For one particle we have:

|q〉 =
∑
k

|k〉〈k|q〉 (I.4)

Then, symmetrizing state

|q(1)
1 . . . q

(N)
N 〉 =

∑
k1...kN

|k(1)
1 . . . k

(N)
N 〉〈k1|q1〉 · · · 〈kN |qN〉

gives:
|q1 . . . qN〉 =

∑
k1...kN

|k1 . . . kN〉〈k1|q1〉 · · · 〈kN |qN〉 (I.5)

Now the expression of â†(q) in terms of the â†(k), formula (I.1), follows from:

â†(q)|q1 . . . qN〉 =
√
N + 1|qq1 . . . qN〉 =

=
√
N + 1

∑
kk1...kN

|kk1 . . . kN〉〈k|q〉〈k1|q1〉 · · · 〈kN |qN〉
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=
∑

kk1...kN

â†(k)|k1 . . . kN〉〈k|q〉〈k1|q1〉 · · · 〈kN |qN〉

=
∑
k

â†(k)〈k|q〉

 ∑
k1...kN

|k1 . . . kN〉〈k1|q1〉 · · · 〈kN |qN〉


Because the expression between the big brackets is according to (I.5) precisely |q1 . . . qN〉
and this holds for a general state |q1 . . . qN〉 in Fock space, we have proven the change-of-
representation formula (I.1).

(ii) continuous ~k-representation: to change from the discrete ~k-representation to the

continuous ~k-representation one just needs to rescale the state vectors:

|~k〉continuous =
(
L

2π

)3/2

|~k〉discrete =

√
V

(2π)3/2
|~k〉discrete (I.6)

This rescaling arises because in the continuum limit, L −→∞, sums over discrete ~k turn
into integrals over continuous ~k as follows:

1

L3

∑
~k

· · · −→
∫ d~k

(2π)3
· · · (I.7)

(see also section 9.6.2 in Le Bellac). As a result we have:

〈~r |~k〉discrete =
1√
V
ei
~k·~r and 〈~r |~k〉continuous =

1

(2π)3/2
ei
~k·~r (I.8)

(This explains the seeming discrepancy between (?) above and (9.21)-(9.22) in Le Bellac).

The completeness relations in the two ~k-representations then read as we are used to:

∑
~k

|~k〉d d〈~k| = 1̂ and
∫
d~k |~k〉c c〈~k| = 1̂ (I.9)

(d: discrete, c: continuous).

c. Quantum fields: the ~r-representation

Instead of the discrete (or: continuous) ~k-representation, one can also present the whole
formalism in the (continuous) ~r-representation; it is customary to then call the corre-
sponding creation- and annihilation-operators ψ̂†(~r) and ψ̂(~r). These operators are what
we called quantized fields before (Ch.11 of Le Bellac). It is important not to confuse these
operators with wave functions!

According to (I.2) and (I.8) we have:

ψ̂(~r) =
∑
~k

ei
~k·~r
√
V
â~k (34a)
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â~k =
1√
V

∫
V
d~r e−i

~k·~r ψ̂(~r) (34b)

All many-body operators can be expressed in terms of the ψ̂†(~r) and ψ̂(~r). This can be
done in two ways; (i) starting from a definition of ψ̂†(~r) and ψ̂(~r) in the ~r-representation

(just as we did for the discrete ~k-representation above), or: (ii) starting from the expres-

sions in the discrete ~k-representation and using the “Fourier transform” (34a) and (34b).
Some examples of the results are:

N̂ =
∫
d~r ψ̂†(~r) ψ̂(~r) (35)

P̂ =
∫
d~r ψ̂†(~r)

h̄

i

∂

∂~r
ψ̂(~r) operator: total momentum (36)

Ĥ(0) =
∫
d~r ψ̂†(~r)

(
− h̄2

2m
∆

)
ψ̂(~r) (37)

where ∆ is the Laplace operator (=
(
~∇
)2

).

Commutation relations: the following commutation relations can be straightforwardly
derived from those for the â†~k and â~k:

[
ψ̂(~r), ψ̂(~r ′)

]
= 0 ,

[
ψ̂†(~r), ψ̂†(~r ′)

]
= 0 ,

[
ψ̂(~r), ψ̂†(~r ′)

]
= δ(~r − ~r ′) 1̂ (38)

Since the commutation relations are preserved in the change of representation (34), this
change of representation is called a canonical transformation.
It is now straightforward to show:

[
Ĥ(0), ψ̂(~r)

]
=

h̄2

2m
∆ψ̂(~r) (39)

Dynamics of â†~k and â~k: This is derived in a similar way as in section 11.3.2 of LB (Quan-

tization of a scalar field in 1D). For a free many-boson system:

d

dt
â~k(t) =

i

h̄

[
Ĥ(0), â~k(t)

]
=
i

h̄

∑
~k′

εk′

[
n̂~k′ , â~k(t)

]
= −iεk

h̄
â~k(t) −→ â~k(t) = â~k e

−iωkt (40a)

where ωk ≡ εk/h̄ (the commutator is evaluated in one of the problems). Analogously:

â†~k(t) = â†~k e
iωkt (40b)

Having obtained the above results one can understand how the name “second quanti-
zation” came about. Let us recall the time-dependent Schrödinger equation for a free
particle:

ih̄
∂

∂t
ψ(~r, t) = − h̄2

2m
∆ψ(~r, t) (41)
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The general solution is a linear combination of plane waves (as substitution will quickly
confirm):

ψ(~r, t) =
∑
~k

a~k
ei(

~k·~r−ωkt)

√
V

(42)

with h̄ωk = εk = h̄2k2/2m and the a~k are Fouriercoefficients (i.e. numbers!).

For the operators ψ̂(~r, t) (Heisenberg picture) we have, in case of free bosons (using the
result (39)):

ih̄
∂

∂t
ψ̂(~r, t) = −

[
Ĥ(0), ψ̂(~r, t)

]
= − h̄2

2m
∆ψ̂(~r, t) (43)

Combining (34a) and (40a), we find as a solution:

ψ̂(~r, t) =
∑
~k

ei
~k·~r
√
V
â~k(t) =

∑
~k

â~k
ei(

~k·~r−ωkt)

√
V

(44)

Comparing (43) and (44) with (41) and (42), we see that we get the quantum theory
of many particles from the quantum theory of one particle by replacing the Fourier-
coefficients a~k, a

∗
~k

by (annihilation-, creation-) operators â~k, â
†
~k
! This procedure is similar

as in the case of quantizing the classical electromagnetic field (Fourier-coefficients become
operators; see also the other examples in Ch.11 LB). This purely formal resemblance of
quantization procedures has led to the unfortunate name of “second quantization”, which
according to some should be banished, but because of it’s widespread use probably never
will. It is important to stress that there is no such thing as quantizing twice: there is only
one Quantum Theory!

5. The N-fermion system

One-fermion Hilbert space E1

complete set of physical properties k̂; quantum numbers k; basis: {|k〉}.

Now what k stands for will at least include a spin quantum number σ: e.g. k stands for:
~kσ or ~rσ
N fermions: product space: EN = E (1)

1 ⊗ E
(2)
1 ⊗ · · · ⊗ E

(N)
1

basis states: |k(1)
1 k

(2)
2 . . . k

(N)
N 〉

(Note: all ki can take on all values in k̂-spectrum)

Subspace of fully anti-symmetrized states: E (a)
N

|k1 . . . kN〉 ≡ Â|k(1)
1 k

(2)
2 . . . k

(N)
N 〉 =

1

N !

∑
P

sign(P )|k(1)
P1k

(2)
P2 . . . k

(N)
PN 〉 (45)

Here the anti-symmetrization operator Â is defined as:

Â ≡ 1

N !

∑
P

sign(P ) ÛP (46)
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where ÛP is the permutation operator and sign(P ) denotes the sign of the permutation:
sign(P ) = +1 or -1, depending on whether the permutation consists of an even or odd
number of pair exchanges, respectively (any permutation of N entities can be seen as a
product of a number of pair exchanges).

As for the N -boson system, the set of anti-symmetrized states |k1 . . . kN〉 is overcomplete
and non-orthonormal:

〈k1 . . . kN |k′1 . . . k′N〉 =
1

N !

∑
P

sign(P )δ(kP1, k
′
1)δ(kP2, k

′
2) . . . δ(kPN , k

′
N) (47)

Note the extra factor sign(P ) compared to the bosonic case; this factor will make it even
harder to reach 1, even if k1 = k′1, etc.; cf. formula (4).

Operators F̂N and ĜN are the same as for bosons, formulae (10) and (11).

Occupation-number representation:

∣∣∣{nk;N}〉 ≡ |na, nb, . . . ;N〉 ≡ √N ! |k1 . . . kN〉 (48)

The above formula is the analogon of formula (5) for bosons, where we have taken the
Pauli Exclusion Principle into account, which demands that the state vector changes sign
if two particles are interchanged; therefore nk cannot be larger than 1: nk = 0 or nk = 1.
For fermions the order is important (to determine the overall sign of the state vector); we
will typically assume: k1 < k2 < k3 < · · · < kN . In case k is shorthand for more quantum
numbers, one has to agree on a more general convention to order the one-particle states,
but this can always be done.

6. The many-fermion system

a. Fock space

E = E0 ⊕ E1 ⊕ E (a)
2 ⊕ E

(a)
3 ⊕ · · · (49)

Again the space E0 consists of only one state: the vacuum state: |0〉.

b. Creation- and annihilation operators

Definition of creation operator:

â†(k)|0〉 = |k〉 (50a)

â†(k)|k1 . . . kN〉 =
√
N + 1 |kk1 . . . kN〉 (50b)

Using

〈γ|â†(k)|δ〉∗ = 〈δ|â(k)|γ〉 (51)
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with γ ≡ |k1 . . . kN〉 and δ ≡ |k′1 . . . k′N−1〉, the operation of the annihilation operator for
fermions turns out to be:

â(k)|0〉 = 0 (52a)

â(k)|k1 . . . kN〉 =
1√
N

N∑
i=1

(−1)i−1 δ(k, ki)|k1 . . . ki−1ki+1 . . . kN〉 (52b)

To derive formula (52b) is a rather elaborate exercise, which is sketched below. Note that
compared to (18b) for bosons we have an extra factor of (−1)i−1 in (52b).

Derivation of (52b): Starting from (51) we consider:

〈k1 . . . kN |â†(k)|k′1 . . . k′N−1〉 =
√
N〈k1 . . . kN |kk′1 . . . k′N−1〉

=

√
N

N !

∑
P

sign(P )δ(kP1, k)δ(kP2, k
′
1) . . . δ(kPN , k

′
N−1)

=

√
N

N !
δ(k1, k)

∑
P ′

sign(P ′)δ(kP ′2, k
′
1) . . . δ(kP ′N , k

′
N−1)

+

√
N

N !
(−δ(k2, k))

∑
P ′′

sign(P ′′)δ(kP ′′1, k
′
1)δ(kP ′′3, k

′
2) . . . δ(kP ′′N , k

′
N−1)

+ etc.,

where in the first step we used the definition of â†(k), in the second step formula (47); in
the third step, we have split the sum over permutations P into N sums over permutations
that leave 1 invariant (P1 = 1), take it to 2 (P1 = 2), etc. Since in the second term of
the last step 1 and 2 have been interchanged we get an extra minus sign (we have taken:
P = P ′′P12, where P12 interchanges 1 and 2). Using (47) it is now easy to see that the
sum over P ′ above can be written as:∑

P ′
sign(P ′)δ(kP ′2, k

′
1) . . . δ(kP ′N , k

′
N−1) = (N − 1)!〈k2 . . . kN |k′1 . . . k′N−1〉 ,

and the sum over P ′′ as:∑
P ′′

sign(P ′′)δ(kP ′′1, k
′
1)δ(kP ′′3, k

′
2) . . . δ(kP ′′N , k

′
N−1) = (N − 1)!〈k1k3 . . . kN |k′1 . . . k′N−1〉 ,

and similarly for the other sums over permutations. Now we can sum the terms again to:

1√
N

N∑
i=1

(−1)i−1 δ(ki, k)〈k1 . . . ki−1ki+1 . . . kN |k′1 . . . k′N−1〉

Taking the complex conjugate of this expression should, according to (51), equal:
〈k′1 . . . k′N−1|â(k)|k1 . . . kN〉, so that (52b) can be read off.
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c. Anti-commutation relations

From the definition of â†(k) and the derived result for â(k) it follows:{
â†(k), â†(`)

}
= 0̂ (53a)

{â(k), â(`)} = 0̂ (53b){
â(k), â†(`)

}
= δ(k, `) 1̂ (53c)

where
{
Â, B̂

}
≡ ÂB̂ + B̂Â is the anti-commutator of two operators Â and B̂. Note

that
{
Â, B̂

}
=
{
B̂, Â

}
.

Proof of (53c): First:

â(k) â†(`)|k1 . . . kN〉 = â(k)
√
N + 1|` k1 . . . kN〉 =

√
N + 1√
N + 1

[
δ(k, `) |k1 . . . kN〉+

N∑
i=1

(−1)i δ(k, ki)|` k1 . . . ki−1ki+1 . . . kN〉
]
,

where in the first step we have used (50b) and in the second step (52b), taking into account
that the “`-term” is the first term and the k1-term is the second term, which therefore
gets an extra minus-sign. Now we change the order of the operators and use (52b) first
and (50b) second:

â†(`) â(k)|k1 . . . kN〉 = â†(`)
1√
N

N∑
i=1

(−1)i−1 δ(k, ki)|k1 . . . ki−1ki+1 . . . kN〉 =

√
N√
N

(−)
N∑
i=1

(−1)i δ(k, ki)|` k1 . . . ki−1ki+1 . . . kN〉

Adding the two results gives:{
â(k), â†(`)

}
|k1 . . . kN〉 = δ(k, `)|k1 . . . kN〉

Since the last result is for an arbitrary state vector in E , we have shown (53c).

d. Many-body operators for fermions

This works analogously as for bosons: see formulae (25) and (26) for F̂ and Ĝ. It is
important to note that for fermions (because of the anti-commutation relations) the order
in which the creation- and annihilation operators appear is of significance.

e. Change of representation

This works exactly as for bosons: formulae (I.1) and (I.2).
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7. Identical spin-1
2 particles

Application of the preceding: form of operators in Second Quantization for identical par-
ticles with mass m and spin 1

2
(fermions!).

The one-fermion theory is often called “Schrödinger-Pauli theory”. It’s Hilbert space is
again called E1.

Basis in discrete ~k-representation in E1:
{
|~kσ〉

}
~k = 2π

L
~n with nx, ny, nz integer numbers; σ = +1 or -1 (spin 1

2
).

In (continuous) ~r-representation: {|~rσ〉}

The connection between the ~kσ- and ~rσ-representations is (cf. (I.8)):

〈~rσ |~kσ′〉 =
1√
V
ei
~k·~r δσ,σ′ (54)

a. The ~kσ-representation

The form of operators for many-fermion systems is derived quite analogously to that for
the bosonic case; one has to drag along an extra spin index σ, compared to the spin 0 case.

Many-body operators

n̂~kσ = â†~kσ â~kσ (55)

n̂~k =
∑
σ

n̂~kσ (56)

N̂ =
∑
~kσ

n̂~kσ total particle number (57)

Ĥ(0) =
∑
~kσ

εkn̂~kσ =
∑
~kσ

εk â
†
~kσ
â~kσ with εk =

h̄2k2

2m
(58)

We need to use our knowledge of the Hilbert space for spin-1
2

objects to find many-body
operators that involve spin in a less trivial manner.

General procedure [cf. (27)-(28)]: (i) determine matrix elements

f~kσ,~k′σ′ = 〈~kσ|f̂ (1)|~k′σ′〉 (59)

(ii) Using (i):

F̂ =
∑
~kσ

∑
~k′σ′

â†~kσf~kσ,~k′σ′ â~k′σ′ (60)

For instance, the operator Σ̂x, x-component of spin of the many-fermion system (in units
of h̄/2), is derived from the (one-particle) operator σ̂x as follows (using the appropriate
Pauli matrix):

〈~kσ|σ̂x|~k′σ′〉 = δ~k,~k′ [δσ,1 δσ′,−1 + δσ,−1 δσ′,1] −→
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Σ̂x =
∑
~k

[
â†~k,1 â~k,−1

+ â†~k,−1
â~k,1

]
(61a)

The other components of spin are (check for yourself):

Σ̂y =
∑
~k

[
−i â†~k,1 â~k,−1

+ i â†~k,−1
â~k,1

]
(61b)

Σ̂z =
∑
~k

[
â†~k,1 â~k,1 − â

†
~k,−1

â~k,−1

]
=
∑
~k

(
n̂~k,1 − n̂~k,−1

)
(61c)

It is important to note that not all commutators have to be replaced by anti-commutators
in going from bosons to fermions. For instance, the dynamics of operators (Heisenberg
picture) is still governed by the Heisenberg equations and these contain commutators.
As an example we compute the time-dependence of the annihilation operator (in the
~kσ-representation):

d

dt

(
â~kσ(t)

)
=
i

h̄

[
Ĥ(0), â~kσ(t)

]
=
i

h̄

∑
~k′σ′

εk′

[
â†~k′σ′ â~k′σ′ , â~kσ

]
(t) (62)

To compute the commutator we use the general operator formula:[
ÂB̂, Ĉ

]
= Â

{
B̂, Ĉ

}
−
{
Â, Ĉ

}
B̂ (63)

(which is easily proved by writing out the (anti-)commutators). Using the anti-commutation
relations we then find: [

â†~k′σ′ â~k′σ′ , â~kσ

]
= â†~k′σ′ · 0 − δ~k,~k′ δσ,σ′ â~k′σ′

Substituting in (62), we have:

d

dt

(
â~kσ(t)

)
= −iεk

h̄
â~kσ(t) −→ â~kσ(t) = â~kσ e

−iωkt , (64)

where ωk = εk/h̄. Note that this is the same result as for bosons in (40), but that the
calculation is quite different!

b. The ~rσ-representation

The change of representation is now easily made using formulae (I.2) and (54):

â~kσ −→ ψ̂(~rσ)

Mostly it is just a matter of replacing
∫
d~r . . . by

∑
σ

∫
d~r . . ., but for spin operators there

are some differences.
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Examples

n̂(~rσ) = ψ̂†(~rσ) ψ̂(~rσ) (65)

n̂(~r) =
∑
σ

n̂(~rσ) (66)

N̂ =
∑
σ

∫
d~r n̂(~rσ) (67)

Σ̂x =
∫
d~r
(
ψ̂†(~r, 1) ψ̂(~r,−1) + ψ̂†(~r,−1) ψ̂(~r, 1)

)
(68)

where the latter formula is an example of an operator which is non-diagonal in spin space.
The above examples can all be obtained from the ~kσ-representation forms by using the
change-of-representation formula (cf. (34) for bosons):

ψ̂(~rσ) =
∑
~k

ei
~k·~r
√
V
â~kσ (69)

One could again view the many-fermion formalism as a “quantization” of the Schrödinger-
Pauli wavefunction;

ψ(~rσ, t) −→ ψ̂(~rσ, t)

(“second quantization”).

In summary, the second quantization formalism allows to express many-body
operators for systems of identical, interacting particles with fluctuating par-
ticle number in terms of creation- and annihilation operators, which obey
commutation relations (20) for bosons and anti-commutation relations (53)
for fermions.

8. Bose-Einstein and Fermi-Dirac distributions

After the hard work of introducing the second quantization formalism and the experience
with operator calculus in the earlier part of the course, it is now relatively easy to derive
the important Bose-Einstein- and Fermi-Dirac distributions of quantum statistical physics.

〈nk〉 =
1

eβ(εk−µ) − 1
BE distribution (70)

〈nk〉 =
1

eβ(εk−µ) + 1
FD distribution , (71)

where β = 1/kBT , kB: Boltzmann’s constant, T : absolute temperature, µ: chemical po-
tential (= energy of adding a particle to the system: µ = ∂F

∂N
, F : (Helmholtz) free energy).

Generally we have for an expectation value:

〈A〉 = Tr (ρ̂ Â) , (72)
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where the trace Tr is taken in Fock space and the (grand-canonical) state operator (or:
density operator) is given by:

ρ̂ =
e−β(Ĥ−µN̂)

Tr e−β(Ĥ−µN̂)
=

1

Ξ
e−β(Ĥ−µN̂) (73)

Ĥ and N̂ are taken as given in previous sections: Ĥ(0) and N̂ . Ξ is the grand-canonical
partition function. Our derivation will therefore be for free particles, but the results
also hold for interacting particles if we can somehow define one-particle energies εk and
occupation numbers nk.

〈nk〉 = Tr (ρ̂ n̂k) =
1

Ξ
Tr

(
e−β(Ĥ−µN̂) â†k âk

)
(74)

To compute the trace we need an operator identity that was derived in Exercise 2.4.11 in
Le Bellac (see Problem Session 1):

etÂ B̂ e−tÂ = B̂ + t
[
Â, B̂

]
+
t2

2!

[
Â,
[
Â, B̂

]]
+ · · ·

For the special case that:
[
Â, B̂

]
= γ B̂, we have (put t = 1):

eÂ B̂ e−Â = eγ B̂ (75)

We furthermore need the following commutator, which holds for both bosons and fermions
(!), as we calculated in previous sections:[

n̂k, â
†
k

]
= â†k (76)

Then:[
Ĥ − µN̂, â†k

]
= (εk−µ) â†k −→ e−β(Ĥ−µN̂) â†k e

β(Ĥ−µN̂) e−β(Ĥ−µN̂) âk = e−β(εk−µ) â†k e
−β(Ĥ−µN̂) âk ,

where we have used (75) in the last step (in the first step, convince yourself that the
equality sign also holds for fermions!). From (74) it then follows;

〈nk〉 =
1

Ξ
e−β(εk−µ) Tr

(
â†k e

−β(Ĥ−µN̂)âk

)
= e−β(εk−µ) 〈âk â

†
k〉 , (77)

where in the first step we have used the previous formula and in the last step we performed
a rotation of operators in the trace (which leaves it unchanged). Now the expectation
value in formula (77) equals 〈nk〉+ 1 for bosons (commutation relation (20c)) and equals
−〈nk〉+ 1 for fermions (anti-commutation relation (53c)). Inserting this back into (77)
one readily recovers the BE- and FD-distributions (70) and (71), respectively.


