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Abstract A non-linear stability analysis of plane Couette flow of the Upper-Convected

Maxwell model is performed. The amplitude equation describing time-evolution

of a finite-size perturbation is derived. It is shown that above the critical Weis-

senberg number, a perturbation in the form of an eigenfunction of the linearized

equations of motion becomes subcritically unstable, and the threshold value

for the amplitude of the perturbation decreases as the Weissenberg number in-

creases.
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Introduction

In the last decades, stability of flows of polymers, emulsions, colloids etc.

has attracted wide attention when it was discovered that such flows can exhibit

hydrodynamic instabilities and even become turbulent at very small Reynolds

numbers (Larson et al., 1990, McKinley et al., 1991, Groisman and Steinberg,

2000, Groisman and Steinberg, 2004). Unlike Newtonian turbulence, where

inertia plays a destabilizing role, this elastic turbulence or turbulence without

inertia (Larson, 2000) has its origin in the visco-elastic properties of the fluid.

It has become a challenge to find the mechanism of the elastic instabilities and

transition to turbulence.

The non-Newtonian behaviour of complex fluids originates from the in-

teraction between the flow and the internal structure of the fluid. In water,

for example, external flows do not typically disturb molecular motion since

the molecular and flow velocity- and time-scales are well separated, while in

complex flows polymers get stretched, emulsion and colloidal clusters get de-

formed and break, vesicles change their shapes etc. Since these interactions

are partly reversible (e.g. the polymers return to their equilibrium conforma-

tion releasing accumulated stress) and depend on the deformation history, the

fluid acquires memory and becomes visco-elastic. Naturally, this is reflected in
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the equations of motion for complex fluids: the Navier-Stokes equation (writ-

ten in dimensionless units)

Re

[

∂v

∂t
+ (v · ∇)v

]

= −∇p −∇ · τττ

is supplemented by a constitutive equation – a relation between the stress ten-

sor τττ and the velocity-gradient tensor (∇v), which is no longer a linear New-

tonian equation

τττ = −
[

(∇v) + (∇v)†
]

,

but usually is a non-linear PDE in space and time1; the dagger † denotes the

transposed matrix.

The main difference between Newtonian and visco-elastic equations of mo-

tion is the presence of additional non-linearity in the constitutive equation.

The inertial non-linearity Re (v · ∇)v, which is responsible for instabilities

and turbulence in Newtonian liquids, is of small significance for visco-elastic

fluids (especially for dense polymer solutions and melts) since their large vis-

cosity results in small Reynolds numbers Re ∼ 10−4 − 101. Therefore, the

non-linear behaviour of the equations of motion is dominated by the elastic

non-linearity, the strength of which is controlled by a dimensionless Weis-

senberg number Wi = γ̇λ, where γ̇ is the typical shear rate, and λ is the

relaxation time of the fluid. When the Weissenberg number becomes compara-

ble to unity, this non-linearity gives rise to non-trivial rheological phenomena:

shear-rate dependent shear viscosity, and the normal-stress effect: in plane

shear vx = γ̇y, the normal-stress difference τyy − τxx is not zero as for Newto-

nian fluids, but grows as γ̇2 for small Wi. At larger Weissenberg numbers, the

elastic non-linearity causes hydrodynamic instabilities and, possibly, transition

to turbulence.

The mechanism of linear elastic instability was identified for flows with

curved stream-lines (Larson et al., 1990, Joo and Shaqfeh, 1992). One of the

classical examples of such a flow is realized in Taylor-Couette cell where fluid

fills the gap between two coaxial cylinders made to rotate with respect to each

other. In the laminar state, the fluid moves around the cylinder axis and the

elastic or hoop stresses act on polymer molecules stretching them along the

circular stream-lines and exerting extra pressure towards the inner cylinder in

consequence of the normal-stress effect. When these stresses overcome vis-

cous friction, the laminar state becomes linearly unstable – any infinitesimal

1Unfortunately, there is no unique constitutive equation for all visco-elastic systems and one has to choose

between various standard models (Upper-Convected Maxwell model, Oldroyd-B, FENE-P etc.) (Bird et al.,

1987). This choice is usually guided by two requirements: a) the model should (approximately) reproduce

rheological properties of the visco-elastic system in question, b) the model should be relatively simple to

allow analytical or numerical analysis.
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perturbation will push a polymer from the circular stream-lines and create a

secondary flow in the form of Taylor vortices. Pakdel and McKinley gen-

eralized this mechanism to arbitrary flows (Pakdel and McKinley, 1996) and

proposed that there exists a universal relation between the properties of the

fluid and the flow geometry which determines the conditions of the linear in-

stability. They argued that the critical Weissenberg number is related to the

characteristic curvature of the flow stream-lines and that the linear instability

disappears when the curvature goes to zero. The known results on the visco-

elastic instabilities in Taylor-Couette (Larson et al., 1990), cone-and-plate and

parallel plate (McKinley et al., 1991), Dean and Taylor-Dean (Joo and Shaqfeh,

1992) flows are in agreement with this curved stream-lines – linear instability

paradigm.

The situation is different for visco-elastic parallel shear flows. There is no

general agreement on whether flows like plane Couette or pipe flow do in fact

become unstable. The only results available are on the linear stability of these

flows. For essentially all studied visco-elastic models, laminar plane Couette

flow is linearly stable (Gorodtsov and Leonov, 1967, Renardy and Renardy,

1986, Renardy, 1992, Wilson et al., 1999) (note the exception (Grillet et al.,

2002)). In the case of pipe flow, the linear stability was demonstrated numeri-

cally by Ho and Denn (Ho and Denn, 1978) for any value of the Weissenberg

and Reynolds numbers. Therefore, it has become common knowledge that

the parallel shear flows of fluids obeying simple visco-elastic models (UCM,

Oldroyd-B, etc.) are linearly stable, in agreement with the curved stream-lines

– linear instability paradigm. Clearly, if an instability does occur in practice,

it has to be non-linear.

At the moment, there has been no experiment that would clearly establish

the presence or absence of a bulk hydrodynamic instability in parallel visco-

elastic shear flows. One of a few indirect indications that a bulk instability

might occur in pipe flow comes from the famous melt-fracture problem (Petrie

and Denn, 1976, Denn, 1990, Denn, 2001), which arises in extrusion of a dense

polymer solution or melt through a thin capillary. There, when the extrusion

rate exceeds some critical value, the surface of the extrudate becomes distorted

and the extrudate might even break, giving the name to the phenomenon. It

is possible that this is a manifestation of an instability taking place inside

the capillary, though other mechanisms (such as stick-slip, influence of the

inlet, etc.) have been proposed (Petrie and Denn, 1976, Denn, 1990, Denn,

2001). Recently, we presented arguments for the bulk instability being related

to the melt-fracture phenomenon (Meulenbroek et al., 2003, Bertola et al.,

2003, Meulenbroek et al., 2004), but the issue stays controversial. There is

also some evidence for non-linear parallel shear flow instabilities from numeri-

cal simulations of visco-elastic hydrodynamic equations (Atalik and Keunings,

2002). Partly because the numerical schemes used to solve these equations are
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known to break down when elastic stresses become large (Wi & 1) – the so-

called high Weissenberg number problem (Owens and Phillips, 2002) – it is

open to debate whether an observed phenomenon is due to a numerical or a

true physical instability.

In this paper we argue that visco-elastic plane Couette flow does exhibit a

subcritical instability as can be seen from the following argument. The lami-

nar velocity profiles of the parallel shear flows have straight stream-lines, and,

therefore, their linear stability is in agreement with the curved stream-lines –

linear instability paradigm. The linear theory predicts that a small perturbation

superimposed on top of the laminar flow will decay in time with the decay rate

depending on the Weissenberg number. When Wi becomes larger than one, the

decay time becomes comparable with the elastic relaxation time λ, and the per-

turbation becomes long-living. Thus, on short time-scales, the superposition of

the laminar flow and the slowly-decaying perturbation can be viewed as a new

basis profile with curved stream-lines. Applying the same curved stream-lines

– linear instability paradigm to the perturbed streamlines, we conclude that this

new flow can become linearly unstable. The instability requires a subsequent

creation of two perturbations, and thus is non-linear. Since the initial perturba-

tion has to be strong enough to become unstable, there exists a finite-amplitude

threshold for the transition, which becomes smaller as the Weissenberg num-

ber increases. This scenario resembles transition to turbulence in parallel shear

flows of Newtonian fluids. There as well, one encounters the absence of the

linear instability, and a subcritical transition with the threshold going down

with the Reynolds number (Schmid and Henningson, 2001, Hof et al., 2003).

In order to check our hypothesis we perform the non-linear stability analy-

sis of the Upper-Convected Maxwell (UCM) model. The method we employ

is somewhat similar to what was used by Stuart (Stuart, 1960) and Herbert

(Herbert, 1980) for Newtonian flows. We start from the laminar plane Couette

flow and perturb it by a finite-size disturbance chosen to be in the form of an

eigenmode of the linear part of the equations of motion. We then derive an

amplitude equation that determines the time evolution of the disturbance. The

instability is found for given eigenmode, if there is such an initial value of the

amplitude of the disturbance that it will grow in time and, possibly, saturate.

In the following Sections we present the derivation and main results of our

analysis.

1. Asymptotic expansion

Let us consider plane Couette flow of a visco-elastic fluid. The fluid is con-

fined in-between two plates a distance 2d apart moving with equal velocities v0

in the opposite directions. We use the standard convention for the coordinates

with x, y, and z referring to the streamwise, gradient, and spanwise directions,
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respectively. We define the Weissenberg Wi = λv0/d and the Reynolds num-

bers Re = ρv0d/η, where ρ is the density and η is the viscosity of the fluid; d
is used as the unit of length, d/v0 as the unit of time, and the stress tensor is

scaled with ηv0/d.

The equations of motion include the Navier-Stokes equation

Re

[

∂v

∂t
+ (v · ∇)v

]

= −∇p −∇ · τττ , (1)

and the incompressibility condition

∇ · v = 0, (2)

where p is the pressure, and τττ is the visco-elastic stress tensor. To close this

system of equations one needs to specify the constitutive relation, and in this

work we are going to use the Upper-Convected Maxwell (UCM) model

τττ + Wi

[

∂τττ

∂t
+ v · ∇τττ − (∇v)† · τττ − τττ · (∇v)

]

= −
[

(∇v) + (∇v)†
]

(3)

– one of the simplest non-linear models available. Although it does not repro-

duce realistic features of dense polymer solutions (Bird et al., 1987), it does

predict the normal-stress effect, which is, as we have argued above, at the ori-

gin of the non-linear instabilities in parallel shear flows of visco-elastic fluids.

Since our purpose is to demonstrate that such an instability can occur, this

simple model will suffice.

As usually, we split the hydrodynamic fields v and τττ in two parts – the

laminar value and the perturbation field:

v = y ex + v
′,

τij = −2Wi δixδjx − (δixδjy + δiyδjx) + τ ′
ij.

Next, we introduce the perturbation vector V = {v ′
i, τ

′
ij , p}† and rewrite the

system (1)-(3) in the compact form

L̂V + Â
∂V

∂t
= N (V, V ) , (4)

where L̂ and N represent the linear operator and the quadratic non-linearity in

(1)-(3), and Â is a constant diagonal matrix. The explicit expressions for L̂, N
and Â are given in Appendix.

Our stability analysis of eq.(4) is based on the eigenfunctions V
(n)
0 of the

linear operator L̂:

L̂
(

ei(kxx+kzz)V
(n)
0 (y)

)

= −λnei(kxx+kzz)V
(n)
0 (y). (5)
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The minus sign in the definition of the eigenvalues λn is chosen in such a way

that eλntei(kxx+kzz)V
(n)
0 (y) is a solution of the linear problem

(

L̂ + Â ∂
∂t

)

V =

0. There are several kinds of eigenfunctions of the UCM plane Couette flow

and their form and number will be discussed in Section 2. Here, we will focus

on a particular eigenfunction ei(kxx+kzz)V0(y) and assume that the non-linear

dynamics of eq.(4) is dominated by V0. Then, the solution to eq.(4) can be

approximated by

V (r, t) = Φ(t)ei(kxx+kzz)V0(y) + Φ∗(t)e−i(kxx+kzz)V ∗
0 (y)

+U0(y, t) +
∞

∑

n=2

[

Un(y, t)ein(kxx+kzz) + U∗
n(y, t)e−in(kxx+kzz)

]

, (6)

where we have introduced the time-dependent amplitude Φ(t); ∗ denotes com-

plex conjugation. Moreover, we notice that the higher order harmonics Un can

only be generated by at least n non-linear self-interactions of the linear mode

and have, therefore, the following form:

U0(y, t) = |Φ(t)|2u(2)
0 (y) + |Φ(t)|4u(4)

0 (y) + · · · ,

U2(y, t) = Φ2(t)u
(2)
2 (y) + Φ2(t)|Φ(t)|2u(4)

2 (y) + · · · , (7)

U3(y, t) = Φ3(t)u
(3)
3 (y) + · · · ,

· · ·

where u
(2)
0 (y), u

(4)
0 (y) etc. are unknown functions. Substituting the ansatz (6)

into eq.(4) and separating the terms proportional to ei(kxx+kzz) we obtain

(

dΦ

dt
− λΦ

)

ei(kxx+kzz)V0(y) = N̄
(

Φei(kxx+kzz)V0(y), U0(y, t)
)

+N̄
(

Φ∗e−i(kxx+kzz)V ∗
0 (y), e2i(kxx+kzz)U2(y, t)

)

(8)

+

∞
∑

n=2

N̄
(

e(n+1)i(kxx+kzz)Un+1(y, t), e−ni(kxx+kzz)U∗
n(y, t)

)

,

where N̄(A,B) = N(A,B) + N(B,A). The evolution equation for the am-

plitude Φ can be derived with the help of the eigenmode of the adjoint operator

L̂†, which is defined via

〈V1|L̂V2〉 = 〈L̂†V1|V2〉, (9)

where the scalar product is given by

〈V1|V2〉 = lim
Lx,Lz→∞

1

2Lx

∫ Lx

−Lx

dx
1

2

∫ 1

−1
dy

1

2Lz

∫ Lz

−Lz

dz (V ∗
1 , V2) , (10)
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and (A,B) =
∑

i AiBi. The eigenmodes of the adjoint operator

L̂†
(

ei(kxx+kzz)W
(m)
0 (y)

)

= −λmei(kxx+kzz)W
(m)
0 (y) (11)

are orthogonal to the eigenfunctions of the linear operator L̂ unless their eigen-

values coincide λn = λm (see eq.(5)). Using this property, we project eq.(8)

onto the eigenfunction V0 to obtain the amplitude equation

dΦ

dt
= λΦ + C3Φ|Φ|2 + C5Φ|Φ|4 + C7Φ|Φ|6 + C9Φ|Φ|8 + · · · , (12)

where the coefficients are given by

C3 =
1

∆

〈

ei(kxx+kzz)W0(y)

∣

∣

∣

∣

N̄
(

ei(kxx+kzz)V0(y), u
(2)
0 (y)

)

+N̄
(

e−i(kxx+kzz)V ∗
0 (y), e2i(kxx+kzz)u

(2)
2 (y)

)

〉

, (13)

C5 =
1

∆

〈

ei(kxx+kzz)W0(y)

∣

∣

∣

∣

N̄
(

ei(kxx+kzz)V0(y), u
(4)
0 (y)

)

+N̄
(

e−i(kxx+kzz)V ∗
0 (y), e2i(kxx+kzz)u

(4)
2 (y)

)

+N̄
(

e−2i(kxx+kzz)u
(2)∗
2 (y), e3i(kxx+kzz)u

(3)
3 (y)

)

〉

, (14)

· · ·

with ∆ = 〈ei(kxx+kzz)W0(y)|ei(kxx+kzz)V0(y)〉. The expressions for higher

coefficients C7, C9 etc. are derived in the similar way. The equations for the

unknown functions u
(2)
0 (y), u

(4)
0 (y) etc. are also derived by substituting the

ansatz (6) into eq.(4) and are given in Appendix B.

In this work we are going to calculate the first five coefficients C3 – C11 of

eq.(12) for plane Couette flow of a UCM fluid. In the next Section we present

the results for various eigenfunctions and discuss their non-linear stability.

2. Results

Since our analysis is based on the eigenfunctions of the linear operator L̂,

we first discuss the structure of the linear spectrum {λn} for given Reynolds

and Weissenberg numbers.

The eigenvalues of the UCM plane Couette flow problem can be separated

in two groups: the ”purely elastic” eigenvalues and ”elastic-inertial” ones. The

first group consists of a pair of complex conjugated eigenvalues and the so-

called ”continuous spectrum”. The eigenvalues from this group are ”purely
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elastic” in the sense that they exist even in the limit Re = 0. The pair was

discovered by Gorodtsov and Leonov (Gorodtsov and Leonov, 1967) for two-

dimensional purely elastic plane Couette flow and can be generalized to the

3-dimensional case:

λ(GL) = ε ± iω (15)

ε =
1

D

[

kx k q sin (2Wikx) − 1

2
Wik2

x sinh (2 k) sinh (2 q)

]

ω2 = −ε2 + k2
x − k2

x

D

[

2 k q cos (2Wikx) + q cosh (2 q) sinh (2 k)

−1

2
sinh (2 q) (2 k cosh (2 k) + sinh (2 k))

]

,

where

k =
√

k2
x + k2

z , q =
√

(1 + Wi2)k2
x + k2

z ,

D = k q

(

cos 2Wikx − cosh (2 k) cosh (2 q)

)

+ q2 sinh (2 k) sinh (2 q) .

For small Reynolds numbers, the Gorodtsov-Leonov eigenvalues pick up cor-

rections of order Re. This pair of eigenvalues corresponds to the 3-dimensional

vortices localized at the walls and traveling along them in opposite directions.

An example of the velocity field generated by such an eigenmode is plotted in

Fig.1 for λ(GL) = −0.9273+0.7279i, Wi = 1, Re = 0.1, kx = 1 and kz = 1.

The continuous spectrum contains infinitely many eigenvalues in the form

(Renardy and Renardy, 1986, Wilson et al., 1999)

λ(C) = − 1

Wi
+ i ω , ω ∈ [−kx, kx]. (16)

and, as was shown by Graham (Graham, 1998), is unphysical. It has its ori-

gin in the fact that polymers with non-linear relation between the degree of

extension and the force necessary to achieve this extension behave as Hookean

dumbbells upon linearization, while the latter can be infinitely stretched in

extensional flow at finite Weissenberg numbers (Bird et al., 1987). Indeed,

Graham has found (Graham, 1998) that the stresses of the eigenmodes corre-

sponding to λ(C) have singularities and are unrealistic. These eigenvalues will

be discarded in our work.

The second group contains infinitely many eigenvalues that disappear in the

limit of Re → 0. The eigenvalues from this group have their real parts close

to 1/2Wi, while their imaginary parts scale as 1/
√

Re; they can be ordered

according to an integer n that gives the number of wiggles in the y-direction.

The ”elastic-inertial” eigenvalues can further be split in two infinite subsets,
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Figure 1. Velocity field of the Gorodtsov-Leonov eigenmode with λ(GL) = −0.9273 +
0.7279i, Wi = 1, Re = 0.1, kx = 1 and kz = 1. The eigenmode is mostly localized near

one wall, while the eigenmode with the complex-conjugated eigenvalue λ(GL) = −0.9273 −

0.7279i occupies the other. Top: velocity field in the xy-plane. The shade of gray represents

the third velocity component; Middle: The same in the yz-plane.
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Figure 2. Velocity field of the ”elastic-inertial” eigenmode with λ = −0.4924 + 14.9384i,

Wi = 1, Re = 0.1, kx = 1 and kz = 1. Top: velocity field in the xy-plane. The shade of gray

represents the third velocity component; Bottom: The same in the yz-plane.

corresponding to 2- and 3-dimensional vortices. An example of the 3D vor-

tices is given in Fig.2. The difference between the structure of the 2D and 3D

vortices becomes apparent if kx = 0: they reduce to the streamwise streaks

and a combination of the streamwise streaks and vortices, respectively.

All of the eigenvalues discussed have negative real parts and are, therefore,

linearly stable.
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Figure 3. Steady-state amplitude Φ for kx = 1 and kz = 1 versus Weissenberg number Wi.

The curves from left to right represent the solutions to S2 = 0, · · · , S5 = 0, respectively. The

ratio Re = 10−3Wi was kept constant.

Now we turn to the non-linear stability analysis of the eigenmodes discussed

above. For each eigenvalue λ we calculate the coefficients C’s in eq.(12) with

the help of eqs.(13,14,11) and the equations from Appendix B. This calcu-

lation requires solution of several linear inhomogeneous ODE’s of the 4th

order. For the special case of the inertialess (Re = 0) Gorodtsov-Leonov

eigenmode we were able to calculate the coefficients C3 and C5 analytically.

The higher coefficients and the coefficients for the other eigenmodes involve

long and cumbersome expressions and were treated numerically. Since the

ODE’s from Appendix B are very stiff, we solved them using the 4th-order

Runge-Kutta method with reortonormalization performed at each step (Go-

dunov, 1961, Conte, 1966). Our code was tested against the analytical result

for the inertialess Gorodtsov-Leonov eigenmode.

The instability threshold |Φ∗| is given by the amplitude of the traveling-wave

solution, Φ(t) = |Φ∗| ei Ω t, of eq.(12)

Sm(|Φ∗|) ≡ Re
(

λ + C3|Φ∗|2 + · · · + C2m+1|Φ∗|2m
)

= 0. (17)

However, one has to be careful because it is not guaranteed that the asymp-

totic series (17) converges. Thus, the amplitude expansion for the Newtonian

channel flow was shown to suffer from convergence problems (Herbert, 1980).

Therefore, we solve the sequence of equations S2 = 0, · · · , S5 = 0 in order to

check that their solutions do converge to some value |Φ∗|.
The results for the Gorodtsov-Leonov eigenmodes are shown in Figs.3 and

4. The most important feature of these curves is that they show the existence

of a subcritical instability for Weissenberg numbers larger than the saddle-

node value Wisn. As the arrows indicate, for Wi > Wisn the lower branch
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0.05

0.1

0.15

0.2

0.25

0.3

|Φ
|

Figure 4. The same as Fig.3 for kx = 2, kz = 2, and Re = 10−1Wi.

of the curves denotes the critical amplitude – amplitudes larger than this value

will grow in time. Note that the instability threshold is small (consistent with

the assumption |Φ| < 1), and goes down as Wi increases. The inclusion of

higher-order terms causes the whole curve to shift to the right, though the shift

becomes roughly two times smaller with every coefficient included, suggesting

convergence.

Table 1. Real parts of the coefficients C’s for kx = 2, kz = 2, and Re = 10−1Wi; ε and ω

denote the real and imaginary parts of the Gorodtsov-Leonov eigenvalue, respectively.

Wi ε ω C3 C5 × 10−2 C7 × 10−5 C9 × 10−7 C11 × 10−9

1.50 0.562 1.757 39.549 -21.322 -5.723 -7.617 -5.683

2.00 0.394 1.796 26.433 -3.571 -2.020 -3.169 -3.162

2.20 0.350 1.809 23.802 -0.011 -1.308 -2.344 -2.741

2.30 0.331 1.815 22.720 1.376 -1.019 -1.986 -2.495

2.80 0.259 1.841 18.642 5.740 -0.001 -0.517 -0.972

2.90 0.248 1.845 18.000 6.249 0.141 -0.276 -0.641

3.00 0.238 1.849 17.399 6.672 0.267 -0.053 -0.312

3.05 0.233 1.851 17.112 6.855 0.324 0.053 -0.149

3.10 0.228 1.853 16.833 7.021 0.378 0.155 0.012

5.50 0.113 1.912 9.096 6.926 1.112 2.243 4.802

While the lower branch of each curves gives the minimal amplitude of the

disturbance sufficient to destabilize the laminar flow, the upper branch deter-

mines the saturated value of Φ after the transition. Surprisingly, it diverges
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Figure 5. The saddle-node Weissenberg number versus kx for different values of kz; Re =
10−3Wi.

in the vicinity of the saddle-node where the highest coefficient in the expan-

sion changes sign (see Table 1). There could be several reasons for that. First,

it may indicate that the non-linear state in the form of eq.(6) is unstable and

will undergo a transition to another coherent state or to turbulence. Second,

although we consider this unlikely, it may be that the UCM model cannot cap-

ture this state. Finally, and most likely, it may be that the upper branch lies

beyond the radius of convergence of (12).

In Fig.5 we plot the lowest Weissenberg number for which the non-linear

instability is possible, or the position of the saddle-node Wisn, as a function of

the wave-vectors kx and kz . It clearly shows that the saddle-node position is

only a weak function of the wave-vectors, and a large number of modes with

different kx’s and kz’s is non-linearly unstable for given Wi > 2.1. Even if

each individual mode saturates at a given value of Φ, we cannot predict the

behaviour of the superposition of a large number of such modes. They might

stabilize each other to form a 3-dimensional coherent state, or they can become

chaotic very close to or even at the instability.

Finally, we turn to the discussion of the ”elastic-inertial” eigenmodes. We

have performed calculations for the first ten of these modes and have found

that for all of them the real parts of the coefficients C’s are negative. Hence,

we do not find a subcritical instability if the perturbation is chosen in the form

of the ”elastic-inertial” eigenmodes. An interesting question is whether these

eigenmodes contribute to the visco-elastic exact coherent state (if such a state

exists !), or whether this state is a non-linear superposition of the Gorodtsov-

Leonov eigenmodes only. To this moment, it remains an open question.
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3. Discussion

We have presented the non-linear stability analysis of the visco-elastic plane

Couette flow of the UCM model. We have derived the amplitude equation de-

scribing the time-evolution of a perturbation chosen in the form of an eigen-

mode of the linear operator, and have shown that for the purely elastic Gorodtsov-

Leonov eigenmodes, there exists a subcritical instability for the Weissenberg

numbers Wi > 2.1. The other eigenmodes are found to be non-linearly stable.

As Fig.5 shows, the saddle-node Weissenberg number is a weak function of

the wave-vectors kx and kz and an infinite number of the Gorodtsov-Leonov

eigenmodes will become unstable for Wi > 2.1. The nature of the state that

will result from the non-linear interactions of these modes is unknown. The

possibilities include a turbulent state, a stable 3D coherent state and a linearly

unstable 3D coherent state, in which case it will be a visco-elastic analog of

the Newtonian Nagata solutions (Nagata, 1990). If such a state exists and is

linearly unstable, there is an intriguing possibility that it will take part in the

visco-elastic version of the self-sustaining cycle proposed by Waleffe (Waleffe,

1997).

The previous studies of the visco-elastic plane Couette flow were inconclu-

sive but might well be taken to be in agreement with our findings though they

also were not able to capture the non-linear state after the instability. Atalik and

Keunings (Atalik and Keunings, 2002) performed 2D direct numerical simula-

tions of the Oldroyd-B plane Couette flow, and have shown that it is stable for

Weissenberg numbers smaller than 2. Moreover, they reported appearance of

numerical instabilities for Weissenberg numbers larger than 2. It is tempting

to speculate that the numerical instability observed by Atalik and Keunings

is a manifestation of the underlying physical instability. Ashrafi and Khayat

(Ashrafi and Khayat, 2000) have developed a low-dimensional Galerkin pro-

jection for the Johnson-Segalman fluid, and have shown that one-dimensional

disturbances in x-direction become unstable. There as well, one cannot draw

a conclusion about the resulting state in view of the special form of the pertur-

bation and the very small number of modes included.

Finally, we want to make a general comment on the application of the

amplitude expansion to the non-linear stability analysis of the visco-elastic

flows. Surely, this method is crude for it a) ignores interactions between var-

ious eigenmodes, b) assumes ”slaving” (see Section 1 for details), c) requires

amplitude of the perturbation to be small etc. It is incomparable in conclusive-

ness and accuracy with the modern methods used in Newtonian instabilities.

These methods, however, are difficult to employ for the visco-elastic insta-

bilities as they rely heavily on the insights from numerical and experimental

studies. Let us repeat that there has been no experimental or numerical study

of the visco-elastic parallel shear flows. The low-dimensional models are also
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difficult to derive in the visco-elastic case, as we simply do not know what

kind of coherent structures may get involved. Experiments in Taylor-Couette

flow of Groisman and Steinberg (Groisman and Steinberg, 1997) and numeri-

cal study of Kumar and Graham (Kumar and Graham, 2000) suggest that the

coherent structures in visco-elastic plane Couette flow may be different from

the Newtonian counterparts. Therefore, the present study is a first step towards

understanding visco-elastic instabilities in parallel shear flows.
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Appendix

As we have mentioned above, the equations of motion (1)-(3) can be written in the matrix

form

L̂V + Â
∂V

∂t
= N (V, V ) ,

where Â is a constant matrix

Aij =

8

>

>

>

<

>

>

>

:

0 i 6= j

Re i = j = 1 . . . 3

0 i = j = 4

Wi i = j = 5 . . . 10

and L̂ is the linear operator

L̂ =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

K̂ Re 0 ∂x ∂y ∂z 0 0 0 ∂x

0 K̂ 0 0 ∂x 0 ∂y ∂z 0 ∂y

0 0 K̂ 0 0 ∂x 0 ∂y ∂z ∂z

∂x ∂y ∂z 0 0 0 0 0 0 0

2X̂1 0 0 L̂ −2 Wi 0 0 0 0 0

∂y (1 + 2 Wi2) ∂x −Wi∂z 0 L̂ 0 −Wi 0 0 0

∂z 0 X̂1 0 0 L̂ 0 −Wi 0 0

0 2X̂2 0 0 0 0 L̂ 0 0 0

0 ∂z X̂2 0 0 0 0 L̂ 0 0

0 0 2 ∂z 0 0 0 0 0 L̂ 0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

,

where L̂ = 1+Wi y ∂x, K̂ = Rey ∂x, X̂1 = (1+2 Wi2) ∂x +Wi∂y , and X̂2 = Wi ∂x +∂y .

The bilinear form N represent the non-linear terms in eqs.(1)-(3)

N
“

V
(A)

, V
(B)

”

= −
“

v
(A)

· ∇
”

Â · V
(B)

+Wi

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

0
0
0
0

2
h

τ
(A)
xx ∂xv

(B)
x + τ

(A)
xy ∂yv

(B)
x + τ

(A)
xz ∂zv

(B)
x

i

τ
(A)
xx ∂xv

(B)
y − τ

(A)
xy ∂zv

(B)
z + τ

(A)
xz ∂zv

(B)
y + τ

(A)
yy ∂yv

(B)
x + τ

(A)
yz ∂zv

(B)
x

τ
(A)
xx ∂xv

(B)
z + τ

(A)
xy ∂yv

(B)
z − τ

(A)
xz ∂yv

(B)
y + τ

(A)
yz ∂yv

(B)
x + τ

(A)
zz ∂zv

(B)
x

2
h

τ
(A)
xy ∂xv

(B)
y + τ

(A)
yy ∂yv

(B)
y + τ

(A)
yz ∂zv

(B)
y

i

τ
(A)
xy ∂xv

(B)
z + τ

(A)
xz ∂xv

(B)
y + τ

(A)
yy ∂yv

(B)
z − τ

(A)
yz ∂xv

(B)
x + τ

(A)
zz ∂zv

(B)
y

2
h

τ
(A)
xz ∂xv

(B)
z + τ

(A)
yz ∂yv

(B)
z + τ

(A)
zz ∂zv

(B)
z

i

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

Obviously, N (A, B) 6= N (B, A).
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Appendix B

The equations for the unknown functions u
(2)
0 (y), u

(4)
0 (y) etc. are derived by substituting

the ansatz (6) into eq.(4). Requiring that the coefficients of the harmonics ein(kxx+kzz) vanish

for all n’s one obtains

L̂
“

e
2iξ

u
(2)
2

”

+ 2λe
2iξ

u
(2)
2 = N

“

e
iξ

V0, e
iξ

V0

”

L̂
“

e
2iξ

u
(4)
2

”

+ 2 (λ + <λ) e
2iξ

u
(4)
2 = −2C3e

2iξ
u

(2)
2 + N̄

“

e
−iξ

V
∗

0 , e
3iξ

u
(3)
3

”

+N̄
“

u
(2)
0 , e

2iξ
u

(2)
2

”

L̂
“

u
(2)
0

”

+ 2 (<λ) u
(2)
0 = N̄

“

e
iξ

V0, e
−iξ

V
∗

0

”

L̂
“

u
(4)
0

”

+ 4 (<λ) u
(4)
0 = −2 (<C3)u

(2)
0 + N

“

u
(2)
0 , u

(2)
0

”

+ N̄
“

e
2iξ

u
(2)
2 , e

−2iξ
u

(2)∗
2

”

L̂
“

e
3iξ

u
(3)
3

”

+ 3λe
3iξ

u
(3)
3 = N̄

“

e
iξ

V0, e
2iξ

u
(2)
2

”

where ξ = kxx + kzz and < denotes the real part of a complex number. In deriving these

equations one has to deal with the expressions like
∂Un(y,t)

∂t
or, in view of eq.(7), with

dΦ(t)
dt

.

This derivative is replaced by the r.h.s. of the amplitude equation (12) to assure self-consistency.
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