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The variational principles introduced by Kadanoff et al in the renormahzatmn theory are 
analyzed. It is shown that the values for the specific heat critical exponent a which can be found 
by a variational method are restricted to a < 0 or t~ = 1 (first order transition). The reason is the 
confluence of the singularities in the free energy and in the variational parameters. A full 
implementation of the variational principle changes for the square Ising lattice the earlier 
obtained a = 0.001756 to t~ = -0.123413. 

O. Introduction 

The  r e n o r m a l i z a t i o n  t h e o r y  fo r  c r i t ica l  p h e n o m e n a  has  p r o v i d e d  the  m e a n s  
to  ca l cu l a t e  the  c r i t i ca l  e x p o n e n t s .  The  first  a t t e m p t s  1'2) to  ob t a in  a c c u r a t e  
e x p o n e n t s  b y  a p o s i t i o n  s p a c e  m e t h o d  i n v o l v e d  a c o n s i d e r a b l e  a m o u n t  of  
c o m p u t a t i o n a l  effor t .  In  the  s e a r c h  for  a s imple  and  a c c u r a t e  m e t h o d  the  
v a r i a t i o n a l  a p p r o a c h  of  K a d a n o f f ,  H o u g h t o n  and  Y a l a b i k  ( K H Y )  3) s e e m s  to 
be  a b r e a k t h r o u g h  and  it has  b e e n  app l i ed  to a v a r i e t y  o f  models4).  

The  i dea  o f  K H Y  is to use  the  f r e e d o m  in def in ing a r e n o r m a l i z a t i o n  
t r a n s f o r m a t i o n  to  o p t i m i z e  the  f r ee  ene rgy .  T h e y  s h o w e d  tha t  a p p r o x i m a t e  
r e n o r m a l i z a t i o n  t r a n s f o r m a t i o n s  can  be  def ined  g e n e r a t i n g  a f ree  e n e r g y  
w h i c h  is a r i go rous  u p p e r  or  l o w e r  b o u n d  to the  t rue  f r ee  ene rgy .  T h e n  the  
f ree  p a r a m e t e r s  in the  r e n o r m a l i z a t i o n  t r a n s f o r m a t i o n  can  be  c h o s e n  such  as 
to o p t i m i z e  the  b o u n d s .  Thus ,  an  i m p r e s s i v e l y  a c c u r a t e  b o u n d  to the  f ree  
e n e r g y  re su l t s  and  a l so  the  r e p o r t e d  cr i t ica l  e x p o n e n t s  a re  v e r y  c lo se  to  w h a t  
is k n o w n  e x a c t l y  o r  m a y  be  e x p e c t e d  f rom o t h e r  sou rces .  

I t  has  b e e n  n o t e d  b y  KnopsS),  h o w e v e r ,  tha t  the  va r i a t i ona l  p r inc ip l e  has  
no t  b e e n  app l i ed  fu l ly  a r o u n d  the  f ixed p o i n t  and  tha t  a m o r e  c o n s e q u e n t  
a p p l i c a t i o n  c h a n g e s  the  va lue  o f  a f rom a = 0.001756 to a va lue  a r o u n d  
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a = - 0 . 1  (for the d = 2 quadratic Ising model  where a = 0). The source of this 
change is the dependence  of the variational parameters  on the interaction 
constants  near  a fixed point. 

This paper  is a ref inement  and perfect ion of the criticism of Knops  by  an 
analysis of  the influence of the singularities in the free energy on the behavior  
of variational parameters .  

In section 1 we formulate  the variational principle in the renormalizat ion 
theory and in section 2 the solution is given near a fixed point under  the 
assumpt ion  that  the variational pa ramete r  is a regular funct ion of the inter- 
action. A few examples  are given in section 3 to illustrate the type of 
situations which may  occur.  In section 4 we present  a (simplified) analysis 
which yields the relation to singularities in the free energy and in the 
variational parameter .  The general case is studied in section 5 and the paper  
closes with a discussion. 

I. The variation principle in renormalization theory 

Consider  a sys tem of N degrees of f reedom s, interacting through a 
hamiltonian ~ ( s ) .  Then,  introduce into the sys tem N '  new degrees of f reedom 
s',, coupling them to the s, by  a hamiltonian ~p(s ' ,  s) fulfilling 

Tr '  e ~ep~s''~) = 1, (1.1) 

where  Tr '  stands for  the sum (integral) over  the new variables s',. The index p 
on ~p symbol izes  the fact  that  the coupling may contain a number  of 
variational pa ramete rs  denoted collectively by  p. The condition (1.1) ensures  
that  the free energy F of the original sys tem 

F = log Tr  e ~e~'), (1.2) 

and that  of the combined system,  are equal. (The factor  - 1 / k s T  is included in 
both  the energy and free energy.)  

~p (s ' ,  s) induces a renormalizat ion t ransformat ion  according to 

exp[Gp + ~ ( s ' ) ]  = Tr  exp[~p(s ' ,  s ) +  ~ ( s ) ] ,  (1.3) 

where  the Tr sums through the old variables only. The constant  Gp is made 
explicit because  in spin problems it is cus tomary  to define hamiltonians such 
that 

Tr  ~ ( s )  = Tr '  ~ ( s ' )  = 0. (1.4) 

Relation (1.3) should be seen as a map f rom ~ ( s )  to ~ ' ( s ' )  which has lesser 
degrees of f reedom,  namely  N ' ,  compared  to the N original. We put the 
dilution ratio equal to N ' / N  = b -d, where b is the linear scale reduction of the 
sys tem and d the dimension of the system. 

Because of (1.1) the free energies F of ~ and F~ of ~ are related by 

Gp + F~ = F. (1.5) 
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We will represent  the hamiltonians ~ ( s )  and ~ ' ( s ' )  by their interaction 
parameters  symbolized by K and K' .  The K '  as well as Gp are functions of 
the K and of the variational parameters  p. We therefore  write (1.3) alter- 
natively as 

Gp = N g ( K ; p ) ;  K ' = K ' ( K ; p ) .  (1.6) 

Then (1.5) obtains the form for the free energy f (K)  per degree of f reedom 
(=F/N) 

f (K) = g(K ; p) + b-df (K'(K ; p )). (1.7) 

Note  that both terms on the right-hand side of (1.7) may depend on p while f does 
not. Given the expression for G and K, (1.7) yields a free energy f ( K )  as it may be 
obtained by iteration of (1.7). 

K H Y  showed that it is possible to define an approximation to (1.6): 

g =ga(K;p); K ' = K ' ( K ; p ) ,  (1.8) 

which yields an approximate free energy through 

[~(K) = g~(K; p (K)) + b-df~(K'~(K; p (K))) (1.9) 

for  any p(K) obeying either of the two inequalities 

f (K)  ~ fa(K) (1.10) 

depending on whether  one has constructed an upper or lower bound ap- 
proximation. (Note that through inclusion of -1/kBT the notion of upper and 
lower are reversed with respect  to the usual free energy.) 

Now f~(K) will depend on the choice of p(K) for  a given approximation ga 
and K" and one has the problem of finding the p(K) which gives the best 
bound. We will assume, as is the case for all applications so far made, that 
g~(K, p) and K'(K, p) are regular functions of K and p. 

As we will be only concerned with the approximate t ransformation from 
now on we drop the index a. 

2. Fixed point properties of p(K) 

In this section we will make a preliminary analysis of p(K) in the neigh- 
borhood of a fixed point K*.  To simplify the discussion we assume that K 
and p are single parameters.  One may think of K as a nearest  neighbor 
interaction and of p as a coupling constant  between new and old degrees of 
f reedom. 

The function p(K) should obey  the condition that [ ( K )  is stationary with 
respect  to variations of p(K). Thus, if we take (1.9) 

f (K)  = g(K ; p (K)) + b-df(K'(K ; p (K))) (2.1) 
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and differentiate with respect  to p we obtain 

0 = gp ( K ; p  (K)) + b-dfi,: (K ' )Kp(K;p  (K)),  (2.2) 

where  the indices p and K denote differentiation with respect  to p and K. 
The two equations (2.1) and (2.2) contain the two unknown functions f ( K )  

and p(K)  and should be solved simultaneously.  With regard to the solution 
one may  distinguish three cases.  

(1) The equations do not have a solution, which means that no p(K)  makes  
jr(K) stationary.  Then the best  p(K)  assumes  a boundary  value, e.g. p(K)  = oo 
(see next  section for  an example).  

(2) A special case is when the equations decouple.  This happens when, for 
each K, a p exists such that  

I . gp(K; p) = Kr,(K, p) = 0. (2.3) 

The solution p = p(K)  of (2.3) satisfies (2.2) regardless of  the shape of f ( K )  
and using this p(K)  in (2.1) f ( K )  can be determined.  This fortui tous case 
happens in an example  of  the following section. Eq. (2.3) leads to a p(K)  
which is a regular function of K. 

(3) The general case is that (2.1) and (2.2) have one or more solutions f rom 
which the best  has to be chosen.  As we shall see it may happen that different 
regions of  K have different branches  of the optimal  solution p(K) .  

The interesting situation is the behavior  near a fixed point. For  arbitrary p 
we may  have a K*(p) satisfying 

K*(p  ) = K ' ( K * ( p  ); p ). (2.4) 

Such a point is a fixed point as it is invariant  under  the renormalizat ion 
t ransformation.  A qualitative sketch of K*(p) is drawn in fig. 1. Now an 
optimal fixed point is a point K* ,  p*  where the optimal p = p(K)  intersects 
the line of fixed points K = K*(p). 

K H Y  give a prescr ipt ion to determine this point which reads in our 

p~ 

. . . . . . . . .  ~_j - I 
K I~ --~D K 

Fig 1 Quahtatlve sketch of the K-p plane. 
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simplified version as follows. Differentiate (2.1) with respect to K [using (2.2)] 

fK(K) = gK(K ; p (K)) + b-afK(K')K k(K, p (K)). (2.5) 

Then, insert K = K* into both (2.5) and (2.2). As p(K*)= p* and K*(p*)=  
K* and thus with (2.4) 

K' (K*;  p(K*)) = K'(K*(p*); p*) = K*(p*) = K*, (2.6) 

the resulting equations can be written as 

f~:= g~+ b-df~K~; O= g* + b-df~K'o *, (2.7) 

where we have used the notation 

f r ( K * ; p * ) = f ~ ,  gp(K*;p*)=g*, K~(K*,p*)=K'p*, etc. (2.8) 

The two equations (2.7) together with (2.4) [or K* -- K ' (K*,p*) ]  are three 
equations for the three unknown K*, p* and f~,, since all the other quantities 
like g*, etc. are known functions of K* and p*. We point out that the 
determination of the location of the optimal fixed point goes together with the 
determination of the derivative f~ of f (K)  at the fixed point K*. [The value of 
f* = f (K*)  then follows from (2.1) by insertion of K = K*.] 

Now, once K* and p* are determined KHY used Kk* to calculate the 
specific heat exponent a according to 

b r =K'ff (=Kk(K*;p*)) ,  2 - a  =d/y. (2.9) 

It was noted by KnopsS), however, that the variation of p(K) with K 
contributes also to the derivative of K '  with respect to K. Therefore we 
should equate 

b y = K'ff + K'p*p~, (2.10) 

where p~ = c~p(K)/cgK at K = K*. 
Thus, the determination of the eigenvalue requires knowledge of the 

derivative of p and K*. This quantity can be obtained by differentiating (2.2) 
and (2.5) once more with respect to K. Then, inserting the fixed point yields 
the two equations 

f~r  = g~r + g~oP ~ + b-a[f~r(K'~ + K'p*p~)K'ff + f~K'f fr  + K'~pp~)] 

and (2.11) 
t *  r *  t t *  0 = g~p + g*op ~ + b -d [f ~r (K'£'* + Kp p ~)Kp + f~(K'p~ + Kp~p I~)]. 

The unknowns are f~r  and P~r, all other quantities being known by the 
previous step. 

Now the problem is clear. Whereas in the previous step the determination 
of f]~ was required, which generally exists, the calculation of pl~ involves the 
second derivative of the free energy f~r  which will not exist when the 
specific heat exponent a is positive. Before we embark on the discussion of 
this point we give some examples to illustrate the procedure given above. 
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3. Examples 

As a first example  consider an Ising sys tem with spins s, =---1 interacting 
through nearest  neighbor coupling K on a triangular lattice. We decorate  the 
sys tem with new spins s',, in the way indicated in fig. 2. As a coupling 
hamiltonian for  the cell with new spins s '  and old spins sl, s2, s3 we take 

ff~p(S', SIS2S3) = pS'(S1 + $2 dr $3)-- a -- b(sls2 + s2s3 + S3Sl), (3.1) 

which fulfills (1.1) when a and b are defined as 

a = ~ log[(2 cosh 3p)(2 cosh p)3]; b = ¼ log[cosh 3p/cosh p ]. (3.2) 

For  a bound on f ( K )  the combined hamiltonian is separated into two parts: 

~p(s ' ,  s ) +  ~ ( s )  = ~0(s ' ,  s ) +  OF(s). (3.3) 

For  a lower bound we may  take ~0(s ' ,  s) to be the sum of ~p(s ' ,  s) and the 
neares t  neighbor interactions inside the cells. The remainder ,  i.e. the inter- 
actions be tween  the cells, consti tutes °F(s). Then we use the inequality 

Tr e ~e°(''' s)+r(,) = [Tr e ~e°(''' s)](er) ~> [Tr e ~e°] e <r>°, (3.4) 

where ( )0 is an average involving N0 as weightfactor .  
Thus,  the renormal ized G and N ' ( s ' )  defined as 

G + ~ ' ( s ' )  = log [Tr e ~e°] + (OF)0 (3.5) 

yield a free energy which is a lower bound to the free energy of a sys tem with 
N(s )  as hamiltonian. The approximate  G and ~ ' ( s )  can be readily evaluated2). 
~ ' ( s ' )  has again only neares t  neighbor coupling and one finds 

g ( K ; p )  = ~log[e 3r + 3 e - r ] ,  

[(tgh 3p) e 3K + (tgh p)  e - r ]  2 
K ' ( K ; p ) = 2 K [  e3r + 3  e_r . (3.6) 

F~g. 2. Decoration of the triangular lattice. • site-spin; x cell-spin. In the KHY approximation 
the interactions are shifted m the O-cells. 
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The free energy f(K) as defined through (3.6) and (2.1) with b ~ = 3 is a lower 
bound to the true free energy of a triangular Ising system for any p(K). The 
search for the optimal p(K) by solving (2.1) and (2.2) leads only to the 
solution p = ~ for all K. This could have been concluded without calculation 
by the observat ion that the best  free energy is obtained for given K when K '  
is as large as possible since g is independent  of p and f(K) may be assumed 
to be increasing with K. Eq. (3.6) shows that the maximum K '  for  given K is 
reached for p = ~. For  p = % (3.6) reduces to the earlier used first cumulant 
expression 2) for  a renormalization transformation which restricts the possible 
s for  given s' to those configurations where the majority of site spins is in 
line with the cell spin. Barber  6) has concluded in a more general context  that 
this type of bound leads to the majori ty rule transformation.  

An upper bound is obtained by the method of KHY.  When °g(s) is such 
that it shifts the interactions to the triangles marked with an 0 we have again 
as ~0(s' ,  s) a hamiltonian which is the sum of independent  triangles. The 
calculation of 

G + ~ ' ( s ' )  = log[Tr e ~t°w'~)] (3.7) 

is straightforward 7) and leads to a t ransformation 

g (K;  p) = ~2 log[(e 9r + 3 e -3r)(e 9K-4b + (2 + e 4b) e-3K)~], 

1- 1- e9 r  "p 3 e -3K -] (3.8)  
K'(K;p) =-4 log [egK -4b + (2 + e4b)e - 3rJ, 

with b as a function of p given by (3.2). The free energy of this trans- 
formation is an upper bound since (°F(s))= 0 [note that the upper and lower 
bounds are exchanged with respect  to K H Y  because -1/ksT is included in 
f (K) ] .  The variational equation (2.2) for  this t ransformation reads 

[ -- e9K-4b "J- e'lb-3K ]ab 
gp = - K ~  = 4 te~,,_,b + (2 + e'b)e-3rJ ~pp = o. (3.9) 

As Ob/Op > 0 the only solution is given by 

b = 3K/2, (3.10) 

or for  p as function of K 

p (K) = ± ~ log 1{ 1 + e 6K + [( 1 + e 6K)2 _ 4] ,/2}. (3. ] 1) 

(The sign of p is immaterial as it can be undone by a sign flip in the cell spins.) 
The solution (3.11) behaves qualitatively as indicated in fig. 1. Inserting (3.10) 
into (3.8) yields the optimal t ransformation 

g(K) = ~ log[(e 9r + 3 e-3r)(2 e 3r + 2 e-3r)3], 

9K -3K (3.12) 1, I" e + 3 e  "1 
K'(K) = 4 m g [ 2  e3K + 2 e-3KJ" 
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Fig. 3. Comparison of the KHY approximation, the mean-field theory and the first-order 
cumulant approximation with the exact free energy for the triangular lattice. 

The f(K) following from (3.6) (with p = oo) and from (3.12) have been plotted 
in fig. 3 together with the exact expression. The upper bound is surprisingly 
good as compared to the lower bound. Both the upper and lower bound free 
energy have a critical point with a singularity of the type I K -  K*I:-L One 
finds 

L~LW_CZJ~I£1 Upper bound Exact 
K 0.3356 0.3798 0.2747 
c~ - 0.2671 - 0.5148 0.0 

Note  that both a values are negative although for these examples no compel- 
ling reason exists. In both cases the variational p(K) is not coupled to the free 
energy it generates. 

As a third example we consider the Ising system on a square lattice as 
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t reated by  K H Y .  Their  t ransformat ion  may  be written a s  3) 

1 4 3 3 g = ~ Iog(ZIZ2Za/xy ); 

X'= (ZI/Z3)4; y'...~. (Z2/Z3) 4, 

with 

Z~ = x + 4y + 3, x ---- e 16K, 

w w 2 + l  
Z2=2w---WT~-I + 2  w y+3w,  y = e  4r-8°, 

(3.13) 

(3.14) 

X 
Z3 = 2w---w-w-w-w-w-w-w-r~_ 1 + 4y + 2w2+ 1, w = cosh 2p. 

K is the nearest  neighbor interaction (= 2V2 of KHY) ,  Q is the four-spin 
interaction (= V4 of K H Y )  and p is the coupling be tween the new spin and a 
block of four  site spins as in (3.1). 

In this case the space of interaction parameters  K, Q is two-dimensional .  
The optimal fixed point has the values 3) 

p* = 0.765983; K *  = 0.279433; Q* = -0.006865. (3.15) 

The method described in the previous section may  be used to determine the 
optimal slope of p(K, Q) at the fixed point. The only difference is that  we 
have to compute  s imultaneously the two derivat ives p]~ and p ~ and the three 
second derivat ives f~K, f~o and f~o. The equivalent  to (2.11) has a solution 

p~  = 3.890460; f~:r = 74.779, 

p~  = 0.937846; f~Q = 24.353, (3.16) 

f~O = 9.361. 

We point out that f (K,  Q) has the correct  posit ive curvature  at K* ,  Q*. With 
the values (3.16) for p ~ and p~  the linearized renormalizat ion t ransformat ion 
can be computed  with the matrix 

( K'~ + K '~* p ~ K ~ + K'~* p ~ '~ 
Q'ff + QTP~: Q'~ + Q'v*p~] (3.17) 

It has the eigenvalues 

AT = 1.921030; A2 = 0.456844, (3.18) 

which implies a specific heat  exponent  a = -0.123413. Setting p~  = p~  = 0 the 
value of K H Y  follows which equals a = 0.001756. Now it is important  to 
observe  that a is negative,  the reason of which will become  clear in the next  
sections. 
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4. T h e  s ingu lar i t i e s  in p(K) 

After  the previous in termezzo of some examples  we return to the main 
problem of how the unknown functions of the problem,  the free energy f ( K )  
and the variational funct ion p ( K )  mutually influence each other, and in 
particular what  the impact  is of singularities in f ( K )  on p(K) .  It  will turn out 
that, if we assume the existence of a singularity in the free energy,  then eqs. 
(2.1) and (2.2) can only be fulfilled around the fixed point, when the variational 
p ( K )  will have also a singularity. 

We split f ( K )  and p ( K )  into a regular and singular part: 

f (k )  = f r (K)  + f~(K), 
(4.1) 

p (K)  = p r(K) + p s(g) .  

The discussion is kept  simple in this section by  considering K and p as 
one-dimensional  variables (the general situation will be t reated in the section 
5). The fS(K) near  K *  behaves  as 

fS(K) = AIK  - K*I2-L (4.2) 

Similarly, pS(K) will be proport ional  to some power  of  K -  K* ,  the deter-  
mination of which is the subject  of this section. 

We have to go back to eqs. (2.1) and (2.2) and investigate the impact  of the 
separat ion (4.1). Using that g ( K ; p ( K ) )  and K ' ( K ; p ( K ) )  are by  assumpt ion  
regular in K and p ( K )  and that pS(K)  is small near  K* ,  we may  expand 
around the regular parts: 

1 , g (K  ; p (K))  = g ( K  ; p r(K)) + g*p ~(K) + -~..gpp[p S(K)]2 + .  • -, 

(4.3) 

K ' ( K  ; p (K))  = K ' ( K  ; pr(K))  + K'p*p~(K) + ~K'p*[p~(K)] 2 + ' "  ". 

The expansion of f ( K ' )  and f r ( K ' )  is rather  more subtle; on the basis of (4.1) 
and (4.3) we find 

I (K ' )  = f~(K') + A I K ' -  K*[ 2-~ 

1 r t:~ = f~(K '~) + fk*  K'p*p S(K) + ~..fK~dKp • pS(K)]2 

1 r ,  p ,  + ~fK Kpp[p S(K)]2 + AIK'- K*I2-L (4.4) 

where K ' r=  K ' ( K ;  pr(K)). Using (4.3) again, we find for  small K - K *  

K ' -  K *  = A(K - K*)  + K'p*pS(K), (4.5) 

with 

h = K'i~ + K'p*p}. (4.6) 
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N o w  p~ is the der ivat ive of the regular part  of p ( K )  (note that pS(K) has 
either p k = 0 or p k = oo at the fixed point, depending on the power  of the 
singularity). Thus,  (4.4) may  be writ ten as 

f (K ' )  = fr(K'r)  + fk*K'p*p S(K) + l fk~[K~*pS(K)]2 

+ ~fk*K'p*[p ~(K)] 2 + Al)t (K - K*)  + K~*p S(K)l 2-a. (4.7) 

Similarly we can expand f r ( K ' )  which leads to 

fK(K')  = f k(K 'r) + f k~Kp*p ~(K) +.  • .. (4.8) 

Now we can collect the various contributions and arrange them according to 
the singularities appearing.  In the lowest  order one has 

f r (K)  = g (K  ; pr(K')) + b-dfr(K'r), (4.9) 
k - d ~  r [ l ,  F t r ~ i f l t  r O = g p ( K ; p r ( K ) ) + u  .ir~.'x )•p.  

Compar i son  with (2.1) and (2.2) shows that  (4.9) is exact ly  the same as these 
previously  obtained equations for  the location of the optimal  fixed point. 

To first order  in the singularities we have 

AI K  - K*I 2-~ = 1B [p ~(K)]2 + b-dAlA (K - K * ) +  K~*p~(K)I 2-~, 
(4.10) 

0 = Bp~(K) + b-dA(2 - a)K'p*IA(K - K*)  + K'p*p~(K)] '-~, 
owing to the fact  that  in the first equation the term linear in pS(K) has dropped 
because  of the second equat ion of (4.9). B stands for  

B = g*p + b - d [ f k ~ ( K ~ * )  2 ± or* r.-,.1 T J r  ~ppJ. (4.11) 

Then,  in both  eqs. (4.10) one has to decide whether  p~(K) or K - K *  is 
dominant .  We t reat  them separately.  

(i) p~(K) ~ IK - K*  I. In this case the two equations reduce to 

1 = b -dA  2-~ 

and (4.12) 

p~(K) = - A B - ' b - d ( 2 -  a )X '-~K'p*lK - K *I 1-~. 

The first equat ion is the normal connect ion be tween the specific heat  
exponent  a and the eigenvalue )t [see (4.6), (2.11) and (2.10)]. The second 
equat ion shows that  p~(K) is singular with power  IK- K*I '-~, provided that 
K~* # 0. This is only consis tent  with the ansatz  if a < 0, because  otherwise 
p~(K)~> IK - K*I. 

(ii) pS(K)>> ]K - K*]. Now (4.10) becomes  

AIK - K*12-~ = ~B [p ~(K)] 2 + Ab-d [K'p*p S(K)12-a, 
(4.13) 

0 = Bp~(K) + Ab-d(2 - a)K'p*[K'p*p~(K)[ ~-~. 

It  is impossible to sat isfy these equations.  The first equat ion implies that 
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p S ( K )  should  be of  order  I K -  K*[,  con t r a ry  to the ansatz .  Also,  the second  
equat ion  is not  possible  to fulfill w h e n  K *  ¢ 0, as it requires  p S ( K )  to be of  the 
same order  as ]pS(K)] ~-~. (For  a = 0 one  should include a log term with the 
same conclus ion . )  So, we conc lude  that  this case  does no t  occur .  W h e n  
K~* = 0 the singular cont r ibu t ion  to p ( K )  of  order  I K - K * I  ~-° d isappears .  
Then  p S ( K )  is genera ted  by  terms of  o rder  IK-  K*I 2-" and one is in the case 
(i) as long as a < 1. 

So far  we have  d i scussed  the ques t ion  of  whe the r  a singular behav io r  of  the 
free ene rgy  is compat ib le  with fulfilling the variat ional  equa t ions  (2.1) and 
(2.2), and found  that  this is on ly  possible  o f  a < 0. We will now take up the 
ques t ion  of  whe the r  it is a lways  possible to solve eqs. (2.11) at the fixed point ,  
which  is neces sa ry  to calculate  the e igenvalue  A. 

In eqs. (2.11) the two u n k n o w n s  are fl~K and p~;  however ,  we can equal ly 
well cons ider  )t as u n k n o w n  since )t and p~  are related by  (4.6). It turns  out  
tha t  one  can el iminate one  of  the u n k n o w n s  of  (2.11), for  ins tance f~K, and 
one gets  the quadra t ic  equa t ion  in )t 

A2C~ + D A  + bdCi = 0, (4.14) 

with 

C ~ = g * K K ~ * - - g * p K ~  + b - d f ~: ( K 'p*r K 'p * - K 'p* K '~' ) , 

C2 = g ~ r  K'p* - g*K K'~' + b - d f ~ ( K  ~K K'p* - K'p~:K ~) ,  (4.15) 

t *  D = b a g *  + Kpp f~  - K '~C1  + K'p*C2. 

[Note  that  f ~  is given by  (2.7).] Eq. (4.14) has two roots  A~ and A2, fulfilling 
)t l) t2--b a and one can easi ly c h e c k  that  we have  to cons ider  three possi-  
bilities: 

(i) the equa t ion  has no real solut ions;  
(ii) the equa t ion  has one solut ion,  namely  )t = b dIE, so that  ou = 0; and 
(iii) the equa t ion  has two real solut ions,  ;t~ and ;t2. 
In the last case one  has a ~ < 0 and ot 2 ~> 0 due to (2.9), (2.10) and (4.6). Al though  

we see that  one  can find an e igenvalue  leading to a posi t ive value of  t~, we must  
d isregard this solut ion because  the fo rego ing  as a local  solut ion (near K*)  canno t  
be par t  o f  a possible  variat ional  func t ion  p ( K )  for  which  the approx ima t ion  to 
the free ene rgy  is opt imal  for  all K. In order  to see wha t  is likely to happen  if 
(4.14) has no real solut ions,  we studied a s o m e w h a t  more  sophis t ica ted  lower  
bound  to the free ene rgy  of  the tr iangular  lattice. If  we take as ~0(s, s ' )  in (3.3) the 
hamil tonian 

Y(o(S, s')  = ~_~ ps',s, (4.16) 
t 

[so that  ~ ( s )  now  b e c o m e s  the sum of  ~p(s ' ,  s) and the hamil tonian Yg(s) 
minus ~o(S, s')], where  s', is the cell spin to which  the site i belongs,  we have  
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in first order cumulant  the renormalizat ion t ransformat ion 

g (K ; p ) = ~ log 2 - ~( 1 + 3x ) log( 1 + 3x) - 1( 1 - x ) log( 1 - x ) + Kx ,  
(4.17) 

K ' ( K ;  p ) = 2Kx,  

with x = tgh2p. The variat ion equations for  f ( K )  and p ( K )  cannot  be solved 
explicitly but for K - o  0 and K ~ ~ one finds for  the optimal x ( K )  

K ~ O ,  x ( K ) =  K + K2 + K3 + ~K4 + " . ", 

K - , o o ,  x ( K ) =  l - 4 e  -12K. (4.18) 

The renormalizat ion t ransformat ion (4.17) has a line of fixed points for  x = ½, 
and the eqs. (2.7) yield for the optimal fixed point 

K*  = ~log5 =0.2684; f ~ = 3 .  (4.19) 

However ,  eq. (4.14) has only complex solutions. 
In order to see what  happens,  one can somewhat  artificially force  the 

equation to get real solutions by varying b d, since one can consider  b d as a 
pa ramete r  by which one can change the solution of (2.7) and so of (4.14). 
When one increases b a, the optimal fixed point is driven to the fixed point 
where g* = 0 [as can be seen f rom the second equation (2.7)], and (4.14) will 
a lways get real solutions provided that g*p # 0. For  this example,  the solutions 
become  real beyond 

b e = 9.0709; K*  -- 0.3580. (4.20) 

The following picture shown in fig. 4 is borne out by a numerical  calculation 
for b d =  3. The curve x ( K )  has two branches,  one coming f rom the region 
with small K and one f rom the region with large K, each terminating at a 
point where d x / d K  = oo. In the region where a double solution exists is a point 
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Fig 4 The variational function x(K) for the renormahzation transformation (4.17). 
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Kc loca ted  such that  b e y o n d  K~ the upper  b ranch  before  Kc the lower  b ranch  
is the bes t  approx imat ion  to the free energy.  For  K~ we f o u n d  K~-~0.216 
which  is much  smaller than the value of  K at the opt imal  fixed point  [see 
(4.19)]. 

The free energy  approx ima t ion  of  this renormal iza t ion  t r ans fo rma t ion  is 
shown in fig. 5. One can read of  the value of  K~ f rom the in tersect ion of  the 
lower-  and uppe r -b ranch  approximat ions .  The  free energy  at the line of  fixed 
points  can  easi ly be calcula ted by  sett ing x = ½ in (4.17); one sees how bad the 
approx ima t ion  of  the free energy  would  be at any  fixed point.  

This s i tuat ion is ve ry  remin iscen t  of  mean  field theory  [(4.16) may  be seen 
as the mean  field approximat ion] .  It  m a y  general ly  happen  that  the var ia t ional  
equa t ions  have  more  than one solut ion in a given region. Then  the bes t  
solut ion has to be taken  and if the bes t  solut ion switches  f rom one b ranch  to 

F(K) 1 

10 

09 

0 ~ - M E A N "  FIELD-LIK///~ 

I i I i I 
01 02 Ke 03 Of, 

---K 

Fig. 5. The free energy gwen by the renormalization transformaUon (4 17) and the variational 
function x(K), compared w]th the mean-field value and the exact solution 
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the other  as in the previous example  a phase transition occurs  in the free 
energy which is in general of  first order having a --- 1. In such a case the fixed 
point plays no role as in the example  where the solution jumps over  the line 
of fixed points. 

5. The general situation 

For  simplicity we have so far concerned ourselves  with a situation where 
the hamiltonian could be represented by a single pa ramete r  K. In general, we 
have a set of n parameters  K~ and a set of rn parameters  p,. The main 
difference when more paramete rs  K~ are present ,  is that a simple form for  the 
singularity in the free energy cannot  be used. Such a singularity is associated 
with a re levant  eigenvalue A (>  1) of the derivat ive matrix. We assume that we 
deal with one relevant  eigenvalue (e.g. the non-magnet ic  Ising model).  Then 
we have near the fixed point for  the singular part  of the free energy (we now 
use K and p to represent  the whole set of parameters  K~ and p,) 

f~(K)= Al~ff q~(K,~- K*~) I d,'T° ( 5 . ] )  

where ¢~ is the left e igenvector  of the eigenvalue problem 

[OK" OK,, Op, ] = 

and with YT in (5.1) given by A = b yT. 
To shorten the notation, we write for the fixed point values again 

d K ' ( K ;  p (K) ) ]  K~* = 

OK'(K;p(K))]  = K'*, etc. 
J K = K *  ' 

and we will abbrevia te  the matrix (5.2) to T~*~ 

(5.3) 

T*~ = K'*~ + ~_, K'*p * . . . .  ~. (5.4) 
t 

Finally, using Wegner ' s  scaling fields, defined by 

u T = ~ q~,(K~ - K*)  + .  • -. (5.5) 

one can write for  the singular part  of the free energy 

fS(K) = Alur] ely'. (5.6) 

The variat ional equations are obtained by the condition that f (K)  is s ta t ionary 
with respec t  to all variat ions of the p,(K) of the set p(K). Thus, the variat ion 
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problem is now given by 

f (K)  = g(K ; p(K)) + b-'~f(K'), 

O = g , ( K ; p ( K ) + b  -'t ~_, ¢ ¢K'~K' J ~  \ 1 ct , t  ~ 
a 

while the location of the optimal fixed point can be determined by 

(5.7) 

f*~ = g* + b -~ ~ f~K'a~, 
(5.8) 

0 = + b -" E 

Provided the second order derivat ives of f (K)  exist, one may determine the 
derivat ives p,* and f*# f rom 

* r ,  f~a = h,,~ + b -d ~ f v~Kv,~T~, 

(5.9) 

0 k ,~,+b-d~ ,. . = f~,Ka.,T./,~, 

where 

= ~ K,.,~,p,.~), h,~ g*~ + E ,.~ + b-d 'C*[ '*v.,~ + E, '* * 

(5.10) 
k,~, g * + ~ o * . *  +b -d f * [ r ' *  + K ' * n * ~  = 3,,o E 3,,, , . , .o/.  

I 3, I 

To determine the eigenvalues of the matrix T*#, one has to solve these 
½n(n + 1)+ m • n equations.  

The procedure  to investigate the impact  of a singularity in the free energy on 
the p,(K) is complete ly  analogous to the one in the previous section. We split 
f (K)  and p,(K) in regular and singular parts 

f (K)  = f r (K)  + fS(K), 

p,(K) = p,r(K) + p~(K), 
(5.11) 

and assume that  pS(K) is small near K*;  then one can expand g(K;p(K)) ,  
K ' (K;p (K) )  and fr(K) around the regular parts.  Since this can be done 
analogously to the expansion in section 4, we only give the result for f (K ' ) :  

f (K')  = f r ( K )  --I- fS(K) 

+ fr*KZ;p~(K)p~(K)+A + ~  ~K~.,pS,(K) (5.12) 
o t J  

I1  

In the lowest  order we get only regular parts in equations which are the same 
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as (5.7) 

fr(K) = g (K ; p r,(K)) + b -af~(K,(K ; p ~,(K))), 
(5.13) 

AIuTIa/yT 1 t s - d m  , ,  s 

I,l a 

(5.17) 
_ ' s d ~  . . , , x . , ,  ,d/,~-I 

0--~,, B, ,p,(K)+b-da ~p,~t~,,,[~ ~aK'~,*p~(K)I , 

where E' stands for a summation over all terms for which p~(K) ~> lurl. Since 
neither of the equations can be fulfilled in consistency with the ansatz, we 
conclude that this case does not occur. When all E~ ~0~K'* = 0 then the p~(K) 
become of order luTI and one is back to case (i). 

In the one-parameter  case, it turned out that if eqs. (2.11) have any real 
solutions, one will find two solutions for the derivative of the variational 
parameter at the fixed point, and so two different eigenvalues, one with a < 0 
and one that would yield a > 0. 

0 = g,(K; p~(K))+ b -d ~, fr(K'(K; p~(K)))K'~,. 

We define B, 

B,, = g~ + b - d l ~  ,~,.t,, ',.v,. + ~ f~, K~,,,,p,(K)p,(K) I (5.14) J a ~ ~'X a,t ! x  ~,l r ,  r*  s s 

L a , f l  a _1 
I,] 

and, to first order in the singularities, one obtains 

I ~ ~"K'~"P'(K)I ld/YT s s p ,  s AluTI a/~T = ½ ~ B,,p,(K)p,(K) + b-dA ~ u T " ~  - 

i i  

(5.15) 
/ ~ / / T  t *  s d /YT- 1 

0 = ~ B,,p~(K) + b-dA d ~ q~,,K'* + ~'~ ~p~Kt~.,p,(K) . 
1 YT a I~,J 

As in the simple case, we have to distinguish two cases, depending on 
whether p~,(K) or u T is the dominant term. 

(i) All p~(K) ~ luTI. Then the equations reduce to 

b-dA d/yT : 1, 
(5.16) 

E B,,p~(K)= - b - ' ~ A d E  ,~ z '*l , ,vl  d/'T-' 
j YT 

Using that d/yT = 2--a, the first equation gives the normal connection be- 
tween the largest eigenvalue and the specific heat component  a. The set of m 
equations for the p~(K) show that in general all p~(K) will be singular with 
power luTI '-°, provided that at least one term E, q~,K',* # 0. However ,  this is 
only consistent with the ansatz if a < 0 because otherwise at least for one of 
the pS(K) would hold p](K) >> luTI. If  all terms E~ ~ K ' *  = 0 the p](K) become 
of order lull 2-° by terms omitted in (5.11). 

(ii) At least for some terms p ,~(K) holds p,~(K) >> luTI. Then the equations read 
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TABLE I 

p* = 0.765983 K* = 0 279433 Q* = -0.006865 

p} = 3.890460 II p~ = -4.128780 
p~ = 0 937850 P$ = -1.584011 

I /~.1 = 1 921030 II )tl = 2.082217 
k2 = 0 456844 k2 = 0.456844 
a~ = -0.123413 or2 = 0.109856 

F ] ~  = 74 779 F~K = -255.617 
F~o = 24.353 F~Q = -79 549 
F~o = 9.361 F~O = -23.313 

T o  s e e  w h a t  c a n  h a p p e n  in t h e  m o r e  g e n e r a l  c a s e ,  w e  r e c o n s i d e r  K H Y ' s  3) 

b o u n d  to  t h e  f r e e  e n e r g y  o f  t h e  s q u a r e  l a t t i c e  ( see  s e c t i o n  3), w h e r e  w e  h a v e  

t w o  i n t e r a c t i o n  p a r a m e t e r s  a n d  o n e  v a r i a t i o n a l  p a r a m e t e r .  I t  t u r n s  o u t  t h a t  in 

th is  e x a m p l e  t h e  b e h a v i o r  is s t r i k i n g l y  a n a l o g o u s  to  t h a t  o f  t h e  o n e - p a r a m e t e r  

c a s e  s i nce  a g a i n  t w o  s o l u t i o n s  a r e  f o u n d ,  w i t h  k~k2 = b d a n d  so  spec i f i c  h e a t  

e x p o n e n t s  ot o f  d i f f e r e n t  s ign  ( see  t ab l e  I). N o t e  t h a t  t he  s e c o n d  s o l u t i o n  g i v e s  

a w r o n g  c u r v a t u r e  f o r  t h e  f r e e  e n e r g y ,  a n d  t h a t  t h e  d e r i v a t i v e s  o f  p(K ,  Q) a re  

n e g a t i v e .  

A s  in t h e  c a s e  o f  t h e  m e a n - f i e l d - l i k e  l o w e r  b o u n d  to  t he  f r e e  e n e r g y ,  w e  c a n  

v a r y  b d w h i c h  c h a n g e s  t h e  s o l u t i o n  o f  eqs .  (5.8) and  (5.9). W h e n  b d is 

i n c r e a s e d  ( see  fig. 6), s t a r t i n g  f r o m  b d - - 4 ,  p *  a p p r o a c h e s  t h e  v a l u e  p * =  

0 .757562 w h e r e  g *  = 0 a n d  the  f irs t  s o l u t i o n  o f  eq .  (5.9) y i e ld s  an  e i g e n v a l u e  
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Fig 6 The optimal values of p at the fixed point, for various values of b u 
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that approaches  a finite value, hr ~ 1.95, such that a~ ~ - o o ;  the other  solution 
yields a slowly increasing a2, since also h2 increases with b d. When b a is 
decreased,  the specific heat  exponents  reach opt imum values for  b d= 
3.990252, where al  = - 0 . 1 2 3 2 7 8  and ot2=0.109748. When b a is decreased 
further,  p*  seems to go to infinity, while a l decreases  more and more whereas  
a2 increases.  There  is another  branch of solutions of (5.8). At this branch,  eqs. 
(5.9) have no real solutions for b d > 3.162703. For  b d = 3.162703, there is just 
one solution, h = b all2 such that a = 0. For  b a <  3.162703 again two solutions 
are found,  with a values of different sign. However ,  for these solutions the 
second derivat ives of  the free energy are negative and therefore  lead to an 
unstable free energy. 

6. Discussion 

The analysis of the variational equations for the optimal  parameter(s)  p ( K )  
as a funct ion of interaction constant(s)  K leads to three possibilities. 

(i) The optimal  p ( K )  is basically not coupled to the singularities of the 
energy f ( K )  at the fixed point K*.  This may  be due either to the fact  that  
p ( K )  is opt imal  at the boundary  of its domain (e.g. p =oo) or due to a 
fortui tous coincidence of two conditions [see (2.3)]. 

(ii) The opt imal  p ( K )  has a singularity at K *  with exponent  1 - a ,  which is 
induced by  the free energy singularity with exponent  2 - a .  Only for  a < 0 a 
consis tent  set of p (K)  and f ( K )  can be obtained. 

(iii) The optimal  p ( K )  has several  branches  and a discontinuous phase  
transition occurs  be tween the branches.  

The analysis has been restr icted to a temperature- l ike singularity. For  the 
stronger magnetic-l ike singularity one would in general expect  a similar 
picture. Howeve r ,  in the fer romagnet ic  Ising model  transition a symmet ry  in 
the field causes  the basic quanti ty H~ (the renormalized field derivat ive with 
respec t  to the variational pa ramete r  p )  to vanish at the fixed point. This will 
make  the singularity in the variational pa ramete r  in the field direction of equal 
strength as the free energy singularity. A more precise analysis is in progress  
to study the possible complicat ions of a second singular direction. 

The findings of  this paper  throw a shadow on the variational method 
because  a basic ansatz of  the renormalizat ion approach,  i.e. that of a regular 
t ransformat ion,  is violated. One usually tries to explain the free energy 
singularities f rom a regular renormalizat ion t ransformation.  The induced 
singularities in the variational pa ramate r  are mild as long as a < 0 in the sense 
that the leading singularity can still be obtained in the conventional  way. 
Correct ions to scaling would however  be affected by these singularities in 
p(K) .  Although the variational technique leads to accurate  free energies it is 
of limited value for the determinat ion of unknown but p resumably  strong 
singularities. 
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