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A general scheme is presented to evaluate the mobility tensors of an arbitrary number of 
spheres, immersed in a viscous fluid, in a power series expansion in R -~, where R is a typical 
distance between spheres. Some general properties of these (translational and rotational) mobility 
tensors are discussed. Explicit expressions are derived up to order R -7. To this order, hydro- 
dynamic interactions between two, three and four spheres contribute. 

1. Introduction 

The hydrodynamic  interactions between spheres moving in a viscous fluid 
play an important  role in many physical and physico-chemical  problems. They  
have been studied extensively for this reason, in particular in situations in 
which the fluid can be described by the linearized Navier -Stokes  equations 
for incompressible steady flowt). In general, these interactions are studied by 
the so-called methods of reflection. These methods,  in which one calculates 
the relevant  quantities as a series expansion in the inverse particle distances, 
were inaugurated by Smoluchowski2). Because of their complexity,  they have 
essentially only been applied to the case of two spheres, with one important  
exception,  however ,  to which we will return. 

For  the two-sphere problem, Smoluchowski 2) considers the velocities as 
given and calculates the hydrodynamic  forces exerted on them. In doing so, 
he calculated the friction tensors up to order  R722, where R12 is the distance 
between the spheres. Later ,  Fax6n 3) determined the friction for the case that 
the spheres move  along their line of centers up to order R ~ .  For  the special 
case of spheres with equal radii, Dahl 4) carried Fax6n's  calculation to order  
R] -9. On the other  hand, Burgers 5) considered the forces to be given and then 
calculated the velocities of the two spheres. He evaluated in this way the 
mobility tensors (the elements of the inverse of the friction tensor matrix) to 
order  R ~ .  Happel and Brenner1), in their monograph,  present  a calculation 
of the friction tensors to order  R ~  by considering not only Fax6n's special 
arrangement  but also t he  case that the spheres move  perpendicular to their 
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line of centers.  More recent  calculations of the mobility tensors were presen- 
ted by Batchelor6), to order  R~25, and by Felderhof7) *, to order R?  7. 

In all those above mentioned treatments in which one directly obtains the 
mobility tensors,  it was assumed that the two spheres were freely rotating, i.e. 
that the hydrodynamic  torques exerted on the spheres vanish. ResuRs for the 
speed of rotation in the case of free rotation as well as for the torque in the 
case of hindered rotation, in which the angular velocities of the spheres 
vanish, were obtained by Happel  and Brenner~), in their approach to the 
problem which directly yielded expressions for the friction tensors. 

In his paper published in 1959, Kynch  ~) considers the motion of two or 
more spheres through a viscous fluid. His work on many-sphere hydro- 
dynamic interactions does not seem to have received due attention. Thus, 
Happel and Brenner write in their monographS) * "Kynch has presented 
general [ormulas indicating how analytical solutions can be obtained for the 
case o[ three or more particles, but the expressions are so complicated that 
generalizations are possible only for special arrangements of the particles." 
Nevertheless ,  Kynch8), who considers the case of an arbitrary configuration 
of freely rotating spheres, explicitly gives expressions for all contributions to 
the mobility tensors up to order R -7, where R is a typical distance between 
the spheres, and concludes that to this order two-, three- and four-particle 
interactions contribute. As we shall show, these expressions are correct.  We 
were however  unable to follow Kynch ' s  8) particular analysis and line of 
reasoning which are based on the use of a reflection method. 

In this paper, we shall treat  the same problem as Kynch  8) did, along the 
lines of a recent  paper by one of usg), to be referred to as paper I. A method 
of induced forces l°m) was used there to derive a generalization of Fax¢n's  
theorem ~2'~°) to the case of an arbitrary number of spheres of different radii, 
immersed in a fluid in non-uniform steady flow. In addition, this method also 
yielded expressions for the mobility tensors up to order R -3. Here ,  we shall 
consider a system consisting of N spheres moving in a fluid at rest  if 
unper turbed by their motion. We will extend for this case the analysis of 
paper I and construct  a scheme which allows us to calculate the mobility 
tensors to any desired order  of approximation as an expansion in powers of 
R -~. In paper I, just as in the work of KynchS), only the translational mobility 
tensors,  which relate the hydrodynamic  forces to their velocities, were 
studied. In this paper,  on the other hand, we shall derive general expressions 
for all elements of the mobility tensor matrix, i.e. also for the tensors which 

*Felderhof uses mixed slip-stick boundary conditions at the surface of the spheres, The other 
authors exclusively use stick boundary conditions. For further references on the two-sphere 
problem and in particular concerning exact solutions, see also refs. 1 and 7. 

*Loc. cit. p. 276. 
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relate the velocities of the spheres to the hydrodynamic torques exerted on 
them, as well as for the tensors which relate the angular velocities of the 
spheres to the forces and torques. All these expressions will be evaluated 
explicitly up to order R -7. 

Our method differs from the usual methods of reflection ~-8) used to study 
hydrodynamic interactions, in that it does not require the knowledge and 
therefore the explicit construction of the fluid velocity field. The desired 
results follow directly from an appropriate use of the boundary conditions for 
this field at the surfaces of the spheres. This proves to be very efficient in 
studying more than two spheres. 

In section 2, we review the equations of motion. We also give the formal 
solution in wave-vector representation of the quasi-static Stokes equation, 
describing the motion of the fluid, on which the analysis is based (eq. (2.19)). 
In section 3 we discuss the expansion of the force induced in each sphere in 
irreducible induced-force-multipoles. This expansion is used in section 4 to 
obtain a hierarchy of equations for these force multipoles. This hierarchy is 
summarized in eqs. (5.2)-(5.5) of section 5: the force multipoles induced in the 
spheres are connected to each other as well as to the velocities and angular 
velocities of the spheres, via tensor objects called connectors, which are 
defined as three dimensional integrals in section 4. The hierarchy of equations 
is then used in section 5 to obtain expressions for the mobilities by elimina- 
tion of all irreducible force multipoles except the total force and the total 
torque exerted on each sphere. Various properties of the mobilities, which are 
obtained in the form of a power series expansion in R -~, are discussed. It is 
shown that they satisfy the required Onsager symmetry relations and that 
certain powers of R -~ do not occur in the expansion. Moreover, it is 
demonstrated that for e.g. the translational mobilities, the dominant con- 
tributions from clusters of n spheres, n 1> 2, are of order R -~3n-5). Finally, in 
section 6, the various mobility tensors (translational and rotational) are 
explicitly evaluated up to order R -7. These expressions can be found in table 
II and eqs. (6.19)-(6.38), 

Our analysis indicates that specific hydrodynamic interactions of 3 spheres 
may not a priori be neglected when evaluating the diffusion coefficient of a 
suspension which is not dilute. Indeed, as we shall see, these interactions are 
of order R -4, i.e. of the same order as the short range part of the translational 
mobility tensors arising from binary hydrodynamic interactions. These two- 
sphere short range interactions have been shown to contribute considerably to 
the diffusion coefficientl3). 

Finally, it should be Stressed that our scheme leads to a straightforward 
algorithm for calculating contributions of even higher order to the mobilities 
(of. in this connection the concluding remarks of section 7). 
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2. Equations of motion 

As in paper I, we consider N macroscopic spheres of masses m~ and radii a~ 
(i = 1 . . . . .  N) immersed in an otherwise unbounded incompressible fluid. The 
centers of the spheres have positions Ri(t) at time t. We shall summarize in 
this section the basic equations of motion of the fluid and the spheres on 
which our subsequent analysis of the hydrodynamic interactions is based. 

The motion of the fluid obeys the quasistatic Stokes equation, 

V .  P(r ,  t) = 0, l (2.1) 
V v(r,  t) = 0, J. for all Ir - Ri(t){ > a,, (2.2) 

with 

/ a w  3v~\ 
P ~  p 3 ~  ~ ~,3G Ors)" (2.3) 

Here v is the velocity field, P the pressure tensor, p the hydrostatic pressure 
and *1 the viscosity of the fluid. Here and henceforth, the index i runs from 1 
to N and labels the spheres (and so do the indices j, k and l, to be used later), 
and Greek indices run from 1 to 3 and denote the Cartesian components. The 
velocity u~(t) and the angular velocity t~(t) of the ith sphere obey the 
equations of motion 

du;(t) 
f dSP(r ,  t) hi + K~Xt(t)-- Ki( t )  m~ dt = - • + K~Xt(t), (2.4) 

Si(t) 

drop(t) I" 
d S [ r  - Ri(t)] ^ P • ril + TT xt - Ti(t) + T~Xt(t). (2.5) I~ dt 

Si(t) 

Here K~, T~, K~ xt and T7 ~t are, respectively, the force and torque exerted 
by the fluid on sphere i, and the external force and torque on this sphere. S~(t) 
is the surface of sphere i at time t*, h~ a unit vector normal to this surface and 
pointing in the outward direction, and I~ = 2mlaE/5 its moment of inertia 
(where a homogeneous mass distribution has been assumed). The set of 
equations (2.1)-(2.5) must be supplemented by boundary conditions at the 
surfaces of the spheres. We assume stick conditions, i.e. 

v(r, t) = ui ( t )+ oJi(t) ^ [r - R I O ) ] ,  for Jr - R i ( t )  I = ai. (2.6) 

Within the context of the method of induced forces (see paper I and ref. 10) 

• The surface S~ is considered as the surface of a sphere centred at R~ with radius a~ + ~ in the 
limit • ~ 0. 
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the above set of equations is replaced by an equivalent one in which the fluid 
equations are extended inside the spheres and are written in the form 

= (2.7) V . P(r, t) ~ Fj(r, t), 
for all  r, 

V.  v(r, t) = 0, (2.8) 

with Fj(r, t) -- 0, for ]r - Ri(t)] > aj. The extension of the fluid velocity field is 
chosen in such a way that 

v(r, t) = ui(t) + toi(t) A [r -- Ri(t)], for Jr - Ri(t)] <~ al. (2.9) 

For the hydrostatic pressure we impose the condition 

p(r, t ) = 0 ,  for Ir-Ri( t ) i<ai .  (2.10) 

Clearly the problem posed by the set of equations including induced forces is 
completely equivalent with the original boundary value problem. Moreover, 
since according to eqs. (2.9) and (2.10) the pressure tensor in the induced 
force method is constant (zero) within the spheres and has discontinuities at 
their surface, it follows from eq. (2.7) that the induced force density must be 
of the form 

F~(r, t ) =  a~-2f~(tJ,, t )3(Ir-  Ri( t ) ] -  al). (2.11) 

The factor a ~-2 is introduced here for convenience. 
If  we make use of eq. (2.7), we can express the force K~ and the torque T~ 

which the fluid exerts on the ith sphere in terms of the induced force density. 
One has indeed 

K , ( t ) = -  f d S P ( r , t ) . ~ = -  f d r ' . , ( r , t ) = - l d r F ~ ( r , t ) ,  
Si(t) }r-Ri(t))<~al 

(2.12) 

T~(t) = - f dS[r  - R,(t)] ^ P(r ,  t ) .  sl, = - f dr[r - R,(t)] ^ Fi(t). (2.13) 
Si(t) 

In order to solve formally the equation of motion of the fluid we introduce 
Fourier transforms of e.g. the velocity field, 

v(k) = f dr e-ik'rv(r). (2.14) 

We have omitted here, and will do so henceforth, for all quantities and fields, 
the time argument of v. We also define the Fourier transform of the induced 
force density F~(t) in a reference frame in which sphere i is at rest at the 
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origin, 

f dr e -ik '(r-~'~Fi(r). (2.15) Fi(k) 

The equations of motion (2.7) and (2.8), together with (2.3) then become in 
wavevector representation 

N 

~k2v(k) = -ikp(k) + ~'~ e -ik "S~Fs(k), (2.16) 
j = l  

with 

k • v (k)  = 0. (2.17) 

If one applies the operator 1 -kk[k  2 to both sides of eq. (2.16), one obtains 
with equation (2.17) 

rtk2v(k) = ~ e -'k "RJ(1 - g l ~ ] ) .  Fi(k),  (2.18) 
i 

where /]  = k/k is the unit vector in the direction of k and 1 the unit tensor. 
This equation has the formal solution 

N 

v(k  ) = v °(k ) + ~ ~q-lk-2 e-ik'~J(1 - /~ /~ )  • F/(k), (2.19) 

where v°(k) is the solution of eq. (2.16) in the absence of induced forces and is 
therefore the velocity field unperturbed by the presence of the N spheres. It 
is the above equation which will be the starting point for the calculation of 
the forces and the torques exerted by the fluid on the spheres. The spheres 
will be allowed to move with arbitrary velocity through the fluid, which may 
itself, in principle, be in arbitrary stationary non-uniform unperturbed flow. In 
our subsequent analysis we shall however assume that the unperturbed fluid is 
at rest, 

v °(r) -- O, (2.20) 

and study the hydrodynamic interactions which are set up between the 
spheres when they move (see, however, in this connection section 7). 

3. Induced force multipoles 

In the linear regime considered here the velocities and angular velocities of 
the spheres are related to the forces and torques exerted on them by the fluid, 
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by a set of coupled linear equations of the form 

ui = - E p ~ .  Kj - E Ix~" " Tj, (3.1) 
J J 

to, = - ~, lut,~ v. Kj - ~, p ~ .  T i. (3.2) 
J i 

Here la~ is the translational mobility tensor, la~ R the rotational mobility 
tensor, and the matrices tt~ R and lt~ Rv couple translational and rotational 
motion. The various mobility tensors must obey the following (Onsager) 
symmetry relations 1) 

~IJL/~---~ ~ji TT, [[j, iRT = [~TR, ~I,/I~R = ~Lj/RR, (3.3) 

where ~j is the transposed of Ix~j. 
It is the aim of the present analysis to calculate these mobility tensors, 

using eq. (2.19), up to a given order of approximation in a series expansion in 
powers of inverse distances between the spheres. In paper I this program 
was carried out for the translational mobility tensor alone up to an 
order of approximation in which only hydrodynamic interactions between two 
spheres contribute. Here we intend to carry the analysis for all mobility 
tensors to higher order, in which case also interactions between three and 
four spheres must be taken into account. In the next section we shall derive 
for this purpose a hierarchy of equations for the force multipoles induced in 
the spheres. These force multipoles are the coefficients in an expansion of the 
induced force density F~(k) in powers of the wave-vector k: 

Fi(k) = ~ ( - ia ik)Pl ' ]  p -  (2) J i''(P-el), (3.4) 
p=O 

where 

MlP+') ~ (i/ai)P(p ')-' [-~kp Fi(k ) ],=o 

;"(p !)-' d,.(,. - R,)"r,(,) (p !)'  [ """ = a = dninifi(ni). (3.5) 
J J 

In the last member, use has been made of the property (2.11) of the induced 
forces. The notation b p denotes a p-fold ordered product of a vector b (e.g. 
b 3= bbb), while the dot (~ in eq. (3.4) denotes a full p-fold contraction 
between the tensor n p and M~ p÷~), e.g. 

(n~Q MI,)). ~ (4) = 12~12~0~VIi.8~. (3.6) 
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We note that  the pth  force multipole M~ p÷~) is a tensor  of rank p + 1, which 
is symmetr ic  in its first p indices and which has the dimension of a force.  

Since rii • hi = 1, each multipole M~ p+1) reduces to a multipole M~ p-~) by  taking 
its t race with respec t  to any pair of its first p indices. In this way multipoles 
of higher rank contain contr ibutions of multipoles of lower rank. I t  is 
therefore  convenient  to introduce irreducible multipoles F (p÷~) which are 
traceless in any pair of their first p indices. These  multipoles are defined as 

(3.7) 

Here  ~'~ is the irreducible tensor  of  rank p, i.e. the tensor  traceless and 
symmetr ic  in any pair of its indices, constructed with the vector  b. For  
p = 1, 2, 3, one has* (see e.g. ref. 14) 

1 2 r~= b,~, ~ = b~b~ - ~ a , ~ b  , 

~ =  b,~b~b'.~ -~(8,~b.y + 8,~.~b~ + 8~,b,~)b 2. (3.8) 

For  the first three multipoles,  one has the relations 

FI1) = Mll), F(2) - (z) 
- i  = M i  , ( 3 . 9 )  

i, ot,~'y = IV1  i ,a~'y lrJt i ,88T 1¢~ i ,a~'y 6 ° a ~ J t  i,'y" 
8 

Note  that  according to eqs. (2.11), (2.12) and (3.7), one has 

= 1~") ( 3 . 1 0 )  K i  - - i • 

Similarly, it follows f rom eqs. (2.11), (2.13) and (3.7) that the hydrodynamic  
torque Ti is related to the ant i symmetr ic  part  F~ 2a)- of -i~:(2) according to 

Ti = ale : Fl  y), (3.11) 

where  • is the Levi-Civi ta  tensor.  The inverse of  eq. (3.11) is 

F~ z~) = - ( 2 a J - l (  ' Ti, (3.12) 

which may  be checked using the identity 

: c = - 2 1 .  ( 3 . 1 3 )  

The induced force Fi(k) can alternatively be  expanded in terms of the 
irreducible multipoles F~ p+~). Using propert ies  of  the Legendre  polynomials ,  

*The normalisation of the irreducible part of the tensor of rank p has been chosen such that the 
coefficient of the term b~,b~, 2 . . .  b,~p in the expression for 'b~,b~ 2 . . .  b,~' is equal to 1. 
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we show in appendix A that one has 

= 

p=o kal ] 

where (2p + 1)!! = 1 • 3 • 5 • • • ( 2 p -  1) • (2p + 1). In appendix A we also show 
that 

(2p + 1)!!aT~ p ( '~k o sinkai~ ka, / = ( -  1)Pr~afkP(1 - aEk:/(4P + 6) + ~?(a~k)4). 

(3.15) 

From this equation it is clear that the expansion (3.14) is essentially still an 
expansion in powers of k; however,  each irreducible multipole FI p÷I) is now 
multiplied by k p times a power series in k 2. 

We finally list a number of identities for the multipoles. From eq. (2.11) and 
the fact  that the function fi in this equation is bounded,  it follows that for  
complex values of k 

IFi(ka)l ~< M e Ik'ra', (3.16) 

where k" is the imaginary part of k. One can then show by complex 
integration that the following integral relation holds* 

f sin a~k . . . . .  F~, ) = 1 dk ~ ~(g,tl) .  (3.17) 
"h" 

- o c  

Analogously, one has 
+ c ¢  

try2)= i f dk sin aik OFi(kl~) /~ "-~ aw ~ ak ' (3.18) 

1 ~ - ~ : F ~  3,= 2alr-~ f dk ~ [ 0 2 +  1 a 2• ~-~-~ -~ ~} F~(kI~). (3.19) 

These relations, which can be generalized to higher order,  and which can also 
be derived with the aid of the expansion (3.14), will be helpful in establishing 
the hierarchy of equations for the force multipoles. 

4. Evaluation of velocity surface moments  

In order  to derive for the force multipoles induced in the spheres the 
desired hierarchy of equations we shall determine so-called surface moments  

*To derive this relation one has to replace ai in eq. (3.17) by ai + • and take the limit • ~ 0; cf. the 
footnote in section 2. 
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of the fluid velocity field. These moments are appropriate averages over the 
surfaces of the spheres. If one uses in the evaluation of these averages eq. 
(2.19) as well as the boundary condition (2.9) and the multipole expansion 
(3.11) one obtains for each force multipole FI "~ an equation which relates this 
multipole to all the multipoles induced in the other spheres. From the lowest 
(zeroth) order moment one obtains an equation which relates the total force 
acting on a sphere not only to the force multipoles induced in the other 
spheres but also to the velocity of that particular sphere. Similarly the next 
(first) surface moment yields an analogous equation which involves also the 
angular velocity of a sphere. Higher moments lead to equations which couple 
solely force multipole moments.  

To illustrate the scheme we shall derive here the first three equations of the 
hierarchy. Using the identities 

n~ v ( rS~ 1 =-- ~ a; ° ~ d r ~ v ( r ) 8 ( l r  - R,I- a,) 

(- i /a i)  ° f ~-~ sin kai~ ei~ 
= (2w)3 j ldk  \ ( -~  - ~  } '"iv(k) (4.1) 

and 

0 =O_~k 1 0 
O---k + k- (~ - gM~). 0/~'  (4.2) 

we find for the first three surface moments for the ith sphere of the fluid 
velocity field 

1 f sin ka~ ~r)Sf=(-~) dkv(k)eika' ka, ' (4.3) 

S i 

3!! tilv (r) = 3! ! ( - i /aJ  f dkOv(k) e ik" ~' (2~r)3 (0-~ s inka ' ]  
kai / '  

S i 5!,n,nW-~v(r)=5"(-i/a32 f dk (~__~sinka,~ eJk-, (2~') 3 ---~ai ! v(k) 

3 .5! !  1" r /02+l  2 \ s inka l ]  j dk~--~v(k) eik "" 

(4.4) 

(4.5) 

The numerical factors 3!! and 5!! in eqs. (4.4) and (4.5) have been introduced 
for convenience. In the last number of eq. (4.5), use was made of the identity 

sin ka~ 
Ok Ok ka~ 

3 ~-=-~/0 2 1 a~\ ) sin kal 
- -  - - m J  + 

2 kai (4.6) 
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which  fo l lows f r o m  eq. (4.2) and the fac t  that  

k-~ (~k sin ka~ ~ 1 0 2 kai ] = - 2  (-~-~+a2) sinkai~ai (4.7) 

We  shall now cons ider  these  first three m o m e n t s  in success ion.  

(i) Subst i tu t ing in eq. (4.3) the formal  solut ion (2.19) and using the boun-  

da ry  condi t ion  (2.9) one  obtains  the fo l lowing set of  N equat ions  

+~ 

ul = 6 ~ ' - a  x-~ 3ai sin ka~ 

+oo 

3 ai . _ sin kale  -ikR°41" ~'~ (kgJ) f d k ( 1 - , , ) - - ~ a  i j . ( 4 . 8 )  

Here  Rij =- IR~ - Ril is the d i s t ance  be tween  the cent res  of  sphere  i and j and 

~j - (Rj - R~)/R~ i is a unit  vec to r  point ing f rom sphere  i to sphere  j. Use  has 

also been  made  of  the fac t  that  the in tegrands  in eq. (4.8) are invar iant  under  

the t r ans fo rma t ion  k + - k ,  ~ + - ~ * .  I f  we now use the ident i ty  (3.17) in the 

first integral  at  the r ight hand  side o f  eq. (4.8) as well as the mult ipole 

expans ion  (3.14) in the o ther  integrals,  we obtain  a set  o f  equa t ions  of  the 

fo rm 

u / =  (61r~a/)-'F~') + (6~r,/a/)-' E ~ A ( I '  m, (~ Flrn). _q  ~ (4.9) 
j ~ i  m= l  

A 0'm) i #  The d imensionless  quanti t ies  . .q , ,  i, which  will be called connec to r s  since 

they  c o n n e c t  fo rce  mult ipoles  F~ ~) to fo rce  mult ipoles  F) m), are tensors  o f  rank  

m + 1. The  dot  (D deno tes  here an m-fold  con t rac t ion  be tween  the last m 
indices o f  A (i'm) and the m indices of  F (m) with the conven t ion  that  the last 
index of  A tLm) is con t r ac t ed  with the first of  F (m), etc. Cf. in this connec t ion  

also eq. (3.6). The  general  express ion  for  the c o n n e c t o r  A °'m) is** 

+~ 

sin kai _i~ra x ~ e  , ~'J. (4.10) 

*It should be mentioned that in paper I, an erroneous argument was used regarding the 
properties of eq. (4.8) under inversion. This erroneous argument does, however, not invalidate the 
analysis up to the order considered in that paper, but would have affected an analysis to higher 
order. 

** By convention all connectors are zero for j = i. All expressions given for connectors are only 
valid for j ~ i. 
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Properties of these connectors will be discussed in more detail in section 5. 
It should be noted that if there is only one sphere, the second term in the right 

hand side of eq. (4.9) is absent; in view of eq. (3.10), the resulting equation then 
reduces to Stokes' law for a single sphere. 

(ii) Consider now eq. (4.4). We again use the boundary condition (2.9) at the 
left hand side; the resulting surface average is easily evaluated. After sub- 
stitution of the formal solution (2.19) in the right-hand side, we obtain the set of 
equations 

+00 

( a sin kai" I .---r3i3!!/da f dka(1-aa).~(ka)\~ ka~ ] air"  toi = -(6~rlal)-I 7r 
o~ 

+~ 

x~ 3i3!! 

X e- ikR, , / l  - f,, ( ~ k  s i n  k a i "  ~ kai ]" (4.11) 

In this case, the identity (3.18) applies to the first term on the right hand side of eq. 
(4.11). Substituting again the force multipole expansion (3.14) into the other 
integrals, one now obtains equations of the form 

ai~-" ~i = --(67r'qai)-lB(/'2): FI 2)+ (67rrla~)-I ~"~ ~'~ a ( ? " ) ~  F(.") (4.12) ~ t J  ~ - -J  • 
j=~i m=l  

The explicit expressions for fl(2,2) and the connectors A (2,m) are 

3 . 3 v ! f  
8 (2,2) = 8~-" d l l l~(1  - 111~)~, (4.13) 

A!.2,,, = 3ai3!!(2m- 1)!! ( - i ~ (  i" ~,-1 

/ ~ sin kaj'~[ O sin kaA - i k R . . a ' "  
x kO--~a=r kaj ]t,~-k k ~  }e  ', "J. (4.14) 

Note that B (2'2~ as well as all connectors A (2'~) are traceless in their first two 
indices. This property is related to the fact that in view of eq. (2.8) 

hi" v(r) = ~ drV.  v(r) = 0, (4.15) 

Ir-Ril~;ai 

irrespective of the boundary conditions. 
From eq. (4.13), we obtain for fl(2,2) the explicit expression (see appendix B 
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for  useful  fo rmulae  in connec t ion  with the evalua t ion  of  this and similar 

integrals) 

B (2.2) = ~v~ - 3 ( 4 ~ v  - ~ 6 ~ 8  - 6~v~) .  (4.16) 

a ( z ' ' )  will be The  eva lua t ion  of  the express ions  for  the first three connec to r s  ~ij 

de fe r red  to sec t ions  5 and 6. 
I t  is conven ien t  to write 

~E~ (2,2) ,~. B (2s,2s) _~_ B (2a,2a), (4.17) 

with 

B (2s,2s) 9 1 9 ~Ov~ = - ~6(~a~a~ + ~6~v6p~ - ~6~eBva) -= - i~A~ov~ (4.18) 

~ ( 2 a , 2 a )  = 3 1 
~v, - ~ (~ B~sB~v - ½ 8~vSt~,). (4.19) 

B a''z~) is ( traceless)  symmet r i c  and B (2a'2~) is an t i symmet r ic  in bo th  the first and 

the last pair  o f  indices,  respect ively .  The  tensor  A is the t ensor  which  pro jec ts  

out  the i r reducible  par t  o f  a tensor  of  rank 2. We shall also split the 

c o n n e c t o r s  A (z'') into terms which  are t raceless  symmet r i c  and an t i symmet r i c  
in the first two indices,  A ~z'm) = A ~2~'") + A ~2~'m>. We  also split the multiples F ~z) 

acco rd ing  to* F (2)= F(2S)+ F(2a)+ ~ 1 Tr F (2), where  F (2s) and F (z~) are the t race-  

less symmet r i c  and an t i symmet r i c  par t  o f  F (z) respect ively .  

Eq.  (4.12) is essent ial ly  an equa t ion  for  a t ensor  o f  rank  2. Wri t ing the 

equa t ions  fo r  the symmet r i c  and an t i symmet r i c  par t  separate ly ,  we  obtain  for  
the symmet r i c  par t  

B(2s,Zs): F~2) 9 =(:s) ~ (4.20) = E 
= . . i j  

j~i m = l  

I f  on  the o ther  hand  we con t rac t  eq. (4.12) with the Levi -Civi ta  t ensor  e and 
use the fac t  tha t  

B (~a,~a) : FI2) = 3 ~(za) 
- - ] r i  , (4.21) 

we obta in  

~ .  - .  ~(2a,m)/--~ lg.(m) --2ai~i = (4~r~lal)-'e : F~(2~) + (67ra~a~) -~ ~ - -  (4.22) 
j~i m = l  

Using  eq. (3.11), this re la t ion b e c o m e s  

~,  = - (87r'oa~)-'Ti - (12¢rr/a~)-' ~', ~] e :  A~")(S)  p(m) - - j  • 
]~i m = l  

(4.23) 

*It should be noted that p(z) itself is not traceless. However, its trace does not play a role in the 
analysis, since it is related only to the pressure and does not contribute to the mobility. 
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For a single sphere, this equation reduces to the well-known result for the 
rotational friction. 

(iii) Finally one obtains in a similar way from eq. (4.5) and (2.19) 
+ ~  

0 = (6~r~al) -~ 9 .5!! ( - i /a i )  2 167rx ~ d "  f dk~-~(1 - g l / ] ) .  Fi(kl~) 
oo 

/ 02 1 a~\ ) sin ka~ 
x ~,-#F~ + ~ ka, 

(61rrlai)-' 9.5!!(-i/ai)~ f 16rrz j d/~ f dkr~-~(1 - aO)"  F~(kll) + 

xe-i~i,a'ei,(-~k +~a~)sinkai (4.24) 
ka~ 

With the aid of the identity (3.17) and the multipole expansion (3.14), we then 
get the set of equations 

a(3"3)(5) FI 3)= E ~ AI~ 'm)® FI "), (4.25) 
j # i  m = l  

where 8 (3,3) and the connectors A (3'') are given by 

B(3,3) = 9.87rr5!! f dll~--~(1 - g~ll)~--~, (4.26) 

+ ~  

Ao,,,) 9ai5!!(Zm- 1)!! (--i~2(i" "-~ 
# = 16.rr2 \-~(/ , ; )  f d/~ f dk~'-~('! - / l g l )  

- o c  

[ ~ a ~  sin kaf~ I-[ a 2 I z\ sin kai ] e-ikR~Ja - 
x ~ , ~  ka, ][kw+~a')---k-dYa~J "" (4.27) 

The above scheme may be continued by considering irreducible surface 
moments of higher order, which are all zero, 

'rT-~ Si Si 
(2n - 1)!!nlv(r) = (2n - 1)!!n~-~i (ui + aioJi A i l i ) =  0, n /> 3. (4.28) 

The fact that all these surface moments vanish follows from the general 
property (see eq. (A.8)) 

Si 

n~ ni =u ,  f o r n ¢ m .  (4.29) 

If, on the other hand, the surface moments are evaluated with the aid of the 
formal solution (2.19), one obtains along similar lines as above, equations of 
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the form 

B("'")(S) FI ")= ~ E ~A!"'m)~,l ~ FIm), n ~>- 4. (4.30) 
m=l j~i 

The fact that on the left hand side of this equation only the nth multipole 
appears (just as in the previous case, eq. (4.25)) is shown in appendix C. The 

A(n,m) general expressions for B ("'"~ and the connectors --~i are 

[(2n- 1)!!~ 2 3ai f 
B(" '")=-!~ a~ ,-] ] 8--~ j d a  f dk 

- o o  

{ ~ sin kai~ { ~ sin kale, 
x ~3-~- .¢~--~a-~ ] (1 - a a )  ~3--~-~-r ~ ]  (4 .31)  

+o~ 

A(.~,m) 3 a i ( 2 n  - 1 ) ! ! ( 2m - 1)[! ( i "-~ " i " ,~-t 
, ,  = I 

[ ~ sin ka,'~ ~ sinka~] (4.32) 

These equations are in fact valid for all n and m. One can verify using also eq. 
(4.6) that eq. (4.31) reduces to eqs. (4.13) and (4.26) for n = 2 and 3, respec- 
tively, and that B °a)= - 1 .  Furthermore, all previously derived connectors are 
contained in formula (4.32). Note that the B ('") are tensors of rank 2n, and the 
connectors A ("'m) tensors of rank n + m. 

It is clear from expression (4.31) that the tensor B ('") satisfies the symmetry 
relation 

N 

B ('") = B ("'"), (4.33) 

where C is a generalized transposed of a tensor C of arbitrary rank p defined 
by 

(C)~,~2 .... ,_,% = (0)%%_, .... 2~,. (4.34) 

On the other hand, using the fact that fli = - h i ,  one verifies that the con- 
nectors satisfy the symmetry relation 

a a ( n , m )  A(ra ,n )  
i ~ i i  = ~ l i~ i i  • (4.35) 

The numerical factor ( 2 n -  1)!! was introduced in eq. (4.28) so as to ensure 
that the connectors satisfy symmetry relations of the form (4.35) (see also 
eqs. (4.3)-(4.5)). It will turn out that the symmetry (3.3) of the mobilities is 
within the present scheme a direct consequence of the symmetries (4.33) and 
(4.35). 
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5.  G e n e r a l  p r o p e r t i e s  of  c o n n e c t o r s  a n d  m o b i l i t i e s  

In order to summarize the set of equations derived in the previous section 
for the induced force  multipoles, we decompose connectors  A ('2) into terms 
which are traceless symmetric and antisymmetric in the last two indices, A ("'2~) 
and A ('2a) respectively.  In addition we had defined in the previous section a 
similar decomposit ion for A (2'~). We therefore  have 

A(.2,m) ~(2s.m) 4- ~(2a,m) ~(n,2) __ ~(n,2s) 4- ~(n,2a) 
,J = ~ o "  - - - o  , _ , j  - ~ ; j -  - ~ i j  . ( 5 . 1 )  

With the help of eqs. (3.10), (3.12) and (5.1), eqs. (4.9), (4.20), (4.23), (4.25) and 
(4.30) can then be written in the form 

6~rr la iu i  = - K i  - £ A { ]  '') • K i  - , ~  L a a j )  . . . .  ,,--o,2~)L~q : ~)  • Tj 
j#i j~i 

k '  A (],") Q 1=(") q- £ ij --1 ' 
j~:i m=2 

(5.2) 

= • - Aoij : t )  • T:_~ 8 " r r ' q a i , ,  2 a , ~ e :  Kj T , + f f ~ ( a ; ' . :  (z~,u, _, 

: ~ i j  ~ - - j  , 
j#i m=2 

(5.3) 

B(2s.2s) .  l~(2s) A!2s.l) • _, = - ~'~ _,, • K, - 2 ((2aj)-'Al 2~'z~,: e)) .  Tj 
j#i j#i 

~ t - £  ~ ' A!.2s,rn) (?) ~ '(rn) 

j#i m=2 
(5.4) 

B(n..) (~) I:r(n) = A!.nA) - i - ~ ,  --.1 " KJ  - ~-, ( ( 2 a i ) - l  A~'~'~) : e )  " TJ 
j~i j~i 

j#i m=2 
(5.5) 

~ m = 2  a In these equations, '~ denotes summation over  all integer values m >- 2, 
with the proviso that for m = 2 only the connectors  A ('2s) and multipoles F (2~) 
are included in the summation, e.g. 

~ '  nijA(l'm) v ~ --jib(m) =-- nljA (l'2s) . --J~'(2s) -l- ~.~ n'J~ !l'ra) ~(7~ F~ m). 
m =2 m=3 

(5.6) 

The above equations summarize the hierarchy of  equations we set out to 
derive. This hierarchy of equations will enable us to obtain expressions for 
the mobilities in terms of the interparticle distance. 

A(n,m) We shall first study the behaviour  of the connectors  nij as a function of 
the interparticle distance Rii in greater detail• Substituting the expansion (3.15) 
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into eq. (4.32) we have 

A~;""' = ~ (ia,)"-l(-ia;)m-' f da~--~(1 _ aa)~---~ 
+o~ 

X-~-I [ 1 - - (  azi a-~-~--- ~ k 2 + ~'(k4) ] e-'k'oR,,, 27r f dkk"+'-2 \ ~  + 4rn + 2 ]  

where 

(5.7) 

~,i = & "  a (5.8) 
is the cosine of the angle between the unit vectors ~q and gl. In a reference 
frame in which the z-axis is parallel to the unit vector ~ij, we may write 
dO = -d~q d~bq, where ~b~ i is the other polar angle. We now make use of the 
identity 

+1 + ~  +1 

, f  f f 2--~ dxxP dyYq e-ixy = iq dxx p ~ 6(x) = 6pqp !(-i) p. (5.9) 
- 1  - ~  - 1  

It then follows that the terms of order k 4 and higher between square brackets 
in the integrand at the right-hand side of eq. (5.7) give vanishing contributions 
upon integration, since any element of the tensor ~-- ; : -?(1-Ogl)~  -gz-p will 
after integration over ~bq be a polynomial in ~j of which the term of highest 
order is proportional to ~ + ' .  We therefore have the exact result 

A!.n,r,) G (n'ra) l~ - ( n + m - 1 )  -.I- M (n'ra) l~ -(n+ra+ 1) 
'J = 'J "'~J - - o  --~J , ( 5 . 1 0 )  

where 

G!"") = 4~ f o n + m - 2  ', (-1)"-1 a'~a'~ -1 d/~--~z~(1 - / M I ) ~ - ~ - ~  a~,+,,-z 6 (~q), (5.11) 
~'~ ij 

H ("" ) - ( - 1 ) " - 1 4 ~  a '~ a '~- l ( ~ -+-~  + a__.~ "~ ij - -  a 
4m + 2] 

x f d a~ - ~ ( 1  - aa)~ff; :v o"+" o~+,. a(r;,p. (5.12) 

As discussed in appendix D, the tensor H ( ' ' )  can be evaluated in a simple 
manner. One finds 

H ( " " )  ( a ,j = ( - l ) " ~ - ( 2 n + 2 m - 1 ) ! ! a " a ? - '  4 -y~5+__~ ._~ '~ .+ , . '  4m + 2 / r q  , (5.13) 

so that f l ( ' ' )  is irreducible. It is clear from this result that the tensors fl(z~,m) 
and H (,,z,) vanish. We have not been able to find as general a formula for the 
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tensor G ("'"). In section 6 we will give the explicit expressions of these tensors 
for n,m<~3, n + m ~ 5 .  

In view of eq. (5.10) and the fact that B ("'") is independent of the inter- 
particle distance R~, we note that eqs. (5•4) and (5.5) are essentially expan- 
sions for FI ~s) and FI ") (n ~> 3) in terms of R~ ~, of which the dominant terms 
are of order R~: and R~", respectively• We shall rewrite these equations in 
the form 

- A!~s4) K~ - ~ ,  ((2a~)-tB(2~'2~)-~:Al~'2a)'~) --i~'(2s) = Z B(2S'2S) i ~-i.i • .. . " T j  

j#i j~i 

+ Z ~ ' n(2s'2s)-~" A(2S'm)(~'~ j~(m) - . - - ~  ~ - ~  , ( 5 . 1 4 )  
j~ei m=2 

j#i j#i 

+ Z ~ '~ '  R ( n ' " ) ' ( : 3  A!.n'm)(7 ", ~.(m) . . . . .  ~ v - j  , n i > 3 ,  ( 5 . 1 5 )  
j#i m=2 

where B ("'")-' is the generalized inverse of B ("'") when acting on tensors of 
rank n which are irreducible in their first n - 1 indices*• By iteration of these 
equations, we may now eliminate the multipoles g~s) and V~ ") in the right-hand 
sides of these equations in favour  of Ki and T~. The sums of products  of 
connectors ,  appearing in these equations, constitute series expansions in the 
inverse particle distance• When the resulting equations are the substituted into 
eqs. (5.2) and (5.3), one gets equations of the form (3.1), (3•2) with the 
mobilities expressed in terms of connectors  according to 

A(t3 ) Ix~ = (6~r~lai) -z l& j  + *-ii 

• • ' • • A ! ! , "  ( 3  B ( ' ' ' r " ~ ) - '  @ A ( . m , ' 9  

s=l 2 m2=2 ms=2 j]~i  j "1 Is ls-I  

(~" " " C) "'Js-t'sA!ms:"ms) C) B ( r % ' m ~ ) - ~ Q  A(J~?~"))] (5.16) 

i ~  ~-- (8~r~a ~) ~ [ l ~ j -  3a~a~ e : ..~ia (2~'z~) ". 

O,i ~ ~(2a ml) ¢-'~ ~(ml,ml) -I 
. . . . . .  E : lqtii t ' kL/ 

3 a j  . . . .  i j2~it h ~ 
jse:j 

( m s ' 2 a ) ' ) ]  c~ a(~-'"~) ~ . . .  A(."~'m') (S) B("~'m*)-' (S) Aj,j .e (5.17) ~JlJ2 ~ Js I1 

• According to eq. (4•18) B (2~'2~) is proport ional  to the projection operator  a (defined in eq. 
(4.18)) and B (z~'2~) ' =  --(10/9)A. The existence of B (3'3~ ~ is explicitly demonst ra ted  in section 6. 
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RT [ (ml~ = ,~ t  lUtij =-(12"n-~a~ai)- '  a /E :Al~ . l )+a j '~  "] ~ " ' "  Z ' ' "  2 
s = l  2 ras=2 Jl¢:i js.#jr._t 

Is Y:I 
• (2a,m 0 X E . A i j  ' (~) B(ml .m , ) - l  (~) a ! m . , . m 2 ) c ) .  . . ( ~  a!m~T,'m~) 

"'11]2 " ' l s - I J  s 

(ms,ms)-I  (ms, l) 

(5.18) 

[ u i ~ i j  : E + El i . . . . . .  
s = l  2 m s = 2  } l~ i  jsCj#_ 1 

J~ ~J 

_(1 m,)~ )1 
× A i j l  • 0 B(ml'ml)-l(~ A!m-l'm2) ("~ • • • C) A !ms-I'ms)(~ (ms'ms)-I (ms•l) 

~JlJ2 "~ ~-IJ2 ._, B (~) A j s  j . 

(5.19) 

Here,  in an expression of the form A("'m)® B (m,"o-' the dot denotes,  as follows 
from our previous convention,  a full contraction over  the last m indices of the 
first tensor  and the first m indices of the second. 

We shall now list a number of general properties of these expressions for 
the mobilities. 

(i) As may easily be verified, they satisfy the Onsager symmetry  relation 
(3.3) as a consequence of the symmetries (4.33) (which also holds for  B -~) and 
(4.35) obeyed by the connectors• Use must be made here of the fact  that 

A!.n,m) (73 B(m,m)-I = A(~,m) " ' , 1  "-" B ( , , , ,m) I (~ 
""J , (5.20) 

which follows from definition (4.34), and also of the fact that ~ = - c .  

(ii) Each term in the expressions (5.16)-(5.19) which is essentially a product  
of s + 1 connectors  has as a function of a typical interparticle distance R a 
given behaviour  which is determined by the upper indices of the connectors  
and their number. Thus, according to eq. (5.10) a term in eq. (5.16) with s + 1 
connectors  A with upper indices m 0 - 1  and mi1>2 (i = 1 . . . . .  s), yields 
contributions proportional to R -u~r where M ~  can assume the values 

1 s,3, f o r s = 0 ,  

Mrr=fi~=12mi+2+J, s>~l, mi>~2, j=-s-1,-s+l, s + l .  (5.21) 
.= • • . ,  

This implies that the translational mobility can not contain terms proportional 
to R -2 and R -5, since no sequences of connectors  occur  which give such 
contributions. This result is already implicit in the work of KynchS). The 
absence of the terms proportional  to R -5 in addition to those proportional to 
R -2 was also noticed for  the case of two spheres by Batchelor 6) and Felder- 
holT). All other  inverse powers of R exist according to eq. (5.21). In table I we 
have listed all sequences contributing to i f i r  up to order R -7. 
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T A B L E  I 
Products of connectors contributing in each order to the mobility tensors up to order R -7, taking 
into account the form (5.10) of each connector. Use has been made of the fact that B (2~'z~-~= 

- 10/9A 

6 ~rrlai It ~ 12 rrrlaiai p TR 

R °: 8ii l  

R - t .  a ! ~ , l )  

R - 2 : _  

R~3 :  AI(LO 

R - 4 .  -- 10 . ( ,2s)  a(2s,1) 
• ~ #41k #tkj 

R-5:_ 

6 - 10 ~12s) R -  : - -~ -  Aik' : F~kiA(2s'l)', I"~ikA(l'3) :' ~(3,3)-I :' ~kjA(3'l) 

R - 7  : ( - ~ 0 ) 2  a(I,2s)..(2s,2s). *'t ( 2 s , 1 ) _ _  rtik . J,4k! . MIj 

R ° : _  

R--~:_ 

R-~: AI~'~' : • 
R - 3 : _  

R - 4 : _  

R_5 - 10 a,,Es), a(zs,2a). _ 

R - 6 : _  

R-7 : - ~ - ~ i k -  10 a 0,2s) ..~kj ~(2s,2a) . .~, , . t i  k ~ r .  A(I,3) :" B(3.3) t i ~(k~ '2a) : • 

2 RT 3 RR 127rv/a iltij 8 rr'oa i~Jl.ij 

R ° : - R ° : 8ijl 
R 1:_ R-i :_  

R ~ : -~ :A~ ~'" R-~:-  

R-3 :_ R 3. -- ai . --(2a,2a). 

R-4 : _ R-4 : _ 

R-5 ::~ t :  A~"2~) : A ~  't~ R 5 :_  

R - 6 : _  n - 6  10 a i _  A(2a,2s).A(2s,2a ) 
1':, : f f  3a-~it:~ik .~kj :• 

R-7.. 109 ':-" ",kA(2~'2~) .. S'~klA (2s,1)., __ • : r'tika(2a'3) .: BO,3)-' .: A(k],l). R - 7  : _ 

S i m i l a r l y  o n e  f inds  fo r  R ~ ,  eq.  (5.17), c o n t r i b u t i o n s  p r o p o r t i o n a l  to  R -M~ 

w h e r e  MaR c a n  n o w  a s s u m e  t h e  v a l u e s  

3~ for  s = 0 ,  

M R S =  2 m i + 4 + j ,  s ~ l , m ~ > ~ 2 ,  j = - s - - 1 , - s + l  . . . . .  s - 3 .  (5.22) 
i= l  

T h e  f a c t  t ha t  the  v a l u e s  of  j n o w  r a n g e  f r o m  - s - 1 to  s - 3 is a c o n s e q u e n c e  

o f  t he  f a c t  t ha t  the  c o n n e c t o r  A Cz~'m) is o f  o r d e r  R -(re÷l) o n l y ,  as f o l l o w s  f r o m  

the  s y m m e t r y  of  the  t e n s o r  /4 in  eq.  (5.10) (cf.  eq.  (5.13)). Eq .  (5.22) im p l i e s  

t h a t  ix ~ d o e s  n o t  c o n t a i n  c o n t r i b u t i o n s  p r o p o r t i o n a l  to  R -~, R -z, R -4, R -s a n d  
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R -7. Again we have listed in table I all connector  sequences giving con- 
tributions to pRa up to and including order R -7. 

Finally, for pax and prR one has contributions proportional to R -MTR, where 

2, for s = 0, 

MT~ 
~ , 2 m ~ + 3 + j ,  s > l l ,  m i > t 2 ,  j = - s - - 1 , - - s + l  . . . . .  s - 1 .  

(523) 
i=l 

Consequently,  contributions proportional to R -l, R -3, R -4 and R -6 a re  

excluded. The existing terms up to order R -7 are given in table I. 
(iii) Each term in the expressions for the mobilities containing a sequence 

of s connectors  involves the hydrodynamic interaction between at most s + 1 
spheres. This implies in view of the results discussed above that for  pvr the 
dominant n-sphere contributions are of order R-3"+5 and are due to sequences 
A~t'2~:A(Z~'2~:... : A  (2~'~, i.e. to dipole-dipole interactions. Thus,  e.g. the lowest 
order  5-sphere contribution to p ~  is of order R -t°. 

It is clear from the above discussion that if one wishes to evaluate the 
mobilities up to and including terms of order R -7, only those connectors  
appearing in table I have to be evaluated. This corresponds to truncating the 
hierarchy eq. (5.2)-(5.5) after the quadrupole F ~3) of the induced force density. 
In the next  section we shall explicitly calculate the connectors  needed to this 
order of approximation. 

6. Evaluation of the mobilities 

In view of table I and eq. (5.10), the explicit expressions for the mobilities 
up to order  R -7 a re  those given below (table II). Since the tensors H ('m) are 
known for all n and m (cf. eq. (5.13)), it is sufficient to evaluate the tensors 
G ("'m) occurring in this table. We shall first calculate G (1"1), 

2~r +1 

'~ = 4--~ ai d4~ij d!~ij(1 -/~l~)~(~ij). (6.1) 
0 -1 

This tensor  must be of the form 

GI] '~) = g,1 + g2?~j~ij. (6.2) 

From these two equations we obtain 

3 
Pijf'ij : G ~  "l) = g] + g2 = ~al, (6.3) 

Tr  G~ 1'1) = 3gl + g2 = 3ai, (6.4) 
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so tha t  

GI] '~)= ~a~(1 + ~ii~). (6.5) 

a(L2~) wh ich  is i r reducib le  ( s y m m e t r i c  and  t race less )  in its last  two  T h e  t enso r  _ ~ 

indices  m u s t  be  of  the f o r m  

G(1 ,2s )  _ ^ ,^ ^ , ii - g3r~rljri~. (6.6) 

I t  fo l lows  t h e r e f o r e  us ing  eq. (5. I 1) tha t  

2~r +1 

~,i0~j i G}] "zs) = -~g~ = ~ a,a~ d~bi~ d~i~(~ 0 - ~ )  .. 8(~,~) 
0 -1  

3 
= - ~ aia~. (6.7) 

H e n c e  

G l],2s) _ 9 . . . . .  (6.8) 
. . . .  4 aia~riirijrii.  

N e x t  we  cons ide r  the  t en so r  G TM. The  only  t enso r  of  r ank  3 wh ich  is 
a n t i s y m m e t r i c  in its last  two  indices  and  wh ich  can  be  cons t ruc t ed  wi th  the  
v e c t o r  ~ is the t en so r  wi th  c o m p o n e n t s  

( /~ .  (l,2a)~ 
• - ' o  ~ = g ~ ( r ~ 8 ~  v - r~j~6~) .  (6.9) 

F r o m  eqs.  (5.11) and (6.9), we  obta in  

2w +1 

~1 ~ GI~ "z~)= - 2 g ~  = aa~ai drbo d ¢ ~ i  ~ ~ ( ~ o )  = - ~ a i a ~ ,  (6.10) 
0 -1  

and t h e r e f o r e  

3 (G° 'Z~))~ = ~a~a~(r~o~  ~ - r ~ 6 ~ ) .  (6.11) 

In  a s imilar  w a y ,  cf. append ix  E,  one ob ta ins  for  the  t enso r s  of  h igher  r ank  

T h e  

GI~ "~ = 3 a , a ~ [ 2 z i  + 3(1 + ~ i j ~ 0 ) ~  + 6D~jl, 

9 2 r-~"~ rZ'7"q (2s.zs) = _ a a ~aj [3 r~jr~j ror~ j + D o], 

(G(Z~'z~ 3 z 3 ij )~0v~ = -zaiaj[8~vSt3~ - 8~88~ +~(rij,~rij~80v 

--  r~iori~8~ --  r~i~r~j~o~ + r~i~r~8~8)], 

(/~_ (2s,2a)~ 9 2 
~ i j  ]afl~8 = - -~£ l  ia j[r i jar i j~13~ -I- r i j f l r i i s~a .y  - r i j a r i j ~ 8  - r i j l3r i j~as] ,  

(G(Za,3~-,  45 2 z 

(6.12) 

(6.13) 

(6.14) 

(6.15) 

(6.16) 

t enso r  A appea r ing  here  was  def ined in eq. (4.18); the t enso r  O is 
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traceless and symmetric in its first and last two indices, and defined by 

( Dij)~v~ = 2rij~ro~rijvrlj8 - ½( rij~rovSi3~ + r i j~ro~v 

+ r~sor~i~8.v + r~or~jv8~). (6 .17)  

In order to calculate the mobility tensors, we also need fl (3'3)-1. It is shown in 
appendix F that one has 

B(3'3)-' ~ GI~ '1) -- -~6a312A + 3r, ir, i~z~('l + 5~,i~, i) + 100,i]. (6.18) 

We can now list the various products of tensors G and H occurring in the 
expressions for the mobilities given in table II. 

I. For the translational mobilities la~ one has the successive terms* 

= ~a,(1 + ~ ) ,  (6.19) 

TABLE II 
Expansions of the mobility tensors to order R -7. Together with eqs.  (6.19)-(6.29), (6.33) and  (6.34) 

these yield the corresponding explicit expressions 

67r-0a~ i t~  r 

= tSii 1 +R~IG~],])+R;z31.4(bl)+ ~ -2 - 2 / - 1 0 ~  ~(1,2s). ~_(2s,I) . . , ,  . .  ,, k~,.i R ik R kj k - - 9 - )  --ik • • k, 

+ E o 2o 3°  2 z -  
l . l  ik • laJ kl • ~ lj k~ , , I  l X i k ~ ' X k l l X l J  ~ )  /~_ (2s,l) 

12~r-0a ~ltt RT 

_ /~, 2 ./.:.(2a,I) 4. -- 3 - - -2  10  ~ 2 a 2 s )  G~S, l )  

( ~ e~_ (3.1)) + k ~ j  Rc, k 3 R ~  c:  G~ 'z ' ) :  H(k~ ' ' , -  R ~ ' R ~ 3 e .  GI~  '3)" B°'3)-] i . k i  I 

3 RR 
8"ITTla  i ~J. ij 

~ - 3  al  . ~,~(2a,2a). - ~ ~ - 3 ~ - 3  10  al  . t~_(2a,2s). G(k~s,2a):E 
= Sift - l ~ , i  3a--~j,.ui~ . '*k# .~ , . i l~ ik~k j  -'~-3a---~ e. ,--ik • 

*Since by convention G~"s)= HI~ 'm)= 0, eqs.  (6.19) and  (6.20) are  on ly  valid for j~ i, eqs.  
(6.20)-(6.24) on ly  if b o t h  k S  i and  k S  j, etc. 
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HI],~) 3 2 . . . .  ~a i (a i  + a~)(~ijPij 1 - ~ 1), (6.20) 

lO~(1,2~) ~_(2~,1) - ~ a i a 3 k ( 1 -  3(Pik" ~kj)Z)Pik~kj, (6.21) - -  3 - ~ , ~  i k  : I , ~  k j  = 

10/~_ (1,2s) 1.1(2,1) 3 3 2 
-~ , .a~k  : , , k i  = ~ a ~ a k ( 5 a j +  3 a ~  

× [(1 - 5(~k • ~kj)z)Pik~kj + 2(~,k " ~kj)~,k~,], (6.22) 

10 i d  (1,2). / ?  (2s,l) 3 3 2 
- v - ~ k  .,. ,~j = g a ~ a k ( 5 a ~ +  3a~) 

x [(1 - 5(~k • P~):)hk~i + 2 ( ~  • ~i)Pki~], (6.23) 

~(1,~) BO,3)-~ p_(~,~)_ 1 
ik ~ ~ ~k~ - ~ a i a k [ ( 4 9 -  I17(PI~ • ~)~)1 

- (93 - 3 1 5 ( ~  • Pkj)2)(P~k~ + ~jk~) + 54(~k • P~i)~k~ 

+ (729 -- 1575(P~k • Pki)2)(~k • Pk~)~k~ki], (6.24) 

l O~2f,~_(l,2s) ~_(2s,2s) ~_(2s , l )  75 
-~-1  ~ i k  : " . ~  : ~ = r~aia~a~[(1 -- 3(P~k • Pk~)2)(1 - 3(Pk~ • ~)2) 

+ 6(Pik " rkl)2(l'kt " PI/) 2 -- 6(Pig" ~kl)(Pkl ° PI j ) (~ / j  ° Pik)]rik~li. (6.25) 

F o r m u l a e  (6.19) and (6.20), which  give the  coeff icients  of  the  t e rms  p ropor -  
t ional  to R~ ~ and R~ 3 r e spec t ive ly ,  are the  w e l l - k n o w n  5) exp re s s ions  for  
t w o - s p h e r e  in te rac t ions  to tha t  order .  F o r m u l a e  (6.21)-(6.23) are exp re s s ions  

fo r  the t h r e e - s p h e r e  con t r ibu t ions  to the  mobil i t ies  Ix~  for  j ~ i  due to an 
induced  fo r ce  dipole  on sphere  k. T h e y  r e p r e s e n t  t w o - s p h e r e  con t r ibu t ions  to 
the  mobi l i t ies  p ~  to o rder  R -4 and R -6. The  t e rm  (6.24) also r ep re sen t s  
t h r ee - sphe re  con t r ibu t ions  to p ~  fo r  j ¢  i, bu t  is due to an induced  fo r ce  
q u a d r u p o l e  on sphe re  k (for j = i, it r ep re sen t s  a t w o - s p h e r e  in te rac t ion  of  
o rde r  R-6). Final ly  for  j ¢ i, the t e rm  (6.25) a ccoun t s  for  con t r ibu t ions  due to 

two- ( fo r  l =  i, k = j ) ,  th ree - ( fo r  l =  i, k ~ j  or I S  i, k = j ) a n d  f o u r - ( / ~  i, k ~ j )  
sphe re  in te rac t ions ;  for  j = i this t e rm  r e p r e s e n t s  a t h r ee - sphe re  in te rac t ion  
only.  All these  con t r ibu t ions  f r o m  the t e r m  (6.25) are due to induced  dipoles .  

I t  should  be  no ted  tha t  these  e x p r e s s i o n s  agree  wi th  those  p r e v i o u s l y  g iven  
b y  K y n c h  s) on the  bas i s  of  a d i f ferent  me thod* .  

T h e  a b o v e  exp re s s ions  m a y  also be  appl ied  to a s y s t e m  of  two  sphe res  
only.  In  tha t  case ,  we  ob ta in  the t rans la t iona l  mobi l i t ies  p ~ ,  t t ~  and pla'f = 
~ f f  ca lcu la ted  b y  Ba tche lo r  6) and F e l d e r h o f  7) in their  ana lyses  of  the two-  
sphere  p r o b l e m  in the  case  of  f r ee  ro ta t ion  (T1 = T2 = 0) to the  o rder  Ri~ 5 and 
R~ 7 r e spec t ive ly .  In  turn,  thei r  e x p r e s s i o n s  are cons i s t en t  wi th  the  resul ts  
g iven  b y  H a p p e l  and  B r e n n e r  ~) for  the  t w o - s p h e r e  f r ic t ion  t enso r s  to order  
RT 5. I t  is c lear  f r o m  the a b o v e  exp re s s ions  (6.19)-(6.25) tha t  up to the o rder  
cons ide red  p ~  con ta ins  only  con t r ibu t ions  of  o rder  R ~  and R~ 6 fo r  the  case  
of  two  sphe res ;  for  m o r e  than  two  sphe res ,  h o w e v e r ,  Ix~  also conta ins  t e rms  

*As is clear from Kynch's eqs. (5.6) and (5.7), there is an obvious misprint in Kynch's formula 
(5.5): one should multiply the first line by 1/(8R2S 4) and the second line by 11(8R4S2). 
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of  o rde r  R -7. Similarly,  in the two-sphere  p rob lem I t ~  for  j # i conta ins  on ly  
te rms of  o rde r  R~-z ~, R~ -3 and R~-~, whereas  fo r  more  than two spheres ,  te rms of  
o rde r  R -~ and R -6 also occur .  

II. We now cons ider  the mobi l i ty  t ensor  p~x. The  success ive  te rms appear-  
ing in the express ion  for  this mobil i ty  t ensor  are, accord ing  to table II, to 
o r d e r  R -7 

- - ~  : Gl~.a.1).. : - 2 a i E 3  2 . ~ij, ( 6 . 2 6 )  

¢?(2a,2s). ~.(2s,1) 45 2 3 -^  ~e: ,.,ik • "-'kj = T a i a ~ t r i k  " ~ki)(~ik ^ ~ki)~k~, (6.27) 

/~_(2a,2s). IA(2s,1) = 3 2 3 2 ~ e : ~ k  . - - ~  - ~ a ~ a ~ ( 3 a k +  5a~) 

× [5(~,k " ~k~)(~,k ̂  ~ki)~i -- (~i~ ^ ~'~)i',k + (~'ik" ~ki)e " r/~], (6.28) 

/?(2a,3) ~(3.3)  -~ / ? ( 3 , 1 ) _  9 2 5 • : ~ ~ ~ "-,ki -- ~ a  ~ak[25(1 -- 7 ( ~  • ~k~)Z)(~ ^ ~k~)~ 

+ 50(e,~ • e~i)(~,~ ^ ~i)P,~ -- 16(~,~ • e~i)e • r~i - 3(1 - 5(~,~ • ~i)z)e • ?,~1. (6.29) 

Since there  is in this case no te rm of  o rder  uni ty  (no coupl ing be tween  
t rans la t ion  and ro ta t ion  for  a single sphere) ,  fo rmula  (6.26) represen t s  the 
dominan t  con t r ibu t ion  to ix~ ]~, which  only  exists  if j ¢  i. It  is of  o rde r  R~ 2 and 
is due to two-sphere  in terac t ions  only.  Expres s ion  (6.27) represen ts  the 
cont r ibut ions  of  o rder  R -~ to 1~ RT, j ~  i, due to th ree - sphere  in te rac t ions ;  this 
express ion  vanishes  h o w e v e r  fo r  j = i, s ince ~k ^ ~k~ = 0, SO that  i ~  T does  not  
conta in  cont r ibu t ions  of o rde r  R -5. Fo rmulae  (6.28) and (6.29) accoun t  fo r  
th ree - sphere  cont r ibu t ions  of  o rde r  R -7 to It~ T for  j #  i and for  two sphere  
cont r ibut ions  of  o rde r  R -7 to la~ T. For  a sys tem of  two spheres ,  the expres-  
sions for  it~ T reduce  to 

laR~ r = (321r~)- 'R ~7a~(3a 2 + 10a 2)e. ~,2 + ~7(R ~29), 

t t ~  = - 1~2~TR = _ (8~rT1)-lR {zze. r~2 + ~(R~-~). 

(6.30) 

(6.31) 

The  t ensor  ixzg~ can be found  by  in terchanging the indices 1 and 2 in eq. (6.30). 
N o t e  that  e.g. t : ~ 2 K 2  =-#~2  ^ K2, which  means  that  in the case of  f ree  
ro ta t ion  (T~ = T2 = 0) and under  the inf luence of  fo rces  K~ and K2, e.g. sphere  
1 will have  an angular  ve loc i ty  

to~ = -(87r~/)-~R ~2f,2 A /(2 + ( 3 2 z r O ) - ' R ~ T a ~ ( 3 a  2 + 10a 12)r12 A K1. (6.32) 

The  resul ts  (6.30) and (6.31) are cons i s ten t  with the express ions  given by  
Happe l  and Brenner1),  which  relate  fo r  the case  of  f ree  ro ta t ion  the angular  
veloci t ies  of  two spheres  to their  veloci t ies  up to o rde r  R ~ .  

III. The  success ive  te rms in the express ions  of  table II fo r  the rota t ional  
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mobilities p RR are 

- -  ai ~ (2a  2a) F 3 3 ^ ^ 1 
3a i c : ~ i j '  : , : = 2 a i ( r l j r i j - ~ l ) ,  (6.33) 

1 0  O, i _ . j ~ _ ( 2 a . 2 s )  1 ? ( 2 s , 2 a ) . G :  - 15 3 3 ^ 
9 3 a j ' : ' ~ i k  :'~kj . - - - -~a iak[ (r lk  ^ ~kj)(~ik ^ Okj) 

+ (~ik " ~kj)Pkj~ik -- (~ik" ~kj)21). (6.34) 

Formula  (6.33) represents  a contr ibution to the rotational mobility p~R for j e i 

of order R ij3 due to two-sphere  interactions. Express ion  (6.34) is a contribution 
of order R-6 which is due to three-sphere  interactions for j ~ i and to two-sphere  
interactions for j = i. For a two-sphere  system,  one finds f rom eqs. (6.33), (6.34) 
and table I I  

~R (8~r~a~)-~[1 ~5 3 ~ - ~ . .  -- - xala2/~tEt!  - r l E r 1 2 ) ]  -~- C ( R - 8 ) ,  (i = 1, 2) (6.35) 

ttR~ = IX~ = 3(167r'0)-~R;3(ft2ft2- ~1) + (Y(R-9). (6.36) 

Express ion  (6.36) is consis tent  with the results derived to order R -6 for 
hindered rotat ion of two spheres by Happe l  and Brenner~) *. Note  that  if the 
spheres exper ience  no force (Kt = K2 = 0), and if the applied torque Tt acting 
on sphere 1 is parallel to fl2 while T2 = 0, to1 =-(87r'0a~)-~T~ + t~(R -s) while 
toz = -(87r'oR32)-~T~ + t~(R-S). If, on the other hand,  r12' Tt = 0, then 

tol -(8zr-0a])-l(1 15 3 3 -6 = - ~ a  ~a2R t2)T1 + (Y(R-8), (6.37) 

to2 = (16~r~R~2)-~T~ + (Y(R-9). (6.38) 

We see that in the second case,  the sphere 2 will rotate under the influence of 

the first one in the opposi te  direction, as it should. Express ions  for it TR and ix Rs 
for the case of two spheres have  also been  derived by Reuland et. al~9). Our 
results agree with theirs, with the except ion of a difference in sign in eq. (6.30). 

7. Concluding remarks 

We have developed in the preceding sections a consis tent  scheme to 
evaluate the mobility tensors for  an arbi trary number  of spheres in an 
unbounded fluid, as a power  series in their reciprocal  distances,  and derived 
explicit expressions up to order R -7. To conclude,  we wish to make several  

remarks:  
(i) Within the present  scheme,  higher order contributions to the mobilities 

can be calculated in a s traightforward manner.  Thus,  after  evaluation of the 

*The terms of order R -6 in eq. (6.35) can not be compared with Happel and Brenner's 
expressions as it contributes in higher order only to their results. 
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integral expressions for the connector  A~] "4) and the t enso r  B (~'4), one has all 
the ingredients to calculate ~t~ to order  R -8 by forming the necessary 
products  of connectors .  

(ii) The friction tensors ~ ,  ~i RT and ~ can be found by inversion of the 
mobility tensor  matrix. This has been done for ~ to order  R -3 in paper I. It 
turns out  that  already to this order ~ contains  three- and . four-sphere 

contribut ions,  whereas the mobil i ty  tensor pi'ff r contains  to order R -3 only 

two-sphere  contributions.  The structure of the mobility tensors is also simpler 
than the one of the friction tensors for  another  reason: as we have seen in 
section 5, certain inverse powers of R do not occur in the expressions for iti~ r, 

TR Itq and I t~ .  Moreover ,  as noted also by Felderhof  7) for the case of two 
spheres, the series expansion for the mobility tensor converges much more 
rapidly than the one for  the friction tensor. 

(iii) In our t reatment  we have assumed that the unperturbed fluid is at rest 
(cf. eq. (2.20)). The present  formalism may however  by extended to the case 
that v0 is an arbitrary non-vanishing solution of the quasi-static Stokes equations. 
In that case, one obtains instead of eqs. (4.9), (4.12), (4.25) and (4.30) 

- -  S i 

u, = v ° + (67r'oa,)-'¢l" + (6~' ,a,)- '  ~ Z AII ' ' )Q  F ( ' '  , (7.1) 
r a = l  j # i  

- -  S i 

ale" toi = 3!!fliv ° - (6"n'rlai)-lB(2'2): F}2)+ (6'rr'0ai) -I ~ A!?.,,)~ ~-(m) ..,~ v - j  , (7.2) 
m = l  j # i  

B(P'P'O F~ p) 67r,a,(2p l ) ! ! ~ r ° S q  - ~] ~] a (p . ' )~  le(,.) = - ~ i j  ~ - i  , ( P  ~ > 3 ) -  ( 7 . 3 )  
m = l  j : ~ i  

By elimination of the higher order  induced force multipoles, one finds e.g. for 
the case of free rotation (T~ = 0) 

u, = - ~'~. lag  ' Xi + v° + Z((2m - 1)!!Ai~°") 0 B("' ')- '  + • • " ) O ~ v ° .  s' 
j :~ i  m = 2  j#i 

(7.4) 

Here,  lUt~ is the same translational mobility tensor as calculated before for  the 
case v °=  0; the restricted sum Z' has been defined after  eq. (5.5). In the term 
between brackets  in eq. (7.4), contributions containing products of connectors  
have not been written out explicitly. 

By inverting these equations, one obtains a generalization of Fax6n's 
theorem ]E) for  the case of an arbitrary number of spheres (cf. also paper I, 
where such a generalization of Fax6n's  theorem was given up to order  R -3, 
and where the last term in eq. (7.4) was neglected). The applicability of such 
generalizations will depend on the problem under consideration. If e.g. the 
gradient of the fluid velocity field v ° is approximately constant over  the linear 
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dimension of the spheres, it follows from eq. (4.29) that the terms with m >t 3 
in the restricted summation in eq. (7.4) may be neglected. 

Finally it should be noted that the above mentioned generalization of 
Fax6n's  theorem can serve as a starting point for the discussion of the 
Brownian motion of interacting spherical particles (cf. paper I and also refs. 
15-17, 7 and 13 for other approaches to this problem). 

A p p e n d i x  A 

Expansion of Fi(k ) in irreducible multipoles 

We first derive the expansion (3.14). From the fact that the Legendre 
polynomials Pt(x) form a complete orthogonal set of functions on the interval 
[ -1 ,  1], it follows that 8 ( ~ -  ~') can be expanded as 

~ 2 1 + 1  
8(~ - ~') = 2.~ - - 7 - -  PI(~" ~'). (A .1 )  

I =0 °tTl" 

(See e.g. Jackson18), eqs. (3.62) and (3.117)). According to eq. (4.21) of Hess  and 
K6hlerl4), one also has 

e , ( ~ .  r)  = (El - 1)!~ 0 ®  ~ .  (A.2) 

Combination of eqs. (A.1) and (A.2) yields 

1 t=~0 (2l + 11!! ~ (3  ~ .  
6(?  - ~') = ~ = l! (A .3)  

One thus obtains from eqs. (2.15), (2.11) and (A.3) 

F,(k) = f d '  e-'O'k''f,(') = f d, f d " , ( ' - " )  e-'°"" rf,(,), 

= i (2, + 1),., 1 f de' e-ia#'r~(S) f de f,(e), 
i=o I ! 4Ir 

= ,~(21 + 1)!!(i/al) 1 dr '  e -ia'k'r ~o÷,) 

[ ~ sin kai~ (~) F~l+t). = ~ (2 /+  1)!!(i/a,)' \-~r ~ /  (A.4) 
1=0 

Here,  use was made of the definition (3.7). Eq. (A.4) constitutes the desired 
expansion. 



MANY-SPHERE HYDRODYNAMIC INTERACTIONS 49 

Next ,  we derive the result (3.15). One has (cf. the derivation of eq. (A.4)) 

~? sin kai 1 f 
• e la~k (21 + 1)tt(i/a~)'-b-~r ka, = (21+ 1)tv~--~ _ d ~  T - ~, 

1 f ( - i a , )"  ~,. (S) kin. (A.5) =(2•+ 1)!! ~-~w m! 

The tensor L~ can be expressed in the irreducible tensors ~-~ of rank p ~ m. 
This expansion must be of the form 

pairs  ij 
+ terms of order  m - 4. (A.6) 

Here ,  the summation runs over  all distinct pairs ij; "terms of order m -  4" 
stand for terms involving components  of irreducible tensors of rank ~ m  - 4 .  
The coefficient bm can be determined as follows• If we contract  this equation 
over  at and a:,  the left  hand side becomes a component  of the tensor ~m-2. 
The first term in the right-hand side vanishes, by definition. All terms in the 
sum on the right-hand side with iS  1, 2 and j ~  1, 2 also vanish; the term with 
i = 1, j -- 2 gives a factor  3b,,?~ 3 . . .  r~m', and each of the 2(m - 2) terms with 
i = 1, 2 j >/3 contribute a factor  b , ~  3 . . .  P~'. Thus, after  contraction over  a~ and 
a:,  we obtain from eq. (A.6) 

~ 3 " "  ~ = ( 2 m -  1)b~'?~3... ~ ' r ~  + terms of order m - 4. (A.7) 

In view of the normalisation explained in the first footnote  of section 3, this 
equation implies that bm= 1/(2m - 1). To proceed,  we also note that according 
to eq. (5.4) of Hess and Kfhler~4), one has 

_~1 f d~'~-g" = l! ~l,,A~.z). (A.8) 
4zr (21 + 1)!! 

Here  A (~'t) is a tensor  of rank 21 which projects  out the irreducible part of a 
tensor  of  rank 1. (Note that A (~'2~ is just the tensor a defined in eq. (4.18)). 
Hence  

A(t'l)Q k I = ~.. (A.9) 

If  the expansion (A.6) is substituted into eq. (A.5), eq. (A.8) shows that the 
terms with m < ! all vanish. For  m = 1 only the first term in the expansion 
(A.6) contributes,  while the other  terms again vanish• For  m = 1+2,  all 
I(! + 1)(I +'2) distinct pairs arising from the second term in the expansion 
(A.6), give non-vanishing contributions• One thus obtains from eq. (A.5) with 
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the aid of eq. (A.9) and the result bm= 11(2m - 1) 

~r sin kai 
(21 + 1)!!(ilai) I -~r kal 

((21 + 1)!! k ~ (1 
= ( - i a , ) '  \- 4~i i  f d r ~ 7 )  ® 

= (-ia~)'kT(1 - a]k21(4/+ 6) + 0'(alk)4), 

which is the desired result. 

l!(l + 1)(1 + 2) a2k 2 + ~(alk)4) 
2( /+  2)!(21 + 3) 

(A.10) 

A p p e n d i x  B 

Integrals over the unit sphere 

In this appendix we evaluate integrals of the form 

! 
4--# f d a ~ , , . . .  O-re" (B.1) 

This integral must be equal to a component  of the tensor of rank m which can 
be constructed from the isotropic tensor 6,~ and which is symmetric in any 
pair of its indices. Obviously, for m odd, the expression (B.1) always 
vanishes. For m even, the only tensor of this form is 

' I  d/~12. , . . .  On,. = c.~ ~ (%,.:(~.3.,. • • 8.,. ,-m, (m even). 
P 

(B.2) 

Here Y.p stands for a sum over all permutations of indices which yield distinct 
pairs of indices. The coefficient cm can most easily be determined by putting 
a, = a2 . . . . .  am. The integral on the left-hand side is then equal to l / (m + 
1); since there are ( m -  1)!! terms in the summation on the right-hand side, 
one obtains in that case c,, = l[(m + 1)!!, so that 

1 f d / I l l , ,  . . . l~,, .  = 1 4-~ (m + 1)!! ~ 8"'"~8"3"4" "" 8.._,~., (m even). (B.3) 

Hence,  for m = 2 and 4 

1[ (B .4) 
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' I  ~ dnl~O~O~O~ = ~ ( ~  + ~ + ~o ,~) .  

From eqs. (B.4) and (B.5), eq. (4.16) is easily derived. 
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(B.5) 

Appendix C 

Justification of eq. (4.30) 

In this appendix, we show that if we consider the nth surface moment  (4.28) 

on sphere i, only the multipole F~ "> of sphere i appears on the left-hand side 
of eq. (4.30). This is in fact the case provided that B ~"'m) = 0 for n :~ m, where 
B <"'m) is defined by 

+ ~  

(2n ,),, fdafdk   
{ ~ sin kai'~ { ~ sin kai~ 

× k0-~- -~-a ,  J (1 - a n )  k0-~-~--~yj .  (c.l) 

Note that for n = m, this equation reduces to eq. (4.31). Obviously, B ("'') = 0 if n 

is even and m odd or the other way around, since in that case the integrand is an 

odd function of k. If both m and n are even or odd, we may without Toss of 

generality assume that m is larger than n, so that m i> n + 2. We then obtain after 
n - I partial integrations 

+ ~  

B(.,m)=i.+. (2n- 1)!!(2ma~ '+m-' - 1)!!~3 f d~ f dk 

sin kal ~ sin kai ] 
(C.2) 

It follows from the expansion (3.15) that the term between square brackets is 
a tensor of rank m + n constructed from ~ multiplied by a polynomial in k 2 

of which the lowest order term is of order km-", with m - n ~> 2. All terms in 
the expansion therefore give k-integrals of the form 

f dkk aik, m -  n -  >I (C.3) I sin 1 1. 

These integrals are all zero. Hence B ("'~> = 0 for m # n. 
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The tensor H ("'m) 

b l  ( n , m )  According to eq. (5.12), the tensor _ 0 is given by 

u!~,~ 3 o ~,_, { a~ a___qL_~ ) 
- ' J  =(-1)~-~4---~ a la j  \~--~-+--2+4m+2 

f 0~+, ~ 
x d n [ ~ - ~ ( 1  - ~ ) ~ - ~ 1  ~ 3(~,). (D.1) 

Consider the tensor between brackets.  If we write out the irreducible tensors 
in this expression, and use the normalization condition explained in the first 
footnote  of section 3, we obtain 

~ ~ ? ( 1  - I I / l ) ~  --~-~ = - I I  "+~ + lower order  terms. (D.2) 

Here,  " lower  order te rms"  stands for tensors constructed from at least one 
isotropic tensor 1 and at most n + m - 2 vectors Kl. However ,  all these " lower  
order te rms"  give vanishing contributions in eq. (D.1) since any of its 
components  yields, after integration over  ~b 0, a polynomial in ~ of which the 
highest order term is of order ~+m-2 (cf. the discussion after eq. (5.9)). We 
thus find that H~ 'm) may be written as 

~ , ~ ( n , m )  __ n r a - I  _ , j  - ( -  l)" • f d a a O + -  a iaj + 4m + 2] d Of T/+, 3(fir). (D.3) 

This is an irreducible tensor: it is symmetric in any pair of its indices, and also 
traceless, since by taking a trace over  any pair, we again obtain after  the ~b~j 
integration a polynomial in ~j of which the highest order term is of order  
~+m-2. Thus u!~,") must be of the form ° "  lJ 

H !.".') ,~ = h (D .4 )  

The Legendre polynomials Pt(x) have the property that P~(1)= 1 for all I. I t  
therefore  follows from eq. (A.2) that 

~E)  ~ =  1!1(21- 1)!!. (D.5) 

Hence,  we obtain from eqs. (D.3)-(D.5) 

2 2 
. .~a-~u( , , r~ ,=  (n+m)lh  . . . .  3 . , . - , (  a ~, + a__q_L__)(n+m) ! 
r~ i wn~j ( 2 n + 2 m _ l ) t t = ( - l )  2aeaj 4 n + 2  4 m + 2  

(D.6) 

Eqs. (D.4) and (D.6) yield eq. (5.13). 
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Appendix E 

Derivat ion o f  eqs. (6.12)-(6.16) 

(a) First, we consider the tensor G (L3). This tensor is symmetric in its first 
and last pair of indices, and traceless in its last pair as well. In general, one 
can only construct  10 different tensors of rank 4 with the isotropic tensor 1 
and the vector  ~j. The requirement  that these tensors be symmetric in their 
first and last two indices reduces the number of different tensors to 6, and one 
finds that there are only 4 of these which are also traceless in the last two 
indices. Thus we may write quite generally 

"3) a,a tgsa . . . . . .  = + g6 lrljrij + g7risr~ir~sr~s + gaD0]. (E. 1) 

The tensors A and Oij were defined in eqs. (4.18) and (6.17). Using the 
summation convent ion for repeated indices, we obtain from eqs. (5.11) and 
(E.1) 

2 - 1  (1.3) = 2g6+ ~ g 7  6, (alaj) rij,~rlj,~Sv~(Gij )~t~ = (E.2) 

2 -z 0,3) (a~a~) r~i,~r~j,~r~j,~r~i,~(G~ ~ )~o~ = ~g5 2 q- ~g6 + 2g7 = 4, (E.3) 

2 - 1 (1,3) (aiai) ~p~rij,~rli, v(Gi j )~t3 =~gs_b2 2 3 9 6  "~ 3 9 7  - -  g 8  = 1 ,  (E.4) 

2 - I  (1,37 = (aiaj) 8~6~v(Gij )~v~ = 5gs + ~g7-  2gs O. (E.5) 

9 9 9 
The solution of these equations is g5 = ~, g6 ~, g7 = z, g8 = ~. Substitution of 
these values into eq. (E.1) yields the result (6.12). 

(b) Next ,  consider G (2''2'). This tensor is of a similar structure as G ~]'3), apart 
f rom the fact that it is also traceless in its first two indices. Comparison with 
eq. (E.1) shows that it must therefore  be of the form 

G(2~,2,) a 2a i[g9 A q-  ~ . . . . . .  ii = g]oriirlirlirii + gHuiiJ .  (E.6) 

We now obtain from eq. (5.11) 

2 - 1 (2s,2s) (a~aj) rij.~r~j.ar~j, vr~j,~(G~ j ) ~ o  = 2g9+4g~0 - 3 ,  (E.7) 

2 - 1 (2s,2s) -~  (aiaj)  ~ori~.~rii,~(Gi~ )~vt~ = ~g~ 4 + 9g~o - g l l  - -  ~, (E,8) 

2 -1  (2s,2s) 2 
(a ia  s) ~s~6~,(Gij ) ~  2gl~ = O, = 5 g 9  + ~g~0 - (E.9) 

27 9 with the solution g9 = 0, g~0 = - - ~ -  and gH = - ~ .  Substitution of these values 
into eq. (E.6) yields eq. (6.13). 

(c) We now evaluate G (2~'2~). The only tensor which is antisymmetric in the 
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first and last two indices and which can be constructed from the isotropic 
tensor and the vector ~i, is the tensor with components  

/"2- ( 2 a , 2 a ) ~  2 2 
,~ ij )~t3~8 = a i a j g 1 2 ( 8 ~ 8 ~ 8  - 8~8t3 ~) + a itljgl3 

× (r~j,~rij,~8~v + rij,~r~j,~8~ - r~i,~r~j,,8~8 - r~j,~r~j,88,~). (E. 10) 

Eq. (5.11) yields 

2 - I ( 2 a , 2 s )  3 
( a l a j )  8o~rij,t3rij,~(Gij )~3~ = 2gl2-  2gt3 = +~, (E.II)  

2 - 1 ( 2 a , 2 a )  ( a ~ a j )  8 ~ 8 ( G  ~j ) ~  = 6g12- 4gt3 = 0. (E. 12) 

3 = From these equations, one finds that g~2 = - z  and g13 9 this result, together 
with eq. (E. I0), leads to eq. (6.14). 

(d) It turns out that G (2~'2a) can only be of the form 

(/,~_ (2s ,2a)"  x 2 
ij 1a~-/~5 = a i aigl4(rij ,~rlj .a8~v + rij,~rii,a,3~v - r~i,~rii.v,3z~- rii,erii.v~3,a). (E. 13) 

In this case, it follows from eq. (5.11) that 

2 - 1 ( 2 s , 2 a )  - -  9 
( a  ia i )  ,5~vri~,~rii.~(Gii ),eva = 2gt4 = -~-. (E. 14) 

By combining eqs. (E.13) and (E.14), one gets the result (6.15). 

(2,3)  (e) According to eq. (5.11) the tensor _~ is given by 

4w 3 2ia~Z f 0 3 6 a d O / i ( 1  - O / ] ) ~ - ~  8(~ii). (E. 15) 

We therefore obtain for the antisymmetric part 

- 8 ~  J" d " O ~ - - ~ ,  ~ ~(~i,)]. (E. 16) 

For similar reasons as discussed in appendix D, both integrals in this equation 
represent components  of irreducible tensors. Using the fact  that (cf. appendix 
D) 

4¢r 8 ( ~ )  = ts 

one immediately obtains eq. (6.16) from eqs. (E.16) and (E.17). 
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Appendix F 

Determination of  f l  (3'3)-1 

J~(3,3) -1 ( '~  A(3 ,1 )  In this appendix we determine _ v--i~ • We first define a tensor li of 
rank 3 by  

li = ~ ~ --iiA(3")~v FIm'. (F. 1) 
j~i  m = l  

This tensor  is traceless and symmetr ic  in its first two indices. The tensor  fl ~3'3), 

given in eq. (4.26) is easily evaluated with the aid of the results derived in 
appendix B. Eq. (4.25) then becomes  explicitly (the index i which labels the 
spheres,  is suppressed)  

9,£1~.(3) 1~(3) K:,(3) __~ ~-(3) ~ r~3)~_4~ r:~3) X I~OV. (F.2) 
- - ~  I ~ 1 - "  a f t - / - -  J - g ' y a  - -  x "ra/3 ua.y  I ~S.8~ - -  v / 3 T a  ~a6 f 3 u o B J  &r,5) 

Here ,  the summat ion  convent ion for repeated indices has been employed.  
Note  that  if one contracts  a and T in this equation, and uses the fact  that 
F ~ r  = F ~  r and F ~  = 0, one gets 

- 3 F ( ~  = I8~8. (F.3) 

To invert  eq. (F.2), we first consider the case a ~ / 3 ,  /3~ T, T #  a ;  then, eq. 
(F.2) reduces  to 

9[~1~'(3) 1E7(3) _ f (3) - ~ w -  ~ r - - ~  ~ j  = Io~, (a #/3,/3 # y, y #  a) .  (F.4) 

In view of the fact  that both F t3) and I are symmetr ic  in their first two indices, 
this equat ion yields three equations,  for  ~tlET(3)¢-- F(3) x 1 2 3 ~ , -  213), --23~t =r : (3)"  ,~'(3)~3,,~ and 

F(3~( = F~3)2) in terms of  I123, /231 and I~2, which can readily be solved, so that 

F(3) ~ = - g ( 5 / ~ v  + I ~  + I ~ ) ,  (a ~/3,/3 ~ T, T #  a) ,  (F.5) 

The inverse of  eq. (F.2) should reduce to eq. (F.5) in this special case. This is 
only possible if the inverse of  eq. (F.2) is of  the form 

~ = - g ( 5 / ~  + I ~  + I~,~ + aS~I~ + b~5~I~ + b,5~fl~). (F.6) 

Here ,  use has been made of the fact  that the right-hand side of  eq. (F.6) must  
be symmetr ic  in a and /3, and also of  the fact  that the only non-zero 
contracted fo rm that  can be constructed f rom I is I ~ ( =  L~) .  If  we contract  a 
and/3 in eq. (F.6), we get, since r~(3) = 0 ~ t  ~83' 

0 = 2 + 3a + 2b. (F.7) 

Contract ion of eq. (F.6) over  ot and 3' yields with the aid of  eq. (F.3) 

F<a) ~ = - ~6(6 + a + 4 b ) I ~  = ~(6 + a + 4 h~1~(3) +-,--+~+. (F.8) 
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The solution of eqs. (F.7) and (F.8) is a = - 2 ,  b = 2. With these values, eq. 
(F.6) is eq. (5.15) written out explicitly for  the case n = 3. In particular, it 
follows from eq. (F.6) that 

( ~ ( 3 , 3 ) - 1 ( ~ )  / ? ( 3 , | ) ~  1 r¢~2_(3,1) (-~.(3,1) ..t_ (~(3,1) ~ f2(3,1)  
~ i j  1~B"/8 ~ - - ~ [ 3 1 J i j , a B ? ~  -~ ~-~ij, B-y~8 1 i j ,~ ,a~g- - '~Oct l3u i j ,  eye6 

").~ /2{3,1) ~ / '2(3,1) "1 

For reasons discussed in connect ion with O (~'3~, cf. appendix E sub a, we must 
have 

B ( 3 , 3 ) - 1 ( ? ) / ~  (3,1) a ~ [  c A ~ rT-Rn ^ ^ --ii = + drori~1 + erijrijrijri~ + fO0].  (F.  10) 

From eqs. (F.9), (F.10), (6.12) and the symmetry  relation 

ij - -  

one gets (cf. also eqs. (E.1)-(E.5)) 

a ;3rij,~rii,oSv~(fl(3'3)-I @ ~'~ (3,1)~ . o = 2d + ]e  = - I ,  (F. 11) I l l  ij I~pyo  

-3 . . . .  , .(3,3)-' ca n(3,,,, = ] c + ~ d + ~ e  -~ ,  (F .12)  a i , ii,a, ii, t31ii,~,t ii, S t ,.~ ~ ~'l i j  )a/3~/~ = 

G(3A)a 5 + ~ d + ~ e - f = - ~ ,  (F.13) a ~ 3 ~ s r i j , a r i j , 3 , ( 8 ( 3 ' 3 ) - I  C )  ij Ic t~ ,5  = ~C I 

15 5 
The solution of these equations is c = - ~ ,  d = _ 3 ,  e = - ~  and / =  -~.  After 
substitution of these values into eq. (F.10), one arrives at eq. (6.18). 
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