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We formulate a scheme describing the fluctuations in a system obeying the non-linear 
hydrodynamic equations. The random fluxes are assumed to be Gaussian processes with white 
noise. It is shown that the usual expressions for the systematic parts of the dissipative fluxes are 
consistent with this assumption, provided that the Onsager coefficients are constants. The linear 
response of the system to a small external force field is studied and the relevant fluctuation- 
dissipation theorems are derived. 

1. Introduction 

L i n e a r  f luc tua t ion  t h e o r y  is well  e s t a b l i s h e d  and has  been  app l i ed  to 

h y d r o d y n a m i c s  wi th  c o n s i d e r a b l e  success~).  Wi th in  the  f r a m e w o r k  of  such  a 

l inear  t h e o r y ,  the  h y d r o d y n a m i c  equa t ions  are  ful ly linearized. H y d r o -  

d y n a m i c s ,  h o w e v e r ,  con t a in s  non- l inea r  con t r i bu t i ons  f rom va r ious  sou rces .  

On the  one  hand ,  the re  a re  all t hose  non- l inea r  c o n t r i b u t i o n s  wh ich  are  due  to  

the  o c c u r r e n c e  of  r eve r s ib l e  c o n v e c t i v e  f luxes  and  a lso  to the  non- l inea r  

f unc t i ona l  d e p e n d e n c e  of  the  t h e r m o d y n a m i c  func t i ons  on the  ther -  

m o d y n a m i c  s ta te  p a r a m e t e r s .  On the  o the r  hand ,  even  if one  w i shes  to  r e m a i n  

wi th in  the  d o m a i n  of  va l id i ty  of  non -equ i l i b r i um t h e r m o d y n a m i c s ,  in wh ich  

case  d i s s i p a t i v e  f luxes are  l inear  f unc t i ons  of  the  g r ad i en t s  of  the  h y d r o -  

d y n a m i c  f ields,  the re  o c c u r  add i t iona l  non- l inea r i t i e s  due  to the  d e p e n d e n c e  of  

the  t r a n s p o r t  coef f ic ients  on the s ta te  va r i ab le s ,  and  to the  p r e s e n c e  of  

d i s s ipa t ive  quad ra t i c  source  t e r m s  such  as  the  R a y l e i g h  d i s s ipa t ion  func t ion .  

S e v e r a l  m e t h o d s  have  been  d e v e l o p e d  to  t ake  into  a c c o u n t  the  h y d r o -  

d y n a m i c  non- l inea r i t i e s  wi th in  the  f r a m e w o r k  of  a h y d r o d y n a m i c  f luctua-  

t ion theory* .  Thus  the  va r ious  a p p r o a c h e s  to  w h a t  is gene ra l l y  k n o w n  as 

* For fluctuations around stationary non-equilibrium states it is customary to first linearise the 
non-linear equations around the stationary state and then to perform a linear fluctuation analysis2). 
Such a procedure has, for instance, been used to discuss fluctuations near the B6nard instability 3) 
and to discuss light-scattering in a stationary temperature gradient. A detailed discussion and an 
extensive list of references of the latter problem, which has also been studied by other methods4), 
can be found in ref. 5. It should be emphasized that in this paper we consider non-linear 
fluctuations around equilibrium. 
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mode-mode  coupling 6) have led to the introduction of the concept  of renor- 
malized transport  coefficient, and to the calculation of the long-time 
behaviour,  the long-time tails, exhibited by the hydrodynamic correlation 
functionsT). One aspect, however,  within the context  of the different mode-  
mode coupling theories of the hydrodynamical  equations, is that quite 
generally not all non-linearities occurring in these equations are retained in 
the analysis. For instance, the contribution of the Rayleigh dissipation term is 
usually neglected8). It is not clear whether such a procedure is consistent,  and, 
in particular, whether the assumption which is usually made for the random 

fluxes occurring in the truncated equations, namely that they are Gaussian 
processes with white noise, is still compatible with the known equilibrium 
distribution of the hydrodynamic variables. 

It is the aim of this paper to formulate a scheme for the description of 
hydrodynamic fluctuations around equilibrium, in which the non-linearities 
are retained in a consistent way and in which the assumption is made that the 
random fluxes are Gaussian processes with white noise. A preliminary version 
of this work was discussed in ref. 9. In spirit, our discussion is analogous to 
the one given by Enz and Turski ~°) who, however,  restricted their t reatment to 
the case in which temperature fluctuations do not occur, thereby omitting the 
energy-equation completely. 

In a previous paperl~), hereafter  to be referred to as paper I, we 
developed a Hamiltonian formalism for the hydrodynamics  of a one-component  
fluid. We also discussed the statistical description of such a system and 
derived the Liouville-equation for the density distribution in the "phase 
space" of the hydrodynamic fields. These statistical considerations shall now 
be extended to a real fluid in which one has the dissipative phenomena of heat 
conduction and viscous pressure. 

In section 2 we summarize some of the results of paper I which we use in 
our subsequent discussion. In section 3 we introduce the stochastic differen- 
tial equations for the hydrodynamic fields. The random fluxes are assumed to 
be Gaussian processes with white noise, while the form of the systematic 
parts of the dissipative currents remains unspecified. On the basis of this 
assumption we derive in section 4 the corresponding Fokker-Planck  equation. 
This derivation is performed in a well-defined way by a discretization of the 
hydrodynamic fields. The Fokker-Planck equation which is obtained reduces 
to the Liouviile-equation discussed in paper I in the continuum limit if the 
dissipative terms are neglected. 

The form of the systematic part of the dissipative currents compatible with 
the known equilibrium distribution and with the assumption of Gaussian white 
noise for the random currents is derived in section 5. It is found that they 
have their usual form with the proviso that the Onsager coefficients (i.e. the 
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viscosities divided by  the tempera ture  and the heat  conductivi ty divided by the 

tempera ture  squared) do not depend on the fluctuating variables.  
Finally, in section 6, we study the linear response  to a small external force 

density and establish the various fluctuation-dissipation theorems within the 
f r amework  of non-linear fluctuating hydrodynamics .  The renormalizat ion of 
t ransport  coefficients may be based on these equations. 

2. Hamiltonian form of ideal fluid hydrodynamics 

In this section we summarize  some of the results of paper  I, which will be 

of use in our subsequent  discussion of hydrodynamic  fluctuations. 
We will describe the state of a one-component  fluid by the five physical 

fields p, j and eu, the mass-density,  the momentum-densi ty  and the total 

energy-density respectively.  The internal energy per unit mass u is related to 
eu by the relation e~ = lj2]O + pU. It is convenient  to consider these five fields 

as components  as of a five-dimensional vector  a* ,  

so-=p,  ai = j l f o r i = l , 2 , 3 ,  a4=-e~. (2.1) 

As discussed in paper  I, Poisson-brackets  for these fields may be defined 
within the f r amework  of a Hamiltonian formalism; these Poisson-brackets  

have the usual proper ty  

{oli(r), aj(r ')} = - {a~(r'), ai(r)}. (2.2) 

We now introduce a matrix L of which the elements  coincide with the 

Poisson-brackets  {a~, aj} of the five fields (2.1). The elements  of this matrix are 

explicitly 

L00(r, r ')  ~ {t~0(r), ao(r')} = 0, 

O 
L01(r, r ')  =- {C~o(r), ai(r')} = - ~ [ p ( r ) 8 ( r  - r')], 

Lo4(r, r ' )  =- {s0(r), a4(r')} = -~7.  [ j ( r )8( r  - r')], 

- ( ~ i ( r ) ,  a j (r ' ) }  = - ~ [ j , ( r ) 8 ( r  - r')] + ~ [ j~(r ' )8(r  - r')] ,  Lij(r, r t ) 
orj ori 

(2.3) 

* Throughout this paper, Greek indices (/3, ~,, etc.) run from 0 to 4, whereas Latin indices (i, j, 
etc.) can run from 1 to 3 and designate Cartesian components of three-dimensional vectors. 



150 W. VAN SAARLOOS et al. 

Li4(r, r') =-- {ai(r), o t 4 ( r ' ) }  ----- - -~" [v(r)j i (r)8(r -- r')] -- ~rl [p(r)8(r  -- r')] 

+ ~ [e~,(r')8(r - r')], 

L44(r, r') ~- (a4(r), a4(r')} = - V .  [v(r)(e~(r) + p(r) )8(r  - r')] 

+ V ' .  [v(r')(e~,(r') + p(r ' ) )g(r  - r')]. 

In these equations p denotes the hydrostatic pressure and v denotes the 
velocity, defined by v = jJp. The other elements of L can be obtained from the 

symmetry-relation (cf. eq. (2.2)) 

Lij(r, r ' )= -L i i ( r ' ,  r). (2.4) 

Poisson-brackets for arbitrary functionals of the physical fields A({at) and 
B({a}) are then given by 

{A({a}),B({~})}= ~ j a r  j a r '  8A 8B ~,+=, ~ L~,(r, r') 8a+(r'----)' (2.5) 

where the functional derivatives 8/~a~(r) are defined in the standard way. 
With these definitions, the hydrodynamic equations of motion for ideal flow 
may be written in the compact  form 

c3c~ = {as, H }. (2.6) 
at 

The Hamiltonian H in this equation is equal to the total energy of the fluid, 

f dre,=(r). (2.7) H 

Since this equation implies that 

8H 
8a~(r) = 884, (2.8) 

one finds from eqs. (2.6), (2.5) and (2.3) the equations of motion 

a--EP = - V. j, (2.9) 
at 

a j =  - V .  v j - V p ,  (2.10) 
at 

ae--z = - 'q  • [v(e,~ + p)]. (2.11) 
at 

These are the equations of conservation of mass, momentum and energy for 
an ideal fluid. 
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3. Stochastic differential equations for hydrodynamic fluctuations 

In a non-ideal one component  fluid one has the following conservation laws 
for the mass-density p(r, t), the momentum-densi ty j(r ,  t) and the energy- 
density ev(r, t)  

a-e° = - ~7. j, (3.1) 
ot 

= - V .  [vj + p + f l] ,  (3.2) 
0t 

Oe---z~ = - ~ "  [V(ev + p) + v • / / +  d]. (3.3) 
Ot 

Here l I ( r ,  t )  and d ( r ,  t) are the symmetric viscous pressure tensor and heat 

current respectively. In macroscopic hydrodynamics the viscous pressure 
tensor and the heat current obey phenomenological laws which relate these 
quantities to the hydrodynamic fields and their gradients t2) so that eqs. 
(3.1)-(3.3) form a complete set of deterministic equations. In the context  of 
fluctuation theory we shall consider these quantities to consist of systematic 
parts H s and dS, and random parts //R and jR, 

H = H s + I/R, (3.4) 

j = dS + jR. (3.5) 

The systematic viscous pressure tensor and heat current again obey 

phenomenological laws but now in terms of the fluctuating hydrodynamic 
fields. In order that the stochastic differential eqs. (3.1)-(3.3) with (3.4) and 
(3.5) may be solved, the stochastic properties of the random fluxes must be 
specified. We shall assume the processes /-/R(r, t) and JR(r, t) to be Gaussian 
with zero mean, 

~ ( r ,  t) = 0, 

)-~-(r, t) _ 0, (3.6) 

and variances 

H~(r ,  t ) I - l~(r ' ,  t ' )  = 2kLijklS(r - r ' ) 8 ( t  - t ' )  

f (  2 
8ijSk, ) + LvSij,Sk, ] ,5 ( r - r'),5 ( t - t '), (3.7) 8izSjk -- ~ 

I-l~(r, t ) J ~ ( r ' ,  t') = 0, (3.8) 

Jrf(-r,--()-f~j( r ' ,  t ' )  = 2k  Lq,5,j,5( r - r'),5 ( I - t ').  (3.9) 
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In these equations averages denoted by a bar are taken over an ensemble of 
systems with the same initial conditions for the hydrodynamic fields. Eqs. 
(3.7) and (3.9) express the fact that the correlations of the random fluxes are 
local in time (white noise) and space. Due to isotropy, the strength of these 
correlations (which, for convenience,  is expressed as a multiple of 2k, where k 
is Boltzmann's constant) is completely determined by three scalar quantities 
L, L~ and Lq, which may still depend on the equilibrium temperature T0 and 
the equilibrium density p0 of the system. 

Equations of the form (3.1)-(3.9) were first proposed by Landau and 
Lifshitz~3), in combination with the phenomenological laws 

H s= -2r /~- f f -  r/~V. v, (3.10) 

J~= -AVT,  (3.11) 

where r/, r/~ and A are the viscosity, the volume viscosity and the heat 
conductivity respectively and where ~ denotes the symmetric traceless part 
of a tensor. It is in their completely linearized version that eqs. (3.1)-(3.3) with 
eqs. (3.4)-(3.11) are usually referred to as the Landau-Lifshi tz  hydrodynamic 
equations. In this case it turns out that they form a consistent set of equations 
in the sense that all moments of the hydrodynamic fields, calculated in the 
fully linearized scheme, approach for long times their equilibrium values, pro- 

vided that the following identification is made: 

L = r/T0, Lt, = rl~,To, Lq = AT~]. (3.12) 

The relations (3.12) represent the fluctuation-dissipation theorem in the fully 
linearized case. 

It is our aim. to investigate under what conditions, or, more precisely, for 
which form of the phenomenological laws for the systematic currents H ~ and 
J~, the nonlinear eqs. (3.1)-(3.3) are consistent with the assumptions (3.4)- 
(3.9), and the assumption of the Gaussian character  of the random fluxes. To 
this end we shall in the next section derive the Fokker -Planck  equation which 

is equivalent to our set of stochastic equations. 

4. The Fokker-Planck equation 

When considering the stochastic differential eqs. (3.1)-(3.3) together with 
eqs. (3.4)-(3.9), the problem arises whether these should he interpreted in the 
Stratonovich or It6 sense~4), due to the presence of the term v • H R in eq. (3.3). It 
is well known that it is possible, if these equations are interpreted in the 
Stratonovich sense, to derive the corresponding It6 equations and vice 
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versa14). In appendix A we show, using the discretization rules introduced in 
paper I, that the It6 and Stratonovich equations are in this case identical, so 
that either of the interpretations may be used. We shall adopt here the 
Stratonovich interpretation, so that the usual rules of differential and integral 
calculus may be used. 

We now turn to the derivation of the Fokker-Planck equation. In view of 
the difficulties encountered when writing down a conservation equation for 
the density distribution in the phase-space of physical fields (see paper I, 
where this is done in order to obtain the Liouville equation), it is necessary 
for such a derivation to discretize the system in coordinate space so that the 
phase-space becomes of finite dimensionality. As in paper I, we divide the 
fluid into small cubic cells of size A 3. We denote the position of a cell by 
r = hA, where n is a vector of which the components are integer numbers. In 
each cell the state is characterized by the five hydrodynamic variables p., j .  
and e .... the specific quantities in each cell, which in the limit of vanishing 
cell-size correspond to the previously defined hydrodynamic fields. These 
discrete hydrodynamic variables, will obey the discrete analogues of the 
stochastic hydrodynamic eqs. (2.1)-(2.5), viz. 

Op___~. = _V. • j., (4.1) 
at 

OJ-2~ = - V ,  • (V,dn + P,  + H , ) ,  (4.2) 
at 

Oe . . . . .  V .  • [v .(eo.  + p . )  + v. • l I .  + J.], (4.3) 
at 

H.  = H~ + H~, (4.4) 

Z. = j,] + jR. (4.5) 

Here H.  and J .  are the discrete viscous pressure tensor and heat current 
respectively, and the discrete gradient operator V. is defined as (cf. paper I, 
eq. (4.6)) 

,2,3 
V.A. --- ~ ~-~ [A.+~,- A._~,], (4.6) 

where the ~'s  are unit vectors along the Cartesian axes. 
In agreement with our previous assumption for the continuous stochastic 

fields Ha(r ,  t) and JR(r, t), we assume that also the processes HR.(t) and JR.(t) 
are Gaussian with zero mean, 

H~---~ = 0, J , - ~  = 0, (4.7) 
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and have as variances the discrete analogues of eqs. (3.7)-(3.9), 

R R t H # . . ( t ) H k t , . , ( t  ) = 2kL i i k lA  3 8 n , ' 8 ( t  -- t ' ) ,  (4.8) 

R R r H ~ , . ( t ) J . , ( t  ) = 0, (4.9) 

J ~ . ( t ) J ~ . , ( t ' )  = 2kLq6~;A 3 6 . . , ~ ( t  - t ' ) .  (4.10) 

With the aid of the notation (2.1) the five eqs. (4.1)-(4.3) together with eqs. 
(4.4) and (4.5) can be written in the compact  form 

4 

cgc~, .=F~ + F ~ , + ~  ] ~] M ~ , . . , f ~ , . , ,  ( ~ = 0 , 1 , 2 , 3 , 4 ) .  (4.11) 
0t .' v,~=0 

In eq. (4.11) the quantities F ~  and F~, r denote the reversible and irreversible 
parts of the rates of change of the quantities c~,. respectively: 

r e v  _ _  F r e v  - -  r e v  ~ , F0,. = - ~ ' .  • j., ~,. -=- (V.  • u.j. + ~7.p.)~, F4,. -~7. • {(e,,. + p.)v.}, 
(4.12) 

FIll .  ~ O, FI~. ~ - ( V .  • HD~,  Fi4rrn ~-  - V n  " { / / s .  10n + ds}, (4. 13) 

while the quantities M0r~,.., and the random forces f~v,. may be identified as 

M0~,.. ,= M~ov, n. ~ = M~vo, . . '  = Mi4t3,nn, = M~v4. .n ,  = 0 ,  

Mijk . , , '  ~- - -  6 i k  V j.n6nn'. 

M4ik.nn' = - -  Vk. , '~Tj .n~, ,  ', (4.14) 

M44i.. . '  = - 17i,.6.. ,  

fol~.n = f~O.n = f44. ,  = f i4 . ,  = O. 

fi£n R = H#.., (4.15) 

Fqi. = jR 
• [ , n "  

The properties of the random forces [~, .  follow from the identification (4.15). 

They are therefore Gaussian and have 
(4.7)-(4.9), 

f o v , . ( t ) f ~ , . , ( t ' )  = 2Ao~.,..,6(t - t'), 

where 

Aiikl, nn' = k L i i k l A - 3 6 . . , ,  

A4i4;,.. ' = k L o S o A  38. . ' .  

The other components  of A are all zero. 

variances which follow from eqs. 

(4.16) 

(4.17) 

(4 .18)  
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For the distribution function P({a.}, t) one may now derive the Fokker-  
Planck equation corresponding to the Stratonovich differential equation (4.11) 
in a standard way14). One obtains the equation 

oP( .,I,ot t )_  - Fo. 

+ ~,, ~ M~y,~,,,,,, ,9 Mo,v,8,,,,,.,,,A~,e,y,~,.,.,,,] p({ot,,}, t). (4.19) 

.a' 
If one takes the dissipative terms, i.e. F ~ and A, equal to zero, this equation 
reduces to eq. (4.7) of paper I, which, as was discussed, yields the Liouville 
equation in the continuum limit. It may be verified (cf. also appendix A), using 
the explicit elements M~8,.., and the definition (4.10), that 

E E \[,gM~r~'""],ga~, .,, } M~,v,8,,.,,.,,Av~,8,,.,. .... 0. (4.20) 
n',n" y8 

, "  y '8 '  

t3' 

The Fokker-Planck equation (4.19) may therefore also be written as 

OP({at.}, t) 0 [_Fo,. - ,, 0 ] 

(4.21) 

where the matrix of diffusion coefficients is given by 

= E E (4.22) 
n "n" y~ 

3"~' 

With the aid of eqs. (4.14) and (4.18), one finds the explicit expressions 

Dos,.., = D~0,.., = 0, (4.23) 

D,~,,.,,,= Dj,,,,,,,= kA-3(LUV,." V,,,~..,+ (L,, + I L)v,,V.'~,,,,'),, (4.24) 

Di4,nn' = D41,.'. = kA-3(2LV. ".r~2'v~'8.., + L,V.V., • V'.,~..,)i, (4.25) 

D44,.., = kA -3Lq~. • ~n'Snn' + 2ka -3L n~~v.: Vn,v.,8.. + kA -3Lv('~ n • v.) 
x (V.," v.,)8..'. (4.26) 

Here l / deno t e s  the unit tensor, while the gradient operators act on everything 
behind them. 

The form (4.21) of the Fokker-Planck equation would also have been 
obtained if the equations (4.11) had been interpreted as stochastic differential 
equations in the It6 sense14). This in fact would suffice to conclude that, if 
(4.11) is interpreted as a Stratonovich equation, the corresponding It6 equa- 
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tion is unmodified and vice versa, as was already mentioned at the beginning 
of this section. The conclusion therefore is that eq. (4.11) leads to unam- 
biguous results, independent of its interpretation either in the It6 or Stra- 
tonovich sense. We stress, however,  that stochastic equations for functions of 
the variables p, j and ev, as e.g. the entropy or the temperature*,  do not 
necessarily get the same form on the basis of the two interpretations of eq. 

(4.11), although their physical content  remains of course the same. 
We finally note that the Fokker -P lanck  equation (4.19) may also be written 

in the form 

st , oaz.. 

q----~O {_F~t3,. +~_, ~ Dt~t3',..' P({oe.}, t). (4.27) 

Here use has been made of the fact that (cf. also eq. (4.8) of paper I) 

OF~e; = 0, (4.28) 

and that 

.~,, ~, 0D~t3"""' = 0 a , , . ,  O. (4.29) 

These equations immediately follow from eqs. (4.12) and (4.23)-(4.26), 
together with the definition (4.6) of the discrete gradient operator.  

5. The form of the dissipative currents 

Until now we have left the form of the viscous pressure tensor and the heat 
current  undetermined and have only assumed that they are functions of the 
hydrodynamic variables. We shall now determine the form of these currents 
compatible with our assumption that the random currents are Gaussian 
processes with white noise. It is on the basis of this assumption that we were 
able to derive in the last section a Fokker -P lanck  equation for the distribution 
function P({a.},  t) of the hydrodynamic variables. For these variables the 
property of microscopic reversibility holdsl2). This implies that the fun- 
damental solution of the Fokker -P lanck  equation P({a.}, t I{a'}), which 
gives the conditional probability density that the system is in the state {or.} at 

* In this connection, and also in relation to remarks made by Fox~5), we discuss in appendix B the 
equation for the temperature. 
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time t if it is initially in the state {a'} at time zero, must satisfy the property 

P({a.}, t I {a ;})w"({a ;}) = t [ {a.})Pe"({a.}). (5.1) 

Here  fo,. = eoa~,., where e~ = 1 if ao,. is even under time reversal and e~ = - 1  
if a~,. is odd under time reversal, so that (cf. eq. (2.1)) &o,. = ao,. and 
l~li.n = --Oti,n and &4,. = o r 4 , . .  

From property (5.1) and the Fokker-Planck equation (4.27) the following 
set of conditions may be derived: 

c3Peq ---- 0 (5.2) 

for the equilibrium distribution, which is eq. (I.4.9) for the ideal fluid if P~q is 
inserted, and 

In peq 
= E, (5.3) 

These are the so-called potential conditions ~6) as applied to the case 
considered here, in which eqs. (4.28) and (4.29) hold*. 

We will analyse eqs. (5.2) and (5.3) in the continuum limit, in which the 
discretized variables become fields again. In this limit, we have e.g. 

lim F ~  v = lim - V, • j ,  = - V .  j ( r )  = {a0(r), H}. 
/t--,0 d-~0 

(5.4) 

Here,  use has been made of eq. (4.12) and of the Poisson-bracket  expressions 
defined in the first section (cf. eqs. (2.6) and (2.9)). Analogously, one finds for 
the other components  of F ~  

lim F~,~, = {ao(r), H}. (5.5) 
a~0 

With the aid of this result, eq. (5.2) becomes in the continuum limit 

f lim E E F~,; = ~ dr{aB(r), H} •PCq((a(r)}) 
a-,o . t3 Oat3,. 8aa(r ) 

= { P e q ( { a ( r ) } ) ,  H} = 0, (5.6) 

provided that wq({a,}) converges to a proper functional P~q({a(r)}). This 
equation expresses the fact that W q should be a stationary solution of the 
Liouville-equation. As discussed in paper I, the Einstein distribution, 

P~q({a(r)}) - e s ( la ( ' ) ) ) /k ,  (5.7) 

* In the derivation of eqs. (5.2) and (5.3) use is made of the fact that F~eV({a}) = -~aF~eV({a}) 
(cf. eq. (4.12)) and of the property F~"({a}) = EaF~rr({a}). 
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where S is the total entropy,  defined by 

S({a(r)}) =- f drs , (r) ,  (5.8) 

is indeed a stat ionary solution. Similarly, the equilibrium distribution for a 

fluid in thermal contact  with a heat bath at tempera ture  To, 

Peq({ot(r)}) ~ e -¢H ToS)/kT°, (5.9) 

and the equilibrium distribution for a fluid which can in addition exchange 

mass  with a reservoir  with chemical potential /x0 

Peq({a( r )} ) -  e ~" T°S-IxoM)/kTo, (5.10) 

where M is the total mass of the fluid, 

f drp(r) ,  (5.1 1) M 

satisfy eq. (5.6). 
We now turn to the evaluation of eq. (5.3). In the continuum limit this equation 

becomes  

F~or~(r) = ~ f dr 'D~,(r ,  r') 
In Peq({ot(r)}) 

8' 8ao,(r') ' (5.12) 

where we have defined 

• i r r  F'~"(r) ==- lim F~,~, (5.13) 

Doo,(r, r ' )  = lira D~,,n,,. (5.14) 
a ~ o  

In view of the definitions (4.13), we obtain for F'~r(r) 

Fb"(r) = 0, Fi~r(r) = - ( V "  H~), F~ ~ = - ~ "  [H ~" v + d~], (5.15) 

and, f rom eqs. (4.23)-(4.26), for the elements  of D~o,(r, r ')  

Dos(r, r ' )  = D~0(r, r ')  = 0, (5.16) 

g ( 1 L )  V l g ' 8 ( r - r ' ) ) i  i, (5.17) 

Di4(r, r') =D4i(r',  r) = k ( 2 L V  . ~ , 3 ( r  - r') + L~V(~' . v(r ' ))8(r  - r')), 
(5.18) 

D44(r, r') = kLqV " V'8(r  - r') + 2kL~-~ -~  : V' v(r ' )~(r  - r') 

+ kL~(V,  v(r))(V' • v ( r ' ) ) ~ ( r -  r'). (5.19) 
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One immediately sees that eq. (5.12) is trivially fulfilled for/3 = 0. In order to 
evaluate this equation for other values of /3, we also need the functional 
derivatives of the logarithm of the equilibrium distribution. For the case of a 
fluid which is materially and energetically isolated, to which the equilibrium 
distribution (5.7) applies, these are 

8 In peq _ k _ l  1;i(r) ~ In Peq_ k_l 1 
6ai(r)  = T(r)' 6ct4(r) T(r)" (5.20) 

Substitution of eqs. (5.15)-(5.20) into eq. (5.12) yields 

F]r~(r) = - (V"  HS(r))i = (2LV ~ - ~ +  • L,> V T---(-~i,'v "~ (5.21) 
'17. 

Fi4rr(r) = - V  . ( IP ( r )  . v ( r )  + J ' ( r )  

2 1 ~ V"  v ( r )  , \  

Eqs. (5.21) and (5.22) lead to the identification 

2 L ~ ' ~ ' ~  V" v(r) HS(r) = -  ~ L~O Z(r) ' (5.23) 

J~(r) = LqV T-(r) = - VT(r). (5.24) 

We have thus shown that the only expressions for the phenomenological laws 
compatible with the assumptions of Gaussian white noise for the random 
currents are those given by eqs. (5.23) and (5.24). These laws have the usual 
form of the phenomenological laws n) in the sense that the dissipative currents 
are l inear in the gradients of the state variables. It is, however, important to 
realize that in these expressions the Onsager coefficients L, L~ and Lq may 
only depend on the equilibrium quantities p0 and To and not  on the fluctuating 
fields. As a consequence, the shear viscosity r/ and the bulk viscosity r b, 
which are given by 

L L~ 
"O = T ( r ) '  "rio = T ( r ) '  (5.25) 

are within the present scheme proportional to the inverse of the temperature, 
while the heat conductivity X, given by 

L , 
X = T---~(r) (5.26) 

is proportional to T -2. In a real system, such temperature dependences of the 
transport coefficients do not occur. This implies that the assumption of 
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Gaussian white noise is, strictly speaking, not compatible  with the physical 

phenomenological  laws. The present  scheme nevertheless is approximate ly  
valid if the tempera ture  fluctuations may be considered to be sufficiently small 
so that the dissipative currents (5.23) and (5.24) can be linearized complete ly  
in the fluctuating fields*. 

In the above analysis, use has been made of the Einstein formula  (5.7) for 
the equilibrium distribution function. One easily checks  however ,  that sub- 
stitution of the equilibrium distributions (5.9) and (5.10) into eq. (5.12) leads to 
the same conclusions. 

Even though our final results have been derived in the continuum limit, we 
emphasize  the necessi ty of the discretization procedure for intermediate 
calculations. This is illustrated by the fact  that, if one would immediately go 

over  to the continuum limit in the Fokke r -P lanck  equation (4.27), one of the 
terms arising would read 

f f 8Di3v(r, r') 8P dr  dr '  (5.27) or 8a~(r) ~a,(r')" 

The interpretation of the functional derivative 

8D~(r, r') 
- (5.28) ~0( r )  

in this expression is not clear, however ,  due to the delta-function 8 ( r -  r') in 
Do,(r,r') (cf. eqs. (5.16)-(5.19)). This ambiguity has been avoided by the 
discretization procedure.  For a more elaborate discussion of the discretization 
rules, especially in relation with the proper  choice of variables, we refer  to 

paper  I. In this connection it may be noted that the difficulties encountered in 
a Fokke r -P l anck  equation for fields are related to the well-known fact that 
equilibrium mean square fluctuations of state variables of a volume element  

are inversely proportional to the size of the volume element. In the continuum 
limit, such quantities diverge. 

We f ina l ly ' remark that the quadratic term I I .v ,  occurring in the energy- 

equation, has given rise to controversy.  It has been argued 15) that this term, 
which plays an essential role in our analysis, is the origin of an inherent 
inconsistency of non-linear fluctuation theory. In appendix B we show, 
however ,  that this criticism is based on an erroneous argument.  

* In fact, according to eqs. (5.25) and (5.26), the transport coefficients must also be considered 
to be independent of the fluctuating density and to be only functions of po. Again this will in 
general only be legitimate in as far as density fluctuations are sufficiently small. 
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6. The linear response to an external force 

In this section we will study the linear response to a (small) external force 
density. In the presence of an external potential V ( r ,  t) ,  the hydrodynamic 
equations (3.1)-(3.3) become 

0__pp = _ V. j, (6.1) 
at 

O~ = - V  . [vj + p + H]  - p V V ,  (6.2) 
Ot 

Oe---r-~ = - V  . [v(eo + p )  + v • 11 + J] - j • VV, 
0t 

(6.3) 

where, as before, e~ is the total energy density in the absence of the force, i.e. 
e~ = ~j2/p + uv. 

We will analyse, along the lines of ref. 17, the linear response of the system 
to this potential using the Fokker-Planck equation equivalent with the above 
equations. As was discussed in the preceding sections, the Fokker-Planck 
equation should in principle be derived starting from a set of discretized 
equations. For conciseness, we will in this section not explicitly perform this 
program, but write the equations in a continuum-notation throughout. One 
may easily verify, however, that a more careful analysis, based on the 
discretization rules, leads to the same results. 

As the terms in eqs. (6.2) and (6.3) arising from the external potential are of 
a purely mechanical nature, they already appear in the equations of motion of 
the ideal fluid. In the presence of the potential, the Hamiltonian H is given by 

H ( t )  = H o +  Hi(t), 

with 

m=- f drew(r), H,(t)- f 

(6.4) 

drp(r) V(r, t). (6.5) 

The equations of mot ion (6.1)-(6.3) for  the ideal f lu id (i.e. 11 = 0, J = 0) may 
with the aid of this Hamiltonian be written as 

Oa(r,  t) = {a(r, t), H(t)} = {a(r, t), H0} + {a(r, t), Hi(t)}. (6.6) 
Ot 

This may be verified, using the fact that 

8H0 8HI 
&t~(r) = 8~4, 8a~(r) = V ( r ,  t ) ~ o ,  (6.7) 
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so that eq. (6.6) becomes 

Oa~(r,ot t ) =  f dr'Lo4(r, r') + f dr'Loo(r, r')V(r', t). (6.8) 

Upon substitution of the explicit expressions (2.3) for the elements L/34 and 
L/30 the ideal fluid equations immediately follow. 

The Liouville equation now becomes* 

OP({ot(r)}, t) _ {n(t) ,  P} -= LoP + ~ ,(t)P, 
9t 

f f 4 5P 
= d r  d r '  ~ [L4/3(r, r') + V(r,  t)Lo/3(r, r')] 5a~(r')' (6.9) 

/3=0 

where L0 is the Liouville-operator in the absence of the external force and 
Li(t) the contribution to the total Liouville operator due to the external force, 

k0P -~{Ho, P}, kl(t)P -={Hi(t), P}. (6.10) 

The definition of the Poisson brackets given in paper I, eq. (I. 3.23), im- 
mediately implies that {H(t), S} = 0. Consequently 

( Lo + k l( t ) ) e -in(t) T°S)/k T° = {H(t), e m . )  ToS)/k To} = O. (6.1 1) 

For V = 0, this equation reduces to eq. (5.6) for the equilibrium distribution 
(5.9). By expanding eq. (6.11) up to linear order in V, one obtains 

' (J ) k~(t)Peq=kTokO dro(r)V(r,t)P eq drV. j ( r )V(r , t )P  eq. (6.12) 

Here P~q is the equilibrium distribution of the system in the absence of the 
external potential, which satisfies LoP eq= 0. 

We now return to the general case of a fluid with dissipation in the presence 
of an external potential. Instead of the Liouville equation (6.9), we then find 
for the evolution of the probability distribution a Fokker-Planck equation. 
Along similar lines as in the previous section one may show, on the basis of 
the fact that the correlation functions of the random currents are not modified 
by the external force, that the Fokker-Planck equation becomes 

OP({a(r)}, t) = (Lo + Ll(t) + H)P({a(r)}, t), (6.13) 
0t 

where M may formally be defined as 

M =-- f dr ~ 6 a ~  F~'(r)+ f dr f dr'~'~/3/3, ~Sa/3(r) D/3/3,(r, r') 8a/3,(r')'8 (6.14) 

* Again the incompressibility of the flow in phase space is easily checked using the dis- 
cretization rules. 
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A more precise definition of H should be given in the context of the discrete 
formulation, cf. section 4, in particular eq. (4.27). 

If we write P as 

P({a(r)}, t) = Peq({a(r)}) + P ~({a(r)}, t), (6.15) 

where P~ is the deviation from pea, one obtains from eq. (6.13) up to linear 
order in the external potential 

0P'({a(r)}, t) 
= (k0 + H)P t({a(r)}, t) + Lt(t)Peq({a(r)}). (6.16) 

0t 

We will assume that V(r, t)~O for t ~ - ~  and that the system was initially in 
equilibrium. With the aid of eq. (6.12) the formal solution of eq. (6.16) can 
then be written as 

' i f  Pl({a(r)}, t) = ~ dr' dr  exp{(k0 + H)(t - t')}V • j ( r)  

x V(r, t)peq({a(r)}). (6.17) 

From this equation one easily calculates the average linear response to the 
perturbation. The average (a(r ,  t)) is defined by 

( , ( r ,  t ) )= lim f ]-~ da,a,P({a,}, t) 
,a-,o J 

d{a(r)}ot(r)P({a(r)}, t) (6.18) 

and the equilibrium correlation functions (a( r, t) ~ f ,  0) )~q by 

(or(r, t)ot(r', O)~eq ~-~ ~ d{a(r)} ~ d{a'(r)}a(r)a'(r')P({a(r)}, t l {.'(r)~) 

x tP~({a'(r)}), (6.19) 

where, as before, P({a(r)} , t  I{a'(r)}) is the fundamental solution of the 
Fokker-Planck equation in the absence of the potential. 

From eq. (6.17), we obtain for 

A(p(r, t)) -= (p(r, t)) - (p(r, t)),q, 

t 

z~(o(r, t)) = ~ f d{a(r)}o(r) H)(t 

V'. j(r')P~({a(r)})] V(r', t'). (6.20) x 
I 
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To proceed, we note that 

P({t~(r)}, 0 I {a'(r)~) = lim M 6(tr. - or'.) -~ 6({a(r)} - {a'(r)/). (6.21) 
A - ~ 0  n 

With the aid of this initial condition, we may rewrite the term between square 
brackets in eq. (6.20), viz. 

~ d{a(r)}p(r) exp{(10 M)(t j(r')Peq({a(r)}) + t')}~7'. 

d{ot(r)} ~ d{tr'(r)}p(r) exp{(l o + H)(t - t')}W • j'(r') 

x P({a(r)}, 0 I{a'(r)})W~({a'(r)}) 

= J_~ d{ot(r)}.~ d{a'(r)~p(r)W, j'(r')P({a(r)}, t -  t ' l l , ' ( r )} )  

x peq({et'(r)}) 

= (p(r, t )W. j(r', t')Lq. (6.22) 

In the above, use was made of the definition (6.19) of equilibrium correlation 
functions and of the fact that the fundamental solution of the Fokker-Planck 
equation in the V = 0 case is formally given by 

P({a(r)}, t I {et'(r)}) = exp{(l_0 + M)t}P({a(r)}, 0 1 {a'(r)}). (6.23) 

Substitution of eq. (6.22) into eq. (6.20) yields 

' f j  A ( p ( r , t ) ) = ~ o  ° dt '  dr ' (p(r , t )W. j ( r ' , t ' )LqV(r ' , t ' )  
x 

: [ dt' I dr 'Goj(r-  r', t -  t '). K(r ' ,  t'), (6.24) 

Here K(r, t ) = - ~ ? V ( r ,  t) is the force per unit mass due to the external 
potential, and Goj a Green's function defined by 

1 Gp~(r - r', t - t') =- ~ Co(r, t) j(r ' ,  t'))eqO(t -- t'). (6.25) 

In this definition, O(t - t') is the Heavyside step function. 
One similarly obtains 

+ ~  

= [ d r ' [ d r ' G o ( r -  r', t -  t '). K(r' ,  t'), A(j(r, t)) (6.26) 
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and 
+ ~  

A ( e v ( r ,  t ) )  = _ 1 d t '  J dr'Gej(r - r ' ,  t - t ' )  . K ( r ' ,  t ' ) ,  (6.27) 
- o o  

with 

, 1 
Gjj ( r  - r ' ,  t - t )---k-~0 { j ( r ,  t ) j ( r ' ,  t'))eqO(t - t') (6.28) 

and 

1 
G , j ( r  - r ' ,  t - t ' )  =- ~ (e~(r,  t ) j ( r ' ,  t'))eqO(t - t'). (6.29) 

Expressions (6.24)-(6.29) represent the fluctuation dissipation theorem for the 
present case. The equilibrium correlation functions occurring in these 
theorems and giving the l i n e a r  response to the external force, should be 
calculated using the n o n l i n e a r  equations describing the equilibrium fluctua- 
tions of the fluid. These non-linear terms in the equations of motion lead to 
the so-called mode-mode coupling contributions to the above correlation 
functions. One obtains in that way within the framework of a hydrodynamic 
fluctuation theory on the one hand the long time tails of these functions and 
on the other hand the mode-mode coupling expressions for the renormalized 
transport coefficients which are of special interest in particular near the 
critical point. 

We finally note that Ma ss) derived a fluctuation-dissipation theorem similar 
to those given above for a somewhat more simple system obeying a non-linear 
stochastic differential equation using a graph-theoretical procedure. 

A p p e n d i x  A 

In this appendix we show that the discretized hydrodynamic eqs. (4.1)-(4.5) 
may either be interpreted in the It6 or in the Stratonovich sense. As discussed 
e.g. by Arnold14), the Stratonovich equations 

da~ 
(S) ~ = F, + ~. M,.Jj, (A. 1) 

I 

where F~ and M~j depend on the a~ and where f~ is a random force witl~ 
correlations 

f~ ( t ) f j ( t ' )  = 2A , i6 ( t  - t ' ) ,  (A.2) 
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is equivalent to the It6 equation 

da, [ OM-~] Mk,Aj, + Z MJi.  (A.3) (I) ~ - = F i + ~ i  k--aak ! i 

Generalization to the case considered in this paper shows that the discretized 
Stratonovich stochastic hydrodynamic equations written in the form (4.11), 

4 
00/13 . . . . .  i r r  + ~ ~ Mo~&..,f~&.,, (A.4) (S) at = F~,. + F~,. .' ~.~=o 

are equivalent with the It6 equations 

4 
aOl:13 . . . . .  i r r  + z~ z~ M#r~...,f.&., 

(I) at = F~,. + F~,. .' ~=o 

( O M~,.., ~ 

n"  T'6 '  

Hence,  if 

~ (aM~&..,] M~,r,~,.,,.,,,A~r,a,.,. .... 0, 
n'n" ~8 aOl,8' n" I " " 

n" T'~' 
13' 

(A.6) 

the It6 and Stratonovich equations are identical*. 
To show that eq, (A.6) is indeed obeyed,  we notice that the only elements 

of M~&,,, which depend on the variables are the elements M4k~ (cf. eqs. 
(4.14)). Therefore ,  eq. (A.6) is trivially fulfilled for/3 = 0, 1, 2, 3. For/3 = 4 one 
gets, using eqs. (4.14) and (4.17), 

/ rl'll" ?~) 
n'" y'a' 

k (cgM4k/ , . . , ]  , 

n'" trip 

n"' rr~ 

= 0. (A.7) 

The last step follows immediately from the fact that 

(Vm...8.,,.,,,)8.,.,,&,.,,, = 0, (A.8) 

* The equivalence of the It6 and Stratonovich equations may of course also be established via 
the Fokker-Planck equation, cf. eq. (4.20) and the discussion after eq. (4.26). 
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since the term between brackets is only non-zero if n " =  n "+ - ~m, while the 
two other Kronecker delta's are only non-zero if n"=  n". Eq. (A.7) together 
with (A.6) establishes the equivalence of the It6 and Stratonovich equations in 
our case. 

Appendix B 

In this appendix, we analyse the equations which led Fox to conclude that 
an "approach [similar to the one presented in this paper] to non-linear 
hydrodynamic fluctuations should be doubted and perhaps discarded"15). 

Consider the equation for the fluctuating temperature of the fluid 

p c ~ = - T d T  (0P)~ o V ' v - ' S : V v - ' ~ : V v - V ' J s - V ' J  R. (B.,) 

Here c~ is the specific heat at constant volume of the fluid, and d/dt  is the 
total time derivative, defined by 

d 0 
d--t = 0-t + v .  ~7. (B.2) 

Upon linearization of eq. (B.1) one should, according to Fox, retain the term 
IIR:~Tv since, even though it is bilinear in //R and v, it is linear in v, whereas 
the term IP:~Tv should be neglected s ince/ /~ is of the order of v, so that the 
whole term is of the order of v 2. The author then proceeds to show that 

(~'/R: VV)eq = O0, (B.3) 

on the basis of which result he concludes that the theory is inconsistent. In 
the above formula (...)eq denotes an average over an equilibrium ensemble. 

The above argument is however incorrect. Indeed, the total pressure tensor 
is a macroscopic variable which is even under time reversal (i.e. even in the 
velocities of the constitutive particles in a molecular description). This fol- 
lows from the fact that this quantity is defined through the momentum 
conservation equation (3.2). As a consequence its equal time correlation 
function with the velocity (gradient), which is odd in the particle velocities, 
vanishes (see e.g. ref. 12). Therefore, using the decomposition o f / /  into H ~ 
and H R given by eq. (3.4), one has 

(H(r ,  t)  : ~Tv (r, t ) )eq  = (HS(r, t) : ~Tv(r,/))eq + (HR(r, t) : tTv(r, t))~q = 0. (B.4) 

Eq. (B.4) states that in equilibrium there is no heat production on the 
average. Since it follows from the phenomenological laws that 

II~(r, t): Vv(r ,  t) <0 ,  (B.5) 
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one finds by combining eqs. (B.4) and (B.5) 

(IIR(r, t ):Vv(r,  t)Lq > 0. (B.6) 

This inequality shows that the average temperature will decrease, if we 
neglect the term HS:Vv in eq. (B.1) while retaining the term fiR:Vv. The 
above equations also show that the so-called "bilinear term" HR:Vv is on the 
average of the same order of magnitude as the "quadratic term" //S:Vv and 
that is inconsistent to retain one and neglect the other. 

In passing we remark that eq. (B.1) is only correct  if interpreted as a 
Stratonovich equation, since in the derivation of eq. (B. I) from eqs. (3.1)-(3.3) 
the usual rules for  the transformation of variables have been applied to the 
stochastic equations. These rules, however,  do not apply to It6 equations. The 
inconsistency of eq. (B.1) as an It6 equation is already apparent  from the fact 

that in It6 calculus 

It6: (HR(r, t ):Vv(r,  t))eq = 0, (B.7) 

which is in contradiction with eq. (B.4). 
We also note that expressions like (fiR(r, t ) :Vv(r ' ,  t')) are discontinuous at 

t = t'. In view of the Stratonovich interpretation needed here, the equal time 
correlation (HR(r, t ) :Vv(r ,  t)) appearing in eq. (B.4) is defined by 

(HR(r, t): Vv(r, t))=-lim ~(fiR(r, t + e): Vv(r, t)) + ½(fiR(r, t - e ) : V v ( r ,  t)). 
e ~ 0  

(B.8) 

We shall now verify by a direct calculation that eq. (B.4) also follows 
without the explicit use of the more elegant argument of time-reversal 
symmetry.  This is done for the following set of equations 

V • v = 0, (B.9) 

OV 11 s HR" p 0 ~  - =  -Vp  - V .  - V .  (B.10) 

aT _ V . j s  v . j R _ I I ~ : V V _ f i R : V v ,  (B.11) P°C~° ~-t-= 

where Js and H s now obey the linearized phenomenoiogical laws (3.10) and 
(3.11), and where the correlations of f i r  and jR are given by eqs. (3.6)-(3.9), 
together with eq. (3.12). From here on, equilibrium quantities are indicated by 
a subscript 0. Apart from the term HS:Vv, eqs. (B.9)-(B.l l) are the equations 
considered by Fox, specialized to the case of an incompressible fluid. 

We define the Fourier transform of a function f(r ,  t) by 

f dr f dt ei '"-i '° ' f(r ,  t). (B.12) 
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After substitution of eq. (3.11) into eq. (B.10) and Fourier-transformation, we 
obtain for the velocity fluctuations generated by the random stress tensor in 
an aged system 

v(k, to) 1 " FIR(k, to) (11 kk/k2), (B.13) 
= itop0 + 71k 2 lk • • - 

where use has been made of the fact that k .  v(k, to)= O. The equilibrium- 
correlations of FIR(k, to) are given by 

(II~(k, to)II~(k', to'))eq = 2kLijkl(2~r)48(k + k')8(o) + to'). (B. 14) 

This equation follows from eq. (3.7) for an aged system in which the initial 
conditions for the hydrodynamic fields have been removed to time to--> -oo, 
With the aid of these equations, one finds 

~dk dk' dto dto' '(kv(k, to)':k'v(k', to'))eq (H'(r, t) : Vv (r, t)) = 27) (27r)a 

X e-i(k+k')" r+i(~o+t~')t 

and 

dk dto 4kTo~2k 4 
J (--~r-~)to20~+ ~2k4' (B.15) 

f dk do) 4kTorlk 2 r dk do) 4kTorl2k 4 
(HR(r, t):Vv(r, t))eq = ~ -itop0 + "qk: = J ~ to2p~ + ,tl2k 4. (B.16) 

Comparison of eqs. (B.15) and (B.16) shows indeed that eq. (B.4) is obeyed 
even though the integrals are divergent if no wave-vector cut-off, necessary to 
tame divergencies inherent to a continuum description, is introduced. 
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