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A Hamiltonian formalism for hydrodynamics of ideal fluids is developed with the help of 
Seliger and Whitham's variational principle. It is shown that a density distribution function in the 
phase space of the mass-density, momentum-density and energy-density fields obeys a Liouville- 
equation. 

1. Introduction 

Clebsch 1'2) was the first to derive, in 1859, the hydrodynamic equations for 
an ideal fluid from a variational principle for Euler coordinates. His derivation 
was, however,  restricted to the case of an incompressible fluid. Later  Bate- 
man 3) showed that the analysis of Clebsch also applies to compressible fluids 
if the pressure is a function of density alone. Finally, in 1968, Seliger and 
Whitham 4) formulated a Lagrangian density for the most general case, i.e. 
taking also into account  the dependence on entropy. From a Lagrangian 
formalism it is of course in general possible to go over  to a Hamiltonian 
description. For  hydrodynamics,  this was done by Kronig and Thellung 5'6) in 
order to quantize the fluid equations. As they based their work on Bateman's  
analysis, their results only apply to the case of isentropic (or, alternatively, 
isothermal) flow. 

Recently,  there has been renewed interest in a Hamiltonian formulation of 
hydrodynamics.  In an interesting paper Enz and Turski 7) considered hydro- 
dynamic fluctuations on the basis, and with the limitations, of the formalism 
developed by Thellung6). 

In this paper we will develop a Hamiltonian formalism for the general case 
of Seliger and Whitham and discuss a number of statistical properties of an 
ideal fluid. This discussion will enable us to study in a subsequent paper 
nonlinear fluctuations in a real fluid. 

In section 2 we discuss the Clebsch representat ion of the fluid velocity field. 
Seliger and Whitham's 4) variational principle, which is based on this 
representation,  is reviewed in section 3. We then introduce a Hamiltonian 
description of hydrodynamics and define Poisson-brackets in terms of the 
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canonical (nonphysical) fields in a standard way. From these one may derive 
Poisson-bracket  expressions for the physical (hydrodynamic)  fields. These 
turn out to be identical to those introduced on the basis of symmetry  con- 
siderations and without the use of canonical fields by Dzyaloshinskii and 
Volovick"). 

In section 4 we consider an ensemble of ideal fluids and study the evolution 
in time of the density distribution function in the "phase space" of physical 
fields. We conclude that if the physical fields are the mass-density, momen- 
tum-density and energy-density,  the flow in the corresponding phase space is 
incompressible, so that the density distribution function obeys a Liouville- 
equation. The standard equilibrium distributions of fluctuation theory are of 
course stationary solutions of this equation. This is discussed in section 5. 

2. The Clebsch representation for an ideal fluid 

The behaviour of an ideal fluid is described by the five hydrodynamic  
equations (conservation laws) 

0__p_p = _ V.  pv, (2.1) 
at 

a p v  = _ V • p v v  - V p ,  (2.2) 
a t  

a p s  = _ V • p v s ,  (2.3) 
3t  

where p(r, t) is the mass density, v ( r ,  t )  the velocity, p ( r ,  t )  the hydrostatic 
pressure and s(r, t) the entropy per unit of mass. These equations can 
equivalently be written as 

dv 
p ~ -  = V. v, (2.4) 

dv 
o -d-7 = - ~ ' p '  ( 2 . 5 )  

ds  
p ~ -  = 0, (2.6) 

where v --- p-i is the specific volume, and where 

d 
d-t ~- a~ + v • V (2.7) 

is the total time derivative. 
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In order to formulate a variational principle, as will be done in the next 
section, it is convenient to introduce the Clebsch representation 1'2) 

v = - ¢~p - x ¢ ~  - sV~,s, (2.8) 

where the three components of the velocity field are given in terms of four 
scalar fields as well as the entropy*. Clearly one of the fields is redundant. In 
fact, one could, in principle, always represent an arbitrary velocity field with 
the choice ~b, = 0. As will become apparent below, however, it is convenient 
to choose ~b, unequal to zero if the flow is not isentropic (i.e. Vs  # 0). In this 
case it will be necessary that an additional equation specifies this field. 

In the Clebsch representation, the vorticity of the fluid is given by 

O.1 ~-~ V A V = - - V X  A Vt~A -- VS A Vt/) s. ( 2 . 9 )  

The total time derivative of the velocity field may then be written as 

dv = a v +  = a v + l  
d'---{ at  v • V v  at  2 Vv2  - v A tO 

where partial time derivatives are denoted by a dot. In obtaining this equation, 
use has been made of eq. (2.6). On the other hand, eq. (2.5) may be written in 
the form 

d__y_v = _ V h  + T V s ,  (2.11) 
dt 

where h is the enthalpy per unit of mass and T the temperature, and where 
we have used the thermodynamic relation 

l d p  = d h -  T ds. (2.12) 
P 

The four scalar fields 4~p, A, ~b~ and ~bs must therefore be chosen in such a way 
that the right-hand side of eq. (2.10) reduces to the right-hand side of eq. 
(2.11). This requirement is not sufficient to determine uniquely the equations 
satisfied by these fields. An appropriate and customary choice 4) is 

1 V 2 =  ~p + A ~  + s ~ - ~  h, (2.13) 

dA 
d--T = 0, (2.14) 

• For  the special case  of  isentropic  flow, the last t e rm in eq. (2.8) may  be absorbed  into the first, 
so that  v = - V+ - ;tV+~ where  th = 4'o + s4,5. 
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d4~ 
dt = 0 ,  (2.15) 

d~bs 
dt - T. (2.16) 

The last equation may be viewed as the equation necessary to specify the 
redundant  field. 

The equations of motion for the six fields (p, s, ,L ~bp, ~bs and ~ )  describing 
the system in the Clebsch representation,  are then the eqs. (2.1), (2.2) and 
(2.13)-(2.16). 

It should be noted that for stationary states (for which the physical fields p, 
v and s are independent  of time) the fields ~bp, ~b~ and ~bs are not necessarily 
independent  of time4). This is obvious for the case of a homogeneous fluid at 
rest for which it follows from eq. (2.16), that ~bs = Tt .  Alternatively, for steady 
flow Bernoul l rs  theorem states that ½v2+ h is constant along a streamline, so 
that, according to eq. (2.13), 

~0 + h ~  + s ~  = constant 

along a streamline. As this constant is in general different along different 
streamlines, it can not be set equal to zero. 

In the next  section we will review the derivation of the hydrodynamic 
equations from a variational principle using the Clebsch representation. We 
shall then also discuss the Hamiltonian formulation of the hydrodynamic 
equations. 

3. Variational principle for ideal fluids and Hamiltonian formulation 

Following Seliger and Whitham4), the six eqs. (2.1), (2.3) and (2.13)-(2.16) 
can be found as Euler-Lagrange equations from the variational principle 

t2 

(3.,) 
fl  

where the Lagrangian density ~ is defined as 

= p(~bo + h~b~ + s(b, - ~(V&o + AV4~  + sVchs) ~ - u ( p ,  s)}. (3.2) 

Here u is the internal energy per unit of mass, taken as a function of p and s, 
for  which one has the thermodynamic relations 

(33) 
s p 
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Eq. (3.1) must hold for arbitrary variations of the fields which vanish at t~ and 
t2 and at the boundary of the volume V occupied by the fluid. Thus one finds 
for arbitrary variations of the density p 

= p. (3.4) 

This equation expresses the fact that the Lagrangian density reduces to the 
pressure on the extremal path and is equivalent to eq. (2.13) since h = u + pip. 
For arbitrary variations with respect to ~,, ~,, ~, A and s one finds in the 
same way eqs. (2.1), (2.3) and (2.14)-(2.16) respectively as Euler-Lagrange 
equations. As discussed in the previous section, these equations are, together 
with eq. (3.4), the hydrodynamic equations in the Clebsch representation*. 

Clebsch, in his masterful 1859 paperl), showed already that a variational 
principle could be formulated for the case that the equation of motion for the 
velocity field of the fluid can be written in the form 

dv 
d--? = - V~, (3.5) 

if one uses the representation 

v = - F~bp - A F d ~ .  ( 3 . 6 )  

Eq. (3.5) holds for a number of cases in which the hydrodynamic equations are 
constrained. Examples are: 1. the case of incompressible flow which was 
considered by Clebsch himself and for which ~ = pip (cf .  eq .  (2 .5) ) ;  2. the case of 
isentropic flow, for which ~ = h (cf. eq. (2.12)); and 3. isothermal flow, for which 

= h - T s .  The work of Bateman 3) comprises both case 2 and 3. If the equations 
are not constrained however, the equation of motion is not of the form (3.5). It is 
then convenient to use the more general Clebsch representation, eq. (2.8). 

From the Lagrangian formulation of the hydrodynamic equations one may 
go over to a Hamiltonian formalism. Contrary to the usual case however, we 
will obtain the same number of Hamiltonian equations, since the Lagrangian 
equations are already differential equations of first order in time. As the time 
derivatives of p, A and s do not appear in the Lagrangian, one can only define 
the three momenta conjugate to the fields ~b 0, ~b~ and ~bs, 

ale 
Hp - a~o = p' (3.7) 

* The derivation of the energy and momentum conservation laws on the basis of Noether's 
theorem is straightforward and in fact completely parallels the corresponding analysis by 
Thellung 6) for isentropic flow, to which the reader is referred. 
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05f 
HA =-- 0~A PA' (3.8) 

8 ~  
Hs =- O~b~ = ps  =- st,. (3.9) 

It  is seen that these momen ta  are the fields p, pA and sv, the ent ropy per unit 

of volume.  The Hamil tonian density,  given by 

-= ¢~fl/o + ~AHA + ~,n~ - ~ ,  (3.10) 

becomes  

= ½(HoV49 p + HxV49x + II~V49~)2/Ho + H p u ( H  o, Hs) .  (3.11) 

The hydrodynamic  equations may  now be found as Hamil tonian equations of 
motion: 

O~ 
49p - (3.1 2) - v .  V49o-~v 2 + ~ ,  

aN 
OH~ 

o N  

49x = = - v "  V49,, (3.13) 

4 ) , = O H s -  v .  V49~ + T,  

O~f 
C t o  = v . = - v . n o , , ,  

o N  
1-1~ = V . 

oV49:, 

rI, = V-W  = - r . / L v ,  

(3.14) 

(3.15) 

= - V .  I l xv ,  (3.16) 

(3.17) 

where the chemical  potential  ~ per unit of mass is given by 

~x - u - T s  + p i p  = O ( I I o u ( I I p ,  H s ) ) / O H  o. (3.18) 

Eqs. (3.13)-(3.17) are identical with eqs. (2.1), (2.3) and (2.14)-(2.16). Eq. 
(3.12) can be shown to be identical to eq. (2.13) by using once more eqs. (3.13) 
and (3.14). 

As one would expect ,  the Hamil tonian density eq. (3.1 l) represents  the total 
energy density e~ : 

~( = ev =- ½j2/p + pU, (3.19) 

with j the momen tum  density given by, cf. eqs. (2.8) and (3.7)-(3.9), 

j -= pv = - Hp~'$o - H~ V$~ - H~ V$~. (3.20) 
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By introducing the total Hamiltonian 

f d r ~ ( r ) ,  (3.21) H 

the Hamiltonian equations of motion (3.12)-(3.17) can also be written as 

6k = 8H 8H ~/Ik' /~/k = --  with k = p, A, s, (3.22) 
84,k' 

where the functional derivatives 8/85k and 8/SFlk are defined in the standard 
wayg). 

We now define Poisson-brackets 

{A,  B}  - d r  ~ ,  ~4~-"~r) 8H-~k(r) ~IIk(r) 84~k(r)J' (3.23) k=o,A,s 

where A and B are arbitrary functionals of the canonical fields. The cor- 
responding Poisson-bracket  for  either isothermal or isentropic flow was 
introduced recently by Enz and Turski7). If we then consider the five physical 
fields 0, J and e~ as components  ai of a five-dimensional vector  field g such 
that 

0~0 ------ p ,  

t~i -= ji, for i = 1, 2, 3, (3.24) 

a4  =- ev, 

we can define the following basic Poisson-brackets:  

Lij(r, r') - {ai(r) ,  aj(r')} = - L j i ( r ' ,  r),  for  i, j = 0 . . . . .  4. (3.25) 

These matrix elements can be evaluated in a straightforward way (see ap- 
pendix); one finds 

L0o(r, r ') = 0, 

Loi(r, r ') = -Li0(r ' ,  r) = - ~ r i  [p(r),5(r - r')], for i = 1, 2, 3, 

Lo4(r, r ')  = -L4o(r ' ,  r) = - I7. [ j ( r )8 ( r  - r')], 

Lii(r, r') = - L j i ( r ,  r ' ) =  --~rj [ j i ( r ) 6 ( r -  r')] 

O r i [ J j ( r ' ) ~ ( r - r ' ) l ,  for  i , j  = 1,2,3,  

Li4(r, r') = - L 4 i ( r ' ,  r)  = - 17. [ v ( r ) j i ( r )8 ( r  - r ' ) ] -  0@~ [p ( r )~ ( r  - rt)] 

+O-~ i [ev ( r ' )8 ( r - r ' ) ] ,  for  i -- 1,2,3,  

L,~(r, r ')  = - 17. [v(r) (e~(r)  + p ( r ) ) 8 ( r  - r ')l 

+ 17'. [v(r ' )(e~(r ')  + p ( r ' ) ) 8 ( r  - r')l. (3.26) 
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It is important to note that L depends on the six canonical fields only via the 
five physical fields. It is therefore possible, now that these basic Poisson- 
brackets have been evaluated within the canonical formalism, to define 
Poisson-brackets for functionals A({_a}) and B({a}) of the physical fields 
entirely in terms of the matrix L without reference to the canonical fields: 

4 /-  ~ A  ~ B  
{A({a}),_ B({a})}_ - ~.~0= j dr  dr '  ~ Lij(r, r') ~aj(r')" (3.27) 

With the help of these Poisson-brackets the hydrodynamic equations for the 
physical fields can be written in the compact form 

Oai(r, t)  _ 
Ot 

Here we have 
that 

{ai(r, t) ,  H t  

~H 
f dr 'Lq(r ,  r') ~aj(r', t) 

f dr 'Li4(r ,  for i = 0 4. (3.28) r ' ) ,  

used the fact that the Hamiltonian is a functional of a4 only so 

~___.HH _ ~i4. (3.29) 
~a,(r ' )  

With relations (3.26) and the identification (3.24), eqs. (3.28) reduce to 

OO = _ V. j, (3.30) 
Ot 

Oj _ V . [vj +p] ,  (3.31) 
Ot 

Oe--a~ = - V . [v(ev +p)].  (3.32) 
Ot 

This set of equations is equivalent to the set (2.1)-(2.3). The use of the 
conserved quantities p, j and ev will turn out to have certain advantages. 

As a final remark, we note that for the total momentum 

P =- f d r j ( r ) ,  (3.33) 

one finds with the aid of eqs. (3.26) 

{P, ai(r)} = Vai(r), for i = 0 . . . . .  4. (3.34) 

Thus the total momentum is, as expected, the generator of spatial translations. 
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Recently Dzyaloshinskii and Volovick 8) used this proper ty  as a starting point 
to arrive at expressions (3.28) for "hydrodynamic"  Poisson-brackets without 
the use of the Hamiltonian formulation based on the Clebsch representation. 

4. The Liouville equation 

In a statistical description one considers an ensemble of fluid systems and 
introduces a density distribution P({a(r)},  t) in the "phase space"  of physical 
fields. Since the hydrodynamic equations are first order in time, this density 
obeys a continuity or conservation equation which one would be tempted to 
write in the form 

OP({a_(r)},at t) - - f dr ~(r)~ &i(r)P({a(r)},_ t). (4.1) 

However ,  strictly speaking this equation is a meaningless string of symbols, 
since it is not clear how the functional derivative 8&i(r)/&~(r) occurring in eq. 
(4.1) should be interpreted*. 

A way to avoid this difficulty is to discretize the system in coordinate space, 
so that the phase space becomes of finite dimensionality**. To this end we 
divide the fluid into small cubic cells of size A 3. The position of a cell is 
denoted by r = na where n is a vector  of which the components  are integer 
numbers. The state of the fluid in each cell is characterized by the five 
hydrodynamic variables 

_an = (Pn, j . ,  e~,n), (4.2) 

the specific quantities in each cell. In the limit of vanishing cell-size these 
variables correspond to the previously defined hydrodynamic fields. The 
discrete hydrodynamic variables are postulated to obey equations of motion 
which are discrete analogues of the conservation laws (3.30)-(3.32), viz. 

Opn = _ V n "  in, ( 4 . 3 )  at 

= I V .  • [ v ~ j .  + p . ] ,  (4.4) 
at 

0e~,. = _ V. • [(eo n + p.)v,], (4.5) Ot 

* In the previous sections a similar difficulty did not occur since the functional derivatives 
occurring there had always a well-defined meaning. 

** Discretization is in fact also necessary in order to normalize the distribution function. 
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where v. - j./p. is the discrete velocity and p. the pressure in the cell labeled by 

n. The discrete operator  V. is defined as 

V.A. i=1 2-~ [A,+~, - A.-~,], (4.6) 

with the ~i's unit vectors along the Cartesian axes. The continuity-equation 
for the distribution function P({g_.}, t) in the phase space spanned by the 

discrete set of variables (4.2) is 

aP({a.},at_ t ) _  ~ ~ Oi=o~&,.p({a.},_ t). (4.7) 

It is now straightforward to show with the aid of eqs. (4.3)-(4.5) and the 

definition (4.6) that the following property holds: 

ati~,. = 0. (4.8) 
i OOti,n 

This implies that the flow in this particular phase space is incompressible. 
Consequent ly  eq. (4.7) reduces to 

4 aP({a.}, t) aP({ot.}, t) = _ y~ ~] &~,. (4.9) 
Ot . i = o  Oai,, 

In the limit of continuous fields this equation becomes 

± f 6P({a(r)}, t) (4.10) OP({a_(r)}, t) _ _ dr&i(r) 8ai(r) ' 
Ot i=0 

provided that the limiting distribution function is a proper  functional of a_(r)9). 
Using also eqs. (3.27) and (3.28) this equation may also be written in the form 

oP -~- = {H, P}. (4.11) 

This equation, in which functional derivatives have a well-defined meaning, is 
a Liouville-equation for the density distribution in the space of physical fields 
p, j and ev. It can be used as the basis for  the discussion of the statistical 

properties of an ideal fluid. 
Clearly one could in principle also have derived a Liouville-equation for a 

distribution in the phase space of the six canonical fields. It is however  the 
reduced density distribution in the space of five physical fields which is 
directly relevant for the evaluation of averages of physical quantities. 

It should be stressed that while an equation of the form (4.7) is also valid 
for a t ransformed set of hydrodynamic  var iab les / t . ( a . ) ,  the proper ty  (4.8) in 
this t ransformed set does not necessarily hold, nor is there then a Liouville- 



HYDRODYNAMICS FOR AN IDEAL FLUID 119 

equation. Using eq. (4.8), one can indeed show in a straightforward way that 

a/3i,, aaj,. 02/3i,. (4.12) 

Using also the identity l°) 

O In det 61 = ~ G~l OGji (4.13) 
ax T 0x ' 

which holds for any matrix 6 which depends on a parameter x, eq. (4.12) can 
be re-written as 

• Ü I n  J ,  . 0 1 n  J ,  ~'i O[Ji,.= ~ ~i a i ' " - - =  ~ ~'i jOi,. (4.14) 
• t 3 ~ i , .  " O O t i , .  " c31~i, n ' 

where J. is the Jacobian of the transformation g .~_a . .  Thus the flow in 
fl-space will only be incompressible if the Jacobian of the transformation to 
new hydrodynamic variables is a constant. Let  us in particular consider three 
different sets of variables B: 

a. ~.=(p.,j.,uv,.). 

Here uv,. = eo,.- ~j~p. is the discrete internal energy per unit of volume. The 
Jacobian for this case is 1, so that the flow in the corresponding phase space is 
also incompressible. 

b. ~.(p.,  v., e~,.). 

Here v . -  j~/p. is the discrete velocity. The Jacobian of the transformation 
~. -* ___. becomes in this case 

j .  = p~3, (4.15) 

and one has according to equation (4.14) the result 

O[3i ,  n ~. ~, OiS,,. =-3 ~ ,5./0.. (4.16) 

c .  ~.  = (,o., j . ,  so,.). 

Here sv,. is the discrete entropy per unit of volume, which is related to the 
energy density variable via the Gibbs-relation 

T. ds~,, = du~., - / x .  dp.. (4.17) 

T, and /~, are the temperature and the chemical potential in cell n respec- 
tively. The Jacobian becomes in this case 

J .  = T ~  ~. ( 4 . 1 8 )  
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H e n c e  one obtains  here  

'~i 013,,.=-~. LT. \~'p+~. \-~P./~,A" (4.19) 

Both  in case 2 and 3 the flow in "phase  space"  is n o t  incompress ib le  and a 

Liouvi l le -equat ion  does  not  hold. Moreove r ,  it is clear  f rom the general  fo rm 

of eq. (4.14) and the results  in the special cases  cons idered  above ,  that  the 

" ra te  of  c o m p r e s s i o n "  is ei ther  zero  (e.g. case 1) or  infinite (e.g. cases  2 and 3) 

in the cont inuum-l imit .  In  the latter cases  the cont inuum-l imi t  of  eq. (4.7) does 

not  exist  and we can not  give a well-defined mean ing  to the funct ional  

der ivat ive  occur r ing  in eq. (4.1)*. 
A final r emark  must  be made  in connec t ion  with case c. The validity of  eq. 

(4.8) for  the original set of  variables (4.2) is an immedia te  c o n s e q u e n c e  of  the 

fac t  that  these variables  o b e y  the conse rva t ion  laws (4.3)-(4.5). On the basis 

of  these  equat ions ,  using also eq. (4.17), the discrete  en t ropy  s~., then satisfies 

an evolu t ion-equat ion** 

aso. 1 [_ lr {(~o.v~ ~ v . ( V .  " . i . )  ,_ .+ut.+p.)v.}_~ 2 
Ot T. 

+ {V, • (v•. + p.)}" v. + tx.(V, • j .)].  (4.20) 

Thus  the discrete  en t ropy  is not  conse rved  (even though  eq. (4.20) reduces  to 

eq. (2.3) in the cont inuum-l imit) .  In this connec t ion  it should be r e m e m b e r e d  

that  discont inui t ies  such as shock  waves  in an ideal fluid give rise to an 

increase  of  en t ropy~) .  On the o ther  hand,  if one  had started by  postula t ing 

that  p,, j .  and s~,. obey  the discrete  analogues  of  eqs. (2.1)-(2.3), the discrete  

energy  e~.. would  not  have been  conse rved .  As only  a descr ip t ion in which  

mass ,  m o m e n t u m  and energy  are conse rved  seems satisfying,  we have based 

our  d iscuss ion  on eqs. (4.3)-(4.5). 

5. The equilibrium distribution 

Accord ing  to the Liouvi l le -equat ion  (4.11), the dis tr ibut ion func t ion  
P({a_(r)}, t) in the phase  space o f  the basic  physica l  fields (3.24) is s ta t ionary  

* An alternative way to give meaning to eq. (4.1) would have been to consider the phase space 
spanned by the Fourier-components of the particular set of hydrodynamic variables (3.24) and to 
introduce an ad hoc cut-off wave-vector for these variables. If such a procedure is carried out 
consistently, one obtains in a less transparent way results equivalent to those found above. 

** One may easily verify that the result eq. (4.19) can also be obtained from eq. (4.20), together with 
eqs. (4.3) and (4.4). 
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if P is only a function of the constants of the motion of the system, such as 
its total energy E, its total entropy S and its total mass M 

E= f drev(r), S =  f drs~(r) and M=f drp(r). (5.1) 

For a system which is energetically and materially insulated, the equilibrium 
distribution is given by the Einstein formula 

P °q({g (r)}) - e S({a_(r)})/k, (5.2) 

where k is Boltzmann's constant. This distribution can also be written in the 
form 

P eq({_a (r)}) = P eq({g°(r)}) e ast~-~'~, (5.3) 

where 

t 
as({_a(r)}) - S(/_a(r)})- S°(I_a°(r)}) = J dr(sv(a_ (r)) $v(~ °(r))). (5.4) 

Here the superscript zero refers to the "equilibrium state" characterised by a 
uniform density and energy-field and a vanishing momentum density field. 

If the system is in thermal contact with a heat-bath with temperature To the 
equilibrium-distribution is j2) 

P cq({~ (r)}) = P eq({_a°(r)}) e -(aE-T°~s)/kT°, (5.5) 

while for a system which can in addition exchange mass with a reservoir, this 
distribution is 

P eq({_a(r)}) = P eq({_a°(r)}) e -(a~-T°~s-"°aM)/kT°, (5.6) 

where tz0 is the thermal chemical potential of the reservoir. 
The distributions (5.5) and (5.6) follow immediately from eq. (5.3). One has 

indeed according to this equation for the system including the bath 

p eq ~ e (AS+ASbath)/k. (5.7) 

For the bath we may write in good approximation 

1 
ASbath = T0  AEbath --  hI'0 -~0 AMbath. (5 .8 )  

Since the total energy and mass of the system together with the bath are 
constant, AEbath = - A E  and AMbath = - A M ,  the distribution (5.7) reduces to 
the distribution (5.6). In the same way eq. (5.5) is found if the system is 
materially insulated, i.e. if AM = O. 

It should be stressed that the distribution functions (5.3), (5.5) and (5.6) are 
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equilibrium distribution functions in the phase space of the fields p, j and ev. If 

one had considered a different phase space, e.g. the one spanned by the fields 

p, v and e~, the above distributions must be divided by the Jacobian of the 

corresponding transformation*, which in general does not exist in the con- 

tinuum-limit. For linearized hydrodynamics,  this problem does not arise as the 

transformations considered are then always linear so that the Jacobian is a 

constant. 

6. Discussion 

In the preceding sections we have used the Hamiltonian formalism based 

on the canonical fields of the extended Clebsch representation introduced by 
Seliger and Whitham 3) to obtain expressions for hydrodynamic  Poisson- 

brackets. With the help of these, we were able to formulate a Liouville- 

equation in the phase space of the particular set of (non-canonical) physical 

fields p, j and ev. The well-known equilibrium distribution functions for the 

fluid fluctuations are stationary solutions of this Liouville-equation. This fact 

plays an important role in an analysis of nonlinear hydrodynamic  fluctuations 

as we shall discuss in a subsequent paper. 

Appendix 

In this appendix we evaluate the Poisson-brackets defined by eq. (3.25) for 

the physical fields p, j and e~, which are given in terms of the canonical fields 

by (cf. eqs. (3.7)-(3.9), (3.19) and (3.20)) 

p = Flip, 

j = - I I  o V~o  - II~ Vcb~ - IlsVchs, 

e~ = ~ ( I l o r 6  p + IIA rck~ + HsVck,)21Hp + u~(H~,, H~).  

(A.1) 

(A.2) 

(A.3) 

Here uv = pu is the internal energy per unit of volume. We will first evaluate 
the Poisson-brackets for p, j and u~. 

* Einstein ~3) in his original article on fluctuation theory includes in the distribution function in 
addition to the exponential factor exp(AS/k) a function f which depends on the choice of the 
fluctuating variables and which plays the same role as the Jacobian in the above discussion. He 
then argues that if AS may be approximated by a quadratic function, the function f may be 
replaced by a constant f. This corresponds to the linear theory. 
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Since the P o i s s o n - b r a c k e t s  of  m o m e n t a  vanish ,  we immed ia t e ly  obta in  

L0o = {p, p} = 0, (A.4) 

(p, uv} = 0, (A.5) 

{uv, u~,} = 0. (A.6) 

F r o m  the definit ion (A.2) we get  

8 j ( r )  = V ' ( I I ~ ( r ' ) 8 ( r -  r ' )) ,  (c~ = p, h,  s )  (A.7) 
~( r ' )  

,Sj(r)  = _ g~k~(r ' )8 ( r  - r ' ) ,  ( a  = p, h, s )  (A.8) 
8IIo(r) 

where  V ' =  a/ar ' .  One the re fo re  obta ins  

{//~(r),  j i ( r ' ) }  = - f d r "  ~ I I~ ( r )  ,Sji(r') 
~I I~(r" )  8 c ~ ( r " )  

= - I d r " 8 ( r  - r" )V '[ (Ha(r") ,5(r  - rU)) 

= - V i ( I I ~ ( r ) 8 ( r  - r ')) ,  (i = 1, 2, 3; a -- p, h, s). (A.9) 

Thus  we have  

Loi(r ,  r ' )  = {p(r) ,  j i ( r ' ) }  = - V i ( p ( r ) , 5 ( r  - r ' ) )  (i = 1, 2, 3). (A.10) 

Similar ly  we obta in  

Lik(r ,  r ' )  = { j i (r ) ,  jk (r ' )}  = -- f d r "  ~ ,  [V ' f ( I I~ ( r" )~ ( r  - r")) 
J a =p,A,S 

× V ~ c ~ a ( r ' ) 8 ( r ' -  r") 

- Vic~o(r),5(r - r " ) V ' ~ ( H ~ ( r " ) , 5 ( r ' -  r'3)] 

= -  ~ [ V l ~ c k ~ ( r ' ) V ~ ( H ~ ( r ' ) 8 ( r -  r ' ) )  
g = p,A,S 

- Vick~ ( r )Vk ( I I~ ( r )8 ( r  - r '))] 

= -  ~ [V~(H~(r ' )V 'k~k~(r ' ) ,~ ( r -  r ' ))  
~ =p,A,S 

- V k ( I I ~ ( r ) V i c ~ ( r ) 8 ( r  - r '))] 

= V~( jk ( r ' )8 (r  -- r ' ))  

-- V~(j~(r),5(r - r ' ) )  (i, k = 1, 2, 3). (A.11) 

F r o m  the t h e r m o d y n a m i c  re la t ion 

du~ = T dsv + / z  dp, (A.12) 

one  finds tha t  the de r iva t ives  of  u~ with r e spec t  to s~(= ps = I Is )  and p ( =  I I , )  
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T and ~ respect ively .  With eq. (A.9) and the definition (3.13), one then are 

gets 

{u~(r), ii(r')} = - i x ( r ) V i ( p ( r ) ~ ( r  - r ' ) ) -  T ( r ) V i ( s ~ ( r ) 6 ( r  - r ' ) )  

= - ( u v ( r )  + p ( r ) ) V i , 5 ( r  - r ' )  

- ( I . ~ ( r ) V ~ p ( r ) + T ( r ) V ~ s ~ ( r ) ) ~ 3 ( r - r ' )  (i = 1,2,3) .  (A.13) 

Us ing  eq. (A.12) once  more ,  we can rewrite  eq. (A.13) as 

{ u ~ ( r ) , j i ( r ' ) }  = - V i ( u v ( r ) 8 ( r - r ' ) ) - p ( r ) V i ~ ( r - r ' )  (i = 1,2,3) .  (A.14) 

With the aid of  the Po i s son-b racke t s  (A.4), (A.5), (A.I1)  and (A.14) we now 
find 

Lo4(r, r ' )  = {p(r), e~(r')} = {p(r),  j 2 ( r ' ) / 2 p ( r ' )  + u~(r')} 

= {p(r), j ( r ' )}  • v ( r ' )  = - 1 7 .  ( j ( r ) , 5 ( r  - r ' ) ) ,  (A. 15) 

and 

Lin(r ,  r ' )  = ( j i ( r ) ,  e~(r')} = { j i ( r ) ,  j Z ( r ' ) / 2 p ( r ' )  + uv(r')}, 

= {j,(r), j ( r ' )}  • v ( r ' )  - {ji(r), p( r ' ) }~v2 ( r  ') + { j i ( r ) ,  u~(r')}, 

= V l ( j ( r ' ) 8 ( r  - r ' ) ) "  v ( r ' ) -  V ( j i ( r ) ~ ( r  - r ' ) ) .  v ( r ' )  

- ~ v 2 ( r ' ) V ~ ( p ( r ' ) ~ 5 ( r  - r ' ) )  + V~(uo ( r ' ) 8 ( r  - r ' ) )  + p ( r ' ) V ~ 5 ( r  - r ' ) ,  

= - V .  ¢O(r)v i (r ) ,3(r  - r ' ) )  - V i ( p ( r ) ~ ( r  - r ' ) )  

+ V ; ( e ~ ( r ' ) ~ ( r  - r '))  (i = 1, 2, 3). (A.16) 

The Po i s son -b racke t  {e~, eo} can  be wri t ten as 

L44(r, r ' )  = {e~(r), e~(r')} = - ~ v 2 ( r ) { p ( r ) ,  e~(r')} + v ( r ) .  { j ( r ) ,  e~(r')} 

+{uv(r) ,  j ( r ' )}  • v ( r ' ) .  (A.17) 

U p o n  subst i tut ion of  eqs. (A.14), (A.15) and (A.16) into eq. (A.17) one finally 
arr ives at 

L44(r, r ' )  -- {eo(r), e~(r')} = - I7 .  [ v ( r ) ( e v ( r )  + p (r))tS(r - r ' )]  

+ 1 7 "  [ v ( r ' ) ( e v ( r ' )  + p ( r ' ) ) 6 ( r  - r')]. (A.18) 

This comple tes  the der ivat ion of  the express ions  (3.26). 
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