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An important clement in the long-time dynamics of pattern forming systems is a class of solutions we will call "coherent 
structures". These are states that are either themselves localized, or that consist of domains of regular patterns connected by 
localized defects or interfaces. This paper summarizes and extends recent work on such coherent structures in the 
one-dimensional complex Ginzburg-Landau equation and its generalizations, for which rather complete information can be 
obtained on the existence and competition of fronts, pulses, sources and sinks. For the special subclass of uniformly 
translating structures, the solutions are derived from a set of ordinary differential equations that can be interpreted as a flow 
in a three-dimensional phase space. Fixed points of the flow correspond to the two basic building blocks of coherent 
structures, uniform amplitude states and evanescent waves whose amplitude decreases smoothly to zero. A study of the 
stability of the fixed points under the flow leads to results on the existence and multiplicity of the different coherent 
structures. The dynamical analysis of the original partial differential equation focusses on the competition between pulses 
and fronts, and is expressed in terms of a set of conjectures for front propagation that generalize the "marginal stability" 
and "pinch-point" approaches of earlier authors. These rules, together with an exact front solution whose dynamics plays an 
important role in the selection of patterns, yield an analytic expression for the upper limit of the range of existence of pulse 
solutions, as well as a determination of the regions of parameter space where uniformly translating fron t solutions can exist. 
Extensive numerical simulations show consistency with these rules and conjectures for the existence of fronts and pulses. In 
the parameter ranges where no uniformly translating fronts can exist, examples are shown of irregularly spreading fronts 
that generate strongly chaotic regions, as well as nonuniformly translating fronts that lead to uniform amplitude states. 
Recent perturbative treatments based on expansions about the nonlinear Schr6dinger equation are generalized to 
perturbations of the cubic-quintic and derivative Schr~idinger equations, for which both pulses and fronts exist in the 
unperturbed system. Comparison of the results with the exact solutions shows that the perturbation theory only yields a 
subset of the relevant solutions. Nevertheless, those that are obtained are found to be consistent with the general 
conjectures, and in particular they provide an analytic demonstration of front/pulse competition. While the discussion of 
the competition between fronts and pulses focusses on the complex Ginzburg-Landau equation with quintic terms and a 
subcritical bifurcation, a number of results are also presented for the cubic equation. In particular, the existence of a family 
of moving source solutions derived by Bekki and Nozaki for this equation contradicts the naive counting arguments. We 
attribute this contradiction to a hidden symmetry of the solution but have not been able to show explicitly how this symmetry 
affects the phase space orbits. 
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1 .  Introduction 

A number of nonequilibrium pattern forming systems are known to display solutions we can call 
"coherent structures". These states are either themselves localized in space or they consist of a spatially 
extended regular pattern with a localized defect [1]. Examples are fronts, pulses, sources or sinks in 
one-dimensional systems, and targets, spirals, dislocations or grain boundaries in two dimensions. Such 
structures have been identified in experiments on thermal convection in pure fluids and binary mixtures 
[1, 2], on parametric surface waves in fluids [3], on Taylor-Couette flow between rotating cylinders [4, 5], 
in nonlinear light-wave propagation in fibers [6], and in oscillatory chemical reactions [7]. They play an 
important role in the dynamics of nonequilibrium pattern forming systems, for example in the selection 
of a final steady pattern at long times, and in the time evolution of periodic, quasiperiodic or disordered 
(chaotic) patterns. 

The simplest set of models that account for this type of behavior, at least semi-quantitatively, are the 
so-called Ginzburg-Landau models, of which a prototype is the complex Ginzburg-Landau equation 

0,A = eA + (1 + i c , ) q A  + (1 + ic3)lAlZA - (1 - ics)lAlnA, (1 .1 )  

w h e r e  A ( x ,  t )  is a c o m p l e x  f u n c t i o n  a n d  e, Cl, c 3 a n d  c 5 a r e  r ea l  coef f ic ien ts .  (Mos t ,  bu t  n o t  all,  o f  o u r  

d i scuss ion  will  c o n c e r n  the  case  i l l u s t r a t ed  in eq .  (1.1), w h e r e  t he  b i f u r c a t i o n  at  e = 0 is subcr i t i ca l . )  

T h e  p r e s e n t  s tudy  will  c o n f i n e  i t se l f  to  spa t ia l ly  inf in i te  sys tems  in one d imens ion  and  will  focus  

p r i m a r i l y  on  t e m p o r a l l y  p e r i o d i c  o r  q u a s i p e r i o d i c  so lu t ions ,  w i th  on ly  l i m i t e d  a t t e n t i o n  g iven  to  chao t i c  
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states that arise for many regions of  the paramete r  space (e, ci). Our  primary interest is to describe 
coherent  structures, i.e solutions or features of solutions that are localized in space. These features can 
be stationary, uniformly translating (with constant velocity v) or time dependent,  with a velocity v(t) that 
is either periodic or chaotic in time. A brief account of this work was published earlier [8]. 

The main physical question we wish to answer can be phrased as follows: Suppose we start with the 
uniform A = 0 state at time t = 0, and introduce a small localized perturbation at x = 0. What  will the 
system look like at long times? The most likely outcomes are: 
(i) The system decays back to A = 0, 
(ii) A localized pulse, or a set of pulses are formed. If  so, is the velocity zero, constant, periodic or 

chaotic? 
(iii) A stable finite-amplitude state can grow in the system by the creation and propagation of a front 

that invades the A = 0 state. For this case, we may ask what the wavevector and frequency of the 
finite amplitude state will be, as well as the velocity of the moving front. 

(iv) The system can become chaotic everywhere. 

For any of the above examples we may ask how sensitive the outcome will be to the particular initial 
disturbance. 

The present  paper  contributes to answering the above set of questions for the complex 
Ginzburg-Landau  model, eq. (1.1) and extensions thereof, by formulating a set of  conjectures which 
generalize the "marginal  stability" [9-11] and "pinch-point"  [12-14] hypotheses of earlier authors for 
front dynamics, and reduce to these in appropriate  special cases. Moreover, we verify our conjectures by 
carrying out detailed numerical computations as well as by an analytic perturbation expansion near the 
dissipationless limit of eq. (1.1), obtained by letting Icll, lc31, lcsI ~ ,  where exact front and pulse 
solutions are available. In contrast to the expansion about the nonlinear Schr6dinger limit c 5 = 0, Ic31, 
Ic~l---, ~ given earlier [15-18], our  unper turbed system has both fronts and pulses, and we can therefore 
study the f ron t -pu lse  competit ion analytically. 

In order  to formulate our selection hypotheses we first provide a detailed analysis of uniformly 
translating solutions of the partial differential equation (PDE) (1.1). These can be obtained from a set of 
three ordinary differential equations (ODE's)  in the variable ~ = x - vt. Specifically, we set [19-21] 

A ( x , t )  = e - i ~ ' t , 4 ( x - v t ) ,  (1.2a) 

.4(~¢) = a ( ~ )  e i't'<e), (1.2b) 

and define the variables q(~:)= ae~b , and x(~:)= aea/a. Insertion of eqs. (1.2) into (1.1) leads to the 
ODE ' s  

a f a = x a ,  a ¢ q = ~ ( a , q , x ) ,  a e K = , ~ ( ( a , q , x ) ,  (1.3) 

which can be considered as a dynamical system in the pseudo-time ~: (the functions ~' and ~ are 
calculated below). This system has parameters  e, c 1, c3, c5, v and to, the first 4 of which are fixed by the 
starting PDE,  and the last two can be varied to find different solutions. Fixed points of  eq. (1.3) are 
nonlinear wave states of eq. (1.1) with uniform envelope, and heteroclinic orbits of eq. (1.3), joining 
different fixed points, are the coherent  structures we seek to characterize. The important ones, fronts, 
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Fig. 1. Schematic sketch of various coherent structures: (a) 
front; (b) pulse; (c) source; (d) sink. The quantity tT~, defined 
in eq. (2.50) is the group velocity of the nonlinear state in the 
frame moving with the structure. 

pulses, sources and sinks are schematically indicated in fig. 1. By studying the stability properties of the 
fixed points with the dynamics of eq. (1.3) we can find the multiplicity of solutions of eq. (1.3) of a given 
type. In some cases we find a discrete set and in others a one- or two-parameter  family, parametr ized by 
v a n d / o r  to. The physically relevant front solutions are a two-parameter  family plus a discrete set for 
e > 0, and a discrete set for e < 0. Furthermore,  there is in general a discrete set of pulses which by 
symmetry includes stationary (v = 0) ones, a discrete set of sources, and a one-parameter  family of sinks. 

It should be noted that in the absence of additional symmetries these counting arguments generally 
yield an upper bound  for the multiplicity of coherent  structures, since they only take into account the 
restrictions on the orbits of eq. (1.3) resulting from the stability properties of the fixed points. Further  
restrictions may arise from the behavior of the orbits between the fixed points. This is illustrated by 

consideration of a special case of eq. (1.1), the nonlinear diffusion equation [22, 23] 

Otu = ~2xu + f ( u ) ,  (1.4) 

where u and f are real functions. In this limit a mechanical analogy can be found, from which exact 
results are easily obtained for the multiplicity of fronts and pulses. From a comparison with the counting 
arguments we can show that in general *~ the latter overestimate the multiplicity of solutions, i.e they 

allow for orbits that are not found as actual solutions of the system (1.3). 
Besides studying the multiplicity of coherent  structures we can also find a number  of exact front, pulse, 

source and sink solutions of eq. (1.3), some of which have been obtained by previous authors [20, 24-26]. 
A particularly important  one is an exact front solution with velocity v* and spatial decay rate KtL which 
we call the "nonlinear  front". It can be obtained analytically when it exists, and it turns out to play an 

essential role in the selection of patterns. 
Apar t  from the trivial symmetries of space and time translation, parity and multiplication by a constant 

phase, we know of no symmetries of the cubic or quintic complex Ginzburg-Landau  equation (1.1) with 
general parameters .  We therefore expect our analysis to yield an upper  bound on the multiplicity of 
coherent structures. For special pa ramete r  values new symmetries do appear,  e.g. Galilian or dilatation 

#~For the real equation (1.4) there are also finite front solutions that correspond to singular orbits of the dynamical system (1.3) 
for which K --* + co. For these the counting argument may be reformulated in terms of different variables (see section 2.3.3). 
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invariance, and these typically lead to continuous families of solutions. Surprisingly, Bekki and Nozaki 
[26] have presented a family of exact solutions of the cubic Ginzburg-Landau  equation which we show to 
be sources, whereas on the basis of the stability of the fixed points of the dynamical system (1.3) only a 
discrete set of sources is in general expected. As we will discuss, we conjecture that this discrepancy is 
due to the existence of a "hidden symmetry" of  the Bekki-Nozaki  solution. 

Front  selection has been discussed in the literature primarily in terms of what has come to be known 
as "l inear  marginal stability" [9-11]. This involves a "l inear  front" with velocity v* and decay rate KS, 
which are simply obtained by use of a stationary phase argument  [10, 13, 23] from the dispersion relation 
of the starting equations linearized about the A = 0 state. Our  selection conjectures [8] are a generaliza- 
tion of previous selection hypotheses [9-13], and reduce to these in cases where the latter are known [27] 
to apply. They can be stated as follows: Let us start from an initial localized disturbance embedded in the 
A = 0 state. Then for e > o, the linear front v*, r [  is selected from the family, unless there exists a 
nonlinear front with v t > v* and IK[I > IK~I. For e < 0, if a nonlinear front with v * >  0 exists it is 
selected. If  v * <  0, or if no nonlinear front exists, then the results depend more sensitively on initial 
conditions. Typically, there is an interval e 2 < e < e 3 < 0 in which pulses are selected, with either periodic 
or chaotic time dependence depending on the shape of the initial disturbance. For e < e 2 the disturbance 
decays back to A = 0, and if e 3 < 0 then the interval e 3 < e _< 0 is the one mentioned above where v t > 0, 
and the nonlinear front is selected. Since e 3 is defined by the relation v * =  0 (unless v * =  0 for some 
e > 0, in which case e 3 = 0), we can find e 3 analytically for given parameters  (e, c i) in eq. (1.1). The value 
of e 2, on the other hand, is not in general obtainable analytically. 

A caveat for these predictions concerns the stability of the created front. From the wavevector qt N or 
q~ of the wave state left behind the front, we can predict whether  this state is stable to modulational 
(Benjamin-Fei r )  [28] instabilities. If  it is, we expect the front to be a stable solution, but if not, the front 
will be unstable, i.e. its velocity will depend on time. In that case we expect the t ime-averaged velocity 
to be close to the predicted value, either v t or v*. More generally, for e > 0, all results known to us are 
consistent with the conjecture that v* represents a strict lower bound, i.e. P > v* for all cases. 

Al l  of the above results and conjectures have been tested by numerical calculations of the PDE (1.1). 
As shown in what follows, our calculations provide confirmation of the conjectures, i.e. we have found no 
counterexamples.  In view of the large paramete r  space involved in these tests (parameters  e, c i, and 
arbitrary initial conditions) we cannot say we have definitely confirmed the conjectures, only that we have 
found consistency. There  may well be parameter  ranges a n d / o r  initial conditions where the behavior is 
different. 

Another  way to approach the selection problem is by perturbing about known solutions in special 
pa ramete r  regimes [15-18, 29-31]. We have chosen to start from a system we call the generalized 
derivative Schr/Sdinger equation 

a tA = " 2 lClO;A + ic31AI2A + icsIAl  + Ox[(S0 + s21AI2)A], (1.5) 

and to per turb with a dissipative term on the rhs of  eq. (1.5) of the form 

b~n = b~(a2h + IZl2Z - I h l ~ l ) .  (1.6) 

It turns out that the unper turbed system (1.5) leads to an integrable [21] dynamical system (1.3) whose 
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orbits can be calculated analytically. In particular, we find a two-parameter family of pulses indexed by v 
and to, whose existence is connected to the Hamiltonian property of the dynamical system (1.3) resulting 
from eq. (1.5), which the general case does not possess. We also have a one-parameter  family of fronts 
indexed by v, having fixed frequency to(v). The dissipative perturbation (1.6) then has the effect of 
selecting from the members of the families particular values of v and to. Mathematically the selection is 
achieved [15-18, 29-31] by introducing a slow time variable T =  b~t, and finding nonlinear differential 
equations for v (T)  and to(T), whose fixed-point solutions are the values selected by the perturbation. In 
the absence of the s o and s 2 terms in eq. (1.5), only stationary (v = 0) pulses are selected, as already 
noted by Elphick and Meron [17] and by Malomed [16]. However, for So, S 2 ~ 0 the velocity is a 
complicated function of all the parameters, which is #'(b°), i.e. not small when 0 <b]  << 1. An 
interesting feature of the dynamics of v and to in the slow time variable T is that it has direct relevance 
for the PDE, unlike the dynamical system (1.3). Indeed, stability in the slow dynamics is a necessary 
condition for the stability of the corresponding pulse in the PDE, though of course it is not sufficient in 
view of the restricted class of disturbances considered in the perturbative calculation. Nevertheless, we 
obtain expressions for the domain of stability of pulses e 2 < e < e 3, and for the domain e 3 < e where the 
nonlinear front is selected. We can compare the values of e 3 and of the nonlinear velocity vt(e) with our 
general expressions, and we find detailed agreement to lowest order in the perturbation b r 

Elphick and Meron [17] have previously carried out a similar perturbation theory, expanding about the 
nonlinear Schr/~dinger limit, (1.5) with c 5 = s o = s 2 = 0. As pointed out by the authors, this equation 
possesses dilatation and Galilean symmetries, both of which are broken by the dissipative perturbation 
that selects a particular pulse. It is clear from our calculation, however, that this example is misleading 
since the dissipationless terms in eq. (1.5) proportional to c 5 and s 2 already break these symmetries, but 
the double family of pulses remains. As mentioned above, the important effect of the dissipative 
perturbation is to destroy the Hamiltonian property of the dynamical system (1.3), and thereby select 

discrete pulses. 
Besides the exact nonlinear front, we have examined a number of other exact solutions of eq. (1.1) 

proposed by previous authors and have found some additional ones. We show, for example, that the 
front found by Nozaki and Bekki [25a] is part of the family that contains the linear front v*, K'L, and is 
therefore not in general selected since it does not coincide with the linear front. The family of "hole"  
solutions proposed in ref. [26] is shown by us to be a family of sources. We have generalized the pulse 
ansatz of Hocking and Stewartson [24] to the quintic case (1.1), but we find that the ensuing pulse is 
confined to a subspace of the parameter  space (c~, c 3, c5), and moreover that it is never in the stable 

domain e 2 < e < e 3. 
Although we have made definite progress in elucidating the selection problem we posed above, our 

main results are conjectures rather than proofs, and even if the conjectures are accepted as true, there 
remain gaps in our understanding. First of all, for large sectors of the parameter  space there is no 
nonlinear front v*, KtL, and our conjectures do not provide unambiguous information. In some of these 
regions the system no doubt has only chaotic attractors and their study requires quite different methods. 
For example, in numerical calculations we have observed the invasion of the stable A = 0 state by an 
expanding chaotic domain for e < 0. Such strongly chaotic fronts are not covered by our methods and 
conjectures, even though they do not contradict them. In fact stable pulse solutions were also found in 
the same parameter  range for different initial conditions. Analogously, there are cases for e < 0 where 
uniform amplitude states are stable but no nonlinear fronts exist. According to our rules stable pulse 
solutions are also expected to exist in these parameter  ranges, and to be attracting for sufficiently 
localized initial conditions. On the other hand there must exist other initial conditions which will lead to 



W. van Saarloos, P.C. Hohenberg / Fronts, pulses, sources and sinks in CGL equations 309 

the stable uniform amplitude states, but we have not determined whether these states can be created via 
front propagation. 

The above limitations arise because our formulation is strongly tied to the 3-mode dynamical system 
(1.3), whose form depends on the second-order spatial derivatives in eq. (1.1). We know, however, that 
both linear [9-11] and nonlinear [11] marginal stability are applicable more generally, for example to the 
fourth-order Swift-Hohenberg model [32] 

o , u  = , u  - + (1.7) 

and its extension to the subcritical case [11]. Fourth-order models, moreover, may have stable pulses even 
for the real equation [33], and one might ask whether the selection problem and front/pulse competition 
can be understood in this more general context. Moreover, from the study of (1.7) and other models with 
higher space derivatives it is clear that linear marginal stability is valid even if the front it creates is not 
uniformly translating in time [34, 35]. For the complex Ginzburg-Landau equation (1.1), we may predict 
analytically whether the linear front is uniformly translating, i.e. whether it connects to an appropriate 
nonlinear state via an orbit of eq. (1.3). In one example where it does not, we have found numerically 
that the velocity v had nontrivial time dependence due to the generation of space-time defects behind 
the front (see section 6 and ref. [36]). A similar effect was observed by Dee [34] for fronts propagating 
into linearly unstable nonlinear states a N. Whether a uniformly translating solution is created or not, all 
results known to us are consistent with the conjecture that for e > 0, v* is a lower bound for the time 
averaged velocity ~ at long times. Moreover, unless a nonlinear front intervenes, this bound is actually 
reached in the leading edge, i.e. ~ = v*. 

Finally, we may mention a limitation of our perturbative treatment, revealed by comparing the results 
to the exact solutions we have found, in the limit of small values of the parameter b 1. From this 
comparison we see that whole classes of nonperturbative solutions exist, i.e. the perturbation theory only 
picks up a subset of the relevant solutions, those that are continuously tied to solutions of the 
unperturbed problem. 

In section 2 the dynamical system consisting of 3 coupled ODE's is defined, its fixed points are 
identified and their stability is studied for the complex Ginzburg-Landau equation (1.1). This allows an 
analysis of the multiplicity of coherent structure solutions, i.e. fronts, pulses, sources and sinks. Section 3 
identifies those cases possessing symmetries and/or  conservation laws, where a more complete analysis 
of the dynamical system is possible. In particular, for the generalized derivative Schrfdinger equation the 
dynamical system is integrable and all pulse and front solutions are obtained analytically. For the general 
nonintegrable case, certain "integrable orbits" of the dynamical system provide particular exact solu- 
tions. The basic selection conjectures for the complex Ginzburg-Landau equation are presented in 
section 4, and their relation to the modulational (Benjamin-Feir) instability is discussed. Section 5 is 
devoted to the perturbation expansion about the generalized derivative Schr6dinger limit mentioned 
above. This calculation provides an analytic confirmation of the selection conjectures for certain sectors 
of parameter space, as well as a calculation of the limits e 2 and e 3 of pulse stability. In section 6 various 
numerical simulations are carried out, to test the results and conjectures of the previous sections. 
Excellent agreement is obtained with the basic front/pulse selection hypotheses; in particular, the 
dependence of the results on initial conditions in the domain e 2 < e < $ 3 is illustrated. Section 7 
concludes with a brief summary, a discussion of the experimental relevance of our work, and a list of 
open theoretical problems. 
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2. The generalized complex Ginzburg-Landau equations and the three-mode dynamical system 

2.1. Definition o f  the PDE's  and ODE's 

2.1.1. General case 
We start  with the genera l ized  G i n z b u r g - L a n d a u  equa t ion  (f irst-order in t ime and second-order  in 

space)  for  the complex  funct ion A ( x ,  t)  in one space  d imens ion  #2, 

OtA = ( b  I + ic l )02A + f l ( ]A l2 )  A +Ox[ f2 ( lA l2 )A]  + [Oxfa(lAlE)]A,  (2.1)  

where  the ft  are general  complex  funct ions of  the real a rgumen t  [Zl z with 

f t = f t r + i f t ~  ( l  = 1 , 2 , 3 ) ,  (2.2)  

and b I and cl are  real  constants  ( the coefficient of  OtA can always be m a d e  unity by dividing through).  
We  will pr imari ly  study a par t icular  class of  solutions of  eq. (2.1), namely  uniformly translating 

solutions, tha t  have the form 

A ( x ,  t )  = e-it°~zl( x - v t ) ,  (2.3)  

where  to and v are real  pa ramete r s .  For  this class of  solutions the part ial  differential  equa t ion  ( P D E )  
(2.1) reduces  to a set of  ordinary differential  equat ions  ( O D E ' s )  for  the ampl i tude  and phase  of  ,~. 
Indeed ,  set t ing #3 

A(sC) = a(s~) e i4'(~), (2 .4a)  

= x - vt ,  (2 .4b)  

q ( ~ )  =O~b, r ( ~ )  = a - l a e a ,  (2.4C) 

and insert ing (2.4) into (2.1), we find af ter  some algebra  

O~a = Ka~ 

O¢q = ~ ( a , q , K ) ,  

O~r = , Z f ( a ,  q, K), (2.5)  

where  

= -[J,to + ~,VK -- [~,vq -- 2Kq + e , [ f ,  r + 2 ( f~r  + f ; r ) K a  2 + f 2 r  K - - f2 iq]  

-- /91[fl i  + 2( f2 i  +f3i)  Ka2 +f2 i  K + f 2 r q ]  , (2 .6a)  

• ~ =  --Clto -- [~1 oK -- cluq -- K2 + q2 _/~1 [ f l r  + 2 ( f2 r  +f3r)  Ka2 + f 2 r  K -- f2iq]  

-- Cl[ fxi + 2( f2 i  +f3i)  Ka2 +f2 i  K + f 2 r q ] ,  (2 .6b)  

#2We use the notation O t h  for partial derivatives and, when no confusion can arise, for total derivatives as well (e.g. 
aCa#s= da/ds~)" Occasionally we will use a prime to indicate a denvatwe" ' with" respect to the argument. 

The representation of the dynamics of eq. (2.1) in terms of the 3 variables a, K, q becomes singular when a(s ~) has zeroes. In 
such cases a better representation is in terms of the 4 variables a(s~), a~a, ~b(s~) and a~b (see Landman [20] and section 2.3.3). 
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where 

~ l = b l ( b  2 + c 2 )  -1 ~1=c,(b2 +c2) -a 

and the fl a r e  functions of a 2, SO f i r  = df lr /da2,  etc. 

(2.7) 

2.1.2. The complex Ginzburg-Landau equation 
Many of our results will be confined to a special case 

Ginzburg-Landau  equation, for which 

of eq. (2.1), which we call the complex 

fx = e - -  (b  3 -  ic3)a 2 -  (b  5 - ic5)a 4, (2.8) 

where the coefficients e, b i, c i are real. Note that imaginary constant terms ico0 in f l  and iCol in f2 [i.e. 
linear terms ic00 A + ic01 O,A in eq. (2.1)] can be removed by the transformation A --+he i(c°°t-c°:/2bl). 
Moreover,  a constant real term in f2 can be eliminated by a Galilean transformation (see below). Apar t  
from such constant terms in f2 we define the Ginzburg-Landau  equation by the choices 

)7  

fz  = f 3  = O, (2.9) 

so eq. (2.1) becomes 

~t A = 8 A  + ( b  I --}- ic,)a2A - ( b  3 - -  i c 3 ) l A l 2 h  - ( b s - ic5)lAl~l. (2.10) 

We now still have the freedom to set any three of the coefficients (no two of which are in the same 
term) to unity in absolute magnitude, by appropriate  choices of scaling of time, space and A. When 

b 3 > 0, the equation has a supercritical bifurcation at e = 0, and one often takes b 5 = c 5 = 0 (b 5 is not 
needed for stability) and b 1 --- b 3 = I~1 = 1, so the equation has two parameters ,  c~ and c 3. When b 3 < 0, 
we have a subcritical bifurcation, and we must retain bs > 0 (or some higher-order term) for stability (see 
fig. 2). It is then usual to take b 1 = - b  3 = b 5 = 1, and the equation has the four parameters  e, c~, c 3 and 
c5. We shall retain the form (2.10) for later convenience in analyzing the dynamical system (2.6) 
[corresponding to the ft  given by eq. (2.8)], but unless otherwise noted we assume the subcritical case 

b 3 < 0 .  

2.1.3. Other special cases 
A special cases of eq. (2.10) is the "nonlinear  Schr6dinger" equation (e = b I = b 2 = b 3 = b 5 --- c 5 = 0, 

c 1 = 1) 

OtA = iax2A +ic3lAl2A (NLS) ,  (2.11) 

which is both Hamiltonian and integrable. Its extension, the "quintic-cubic Schr6dinger" equation 

( e  = b I = b 3 -- b 5 = 0 ,  c 1 = 1 ) ,  

a ,h  - iaxZZ + ic31hl~A + icsIAl%l (QCS) ,  (2.12) 

is Hamiltonian but not integrable. Other  interesting cases are the "derivative nonlinear Schr6dinger" 
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(a) 
IAI 

b3> ]/~0 .- 

0 E 
IAI I ( b ~  "~" 

%,, 

E 0 o E 

equation [37] (b 1 =.fl = 0, f2r = so + s2lA[ 2, c] = 1) 

Fig. 2. Bifurcation diagram for the complex Ginzburg-  
Landau  equation (2.10) showing (a) a supercritical and (b) a 
subcritical bifurcation. Solid lines denote stable states and 
dashed lines unstable states. Only solutions with wavevector 
qN = 0 are represented.  For qN * 0 the solution is obtained by 
the transformation e ~ e - blq 2, but the stability properties 
are more complicated. 

btA = ia.ZA + SoOxA + S2Ox(IA[2A), (DNS), (2.13) 

and the combination of eqs. (2.12) and (2.13) which we will call the "quintic derivative Schr6dinger" 
equation, 

OtA = ia2A +Soa, A +s2ax(IZl2a) + ic31Zl2a + icsIAl~l (QDS).  (2.14) 

The special case c s = 0 of eq. (2.14) has been referred to as the modified nonlinear Schr6dinger equation 
(MNS, see Ohkuma et al. [37]). Like the NLS or DNS, the MNS is integrable (see Wadati et al. [37]) but 
the general case (2.14) is not. 

Equation (2.14) is invariant under the transformation x ~ - x ,  t--+ - t ,  A ---,A*. Such a transforma- 
tion yielding the identity when applied twice, is called an involution. Equations like (2.14) for which an 
involution exists are termed "reversible" by Roberts and Quispel [38], who discuss some general 
implications of such reversibility. We shall study these special cases, as well as other variants of the basic 
system (2.1), in what follows. 

2.2. Fixed points and their stability for the complex Ginzburg-Landau equation 

2.2.1. Fixed points 
For the complex Ginzburg-Landau equation (2.10) the functions ~' and ~¢" of (2.5) reduce to 

~ ' =  -b l ( to  + uq) W ~l(E + vK) - 2Kq - (blc3 + ~.lb3)a2- (blCs W ~lbs)a 4, 

• fffl'= --C1(0) "1- u q )  --  b l ( E  "+UK)Jt-q2--K 2 +(b,b3-~.tca)a 2 +([9,bs-~.,cs)a 4, 

(2.15a) 

(2.15b) 
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with /~l, 61 given by eq. (2.7). The set of coupled ODE's  (2.5) may be considered as a d y n a m i c a l  s y s t e m  

[19, 20] in the pseudotime variable ~ = x - v t ,  and orbits in the three-dimensional phase space of eq. (2.5) 
will correspond to uniformly translating solutions of eq. (2.10). The simplest "orbits" are fixed points, 

which satisfy 

a~a = a~q = a~K = 0, (2.16) 

and by eq. (2.15) we can distinguish two types: 

• The "nonlinear"  (N) fixed points with 

aN ~ 0, x N = 0, (2.17) 

with qN in general nonzero, and 

• The "l inear"  (L) fixed points with 

aL = 0, K L ~ 0, (2.18) 

and qL again nonzero in general. The nonlinear fixed points correspond to traveling-wave solutions of 
the PDE, 

A (  x ,  t )  = a N e - i ' ° s t  + iqsx,  (2.19a) 

with 

e = b l q  2 + b3 a 2  + b s a  4 ,  (2.19b) 

to N = to + vqN = c l q  ~ - c3a  2 - c s a  4 .  (2.19c) 

In the supercritical case (b 3 > 0, b 5 --- 0) the band of allowed wavevectors is 

0 < b l q  2 < e.  (2.20) 

For b3 < 0 and b 5 > 0, there is a subcritical bifurcation at e = 0 and a saddle-node bifurcation at 

esN = e o = - b 2 / 4 b s .  (2.21) 

For e > e 0 the branch of a N solutions that is stable to amplitude perturbations (see below) has 

2 b s a  2 + b 3 > 0, (2.22) 

(see fig. 2). The band of allowed wavevectors in this case is 

0 < b l q  2 < e + b ~ / 4 b  5. (2.23) 
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Thus for given values of the parameters (e, b i, c i) the solutions (2.17) corresponding to N fixed points 
form a two-parameter family indexed by v and oJ or by v a n d  qN #4. 

At the linear fixed point (2.18) we have 

oJ = - v q  L - 2bite L qL + Cl(q2 _ K2), (2.24a) 

= - -  VK L + 2ClKLq L + bl(q [ K 2 e - L), (2.24b) 

which may also be rewritten as the complex linear dispersion relation 

oo = -VQL + ie - i ( b ,  + icl)Q~ ., (2.25) 

where 

QL = qL -- iKL" (2.26) 

From eqs. (2.19) and (2.25) it is clear that for fixed oJ and v there are always two L fixed points, whereas 
the multiplicity of the N fixed points on the upper branch (2.22) depends strongly on parameters; the 
number of fixed points can vary from zero to four. 

2.2.2. Stability in the PDE dynamics 
The linear stability of the plane-wave states (2.17) in the original (PDE) dynamics of eq. (2.10) can be 

obtained by the standard linearization. Let 

h (  x, t) = ~( x,  t) e i4~(x't). (2.27) 

Then the amplitude and phase satisfy the PDE's 

a,~ = b,[ a ~  - a(~x~) z] - c 1  [ 2 ( ~ x a ) ( ~ x ~ )  "1- a 0 2 ~  l + g~  - b3 ~ 3 -  b5 ~5, (2.28a) 

Let us write 

a(x,t) = a .  +al, 

6(  x , t )  =qNX--WNt  + ~, ,  

4] = ~i01 exp[iQx + At], 

4~1 = 4~01 exp[iQx + At], (2.29) 

#"A uniformly translating solution can be written in the form (2.3) (with A a function of only one variable) in only one frame of 
reference, so there is a one-to-one correspondence between states of the PDE (2.1) and orbits of the dynamical system (2.5), (2.6). 
Since the traveling wave solutions (2.19a), which are represented by N fixed points, can be written in the form (2.3) with any v, the 
two-parameter family of fixed points of the dynamical system indexed by v and o~ corresponds to a one-parameter family of 
traveling waves indexed by oJ N = oJ + vqN. 
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and linearize eq. (2.28) about ti01, ~01" The ensuing characteristic equation for A is 

~2 _~./(~BF d" "~BF ~--- 0, (2.30) 

with 

= A + 2iclqNQ, 

/3BF(Q ) = 2 b l a  2 + 2a2 (2b5 a2 + b3), 

YBF(Q) = ( c l a  2 - 2 ib lqNa)  2 + b IQ2(b lQ  2 + 2b3 a2 + 4b5 a4 ) 

- 2a2(c3 + 2c5a 2) (c1Q 2 -  2 ib lqNa) .  

For stability we require that the solutions A(Q) of eq. (2.30) satisfy 

(2.31a) 
(2.31b) 

(2.31c) 

Re A(Q) < 0, for all Q. (2.32) 

Applying this condition for Q ~ 0 we require/3BF(0) > 0 which is the condition (2.22) mentioned earlier. 
In general, the vanishing of Re A(Q) signals a modulational (or "Benjamin-Feir")  instability [28, 39]. The 
set of qN for which condition (2.32) holds is called the Benjamin-Feir  stable band. It is easy to evaluate 
A(Q) numerically and to check the stability of any particular solution a N, qN of (2.19), for given values of 
the parameters e, b i, c i. 

In the limit Q ~ 0 we have YBF <</32F • The condition (2.32) for stability is then obtained by examining 
the terms of order Q4 of one of the roots. We thus must retain terms to second order in YBF and the 
condition becomes 

2 3 Re[YBF//3aF + YBF/flBF] > 0, (2.33a) 

or  

( b 3 + 2 b s a 2 ) Z [ 2 a 4 ( b , b s _ C l C s ) + a 2 ( b l b 3 _ c l c 3 ) _ 2 b 2 1 q Z ] _ 2 b l q N ( c 3 2 2  +2C5aN)22>0. (2.33b) 

For the cubic equation (b 5 = c 5 = 0, b 3 = b~ -- 1) this becomes, using eq. (2.19), 

q 2  <~ ~(1 -- CLC3)//(3 -- ClC 3 + 2C2),  (2 .34)  

in agreement with eq. (10) of Malomed [39a]. Thus a necessary condition for stability in the cubic case is 
the well-known relation 

1 - clc 3 > 0. (2.35) 

In the general case if eq. (2.33) is satisfied one can test for the stability with respect to higher Q by 
writing the relation Re A(Q) = 0 as 

Re Ya~ = I m  yBF//4f l2F,  (2.36) 

which leads to a cubic equation in Q2. One then requires for stability that this equation should have no 
positive roots. Alternatively one can simply evaluate Re A(Q) numerically as a function of Q and check, 
for given values of the parameters {e, b i, ci}, whether it remains negative for all Q. 
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2.2.3. Stability in the ODE dynamics 
For later reference, we also wish to know the stability properties of the N and L fixed points, within 

the dynamical system (2.5), (2.15). We therefore linearize those equations about the fixed point solutions 
(2.17) and (2.18). At the linear fixed point L the three eigenvalues are 

}~O = KL ' (2.37a) 

A(L ~ ) =  - - ( / ) 1  v + E K E )  - I - i l ~ l v  - 2 q L I .  ( 2 . 3 7 b )  

We shall denote the L fixed points by L ± depending on the sign of rE, i.e. L represents a state that is 
evanescent for ~ --* + ~, 

L :  K L ( 0 ,  .4(x, t )  " e KL~: = e -IKLl(x-vt), (2.38) 

and L÷ a state evanescent for ~--* -oo, 

L÷: KL> 0, A ( x , t )  ~ e ~L~ = e I~Ll(x-v°. (2.39) 

In discussing the stability properties of the fixed points we assume v > 0, since the case v < 0 can be 
obtained from the following symmetry of the dynamical system (2.5), (2.15): 

v---> - v ,  ~ - ~ ,  K--* --K, q ~  --q, a--*a. (2.40) 

To determine the stability properties of the two L fixed points labelled L~ and L z from eqs. (2.37) we 
must know the signs and magnitudes of the KL. From eq. (2.25) it follows that the two roots QL~ and QL2 
satisfy 

QL1 + Q L 2  = iv(191 - -  iCx) • (2.41) 

For K L = - - I m  Q L  this implies 

Re A(L~ ) = -- (blv + 2 K L I  ) ----- - -  Re A(L~Z ) = (/bY + EKE2 ) ,  (2.42) 

for all v. For e < 0  there is one fixed point #s with r E < 0  (L_I,  K u < 0 )  and one with K L > 0  
(L_E, KL2 > 0), and eq. (2.42) then implies that in this case Re A(L~ ) > 0 while Re ;t(L~ ) < 0. For e > 0, on 
the other hand, the signs of K L depend on v: for c < VcL, with 

UcL = [Cle - -  tObll/(ble) 1/2, (2.43) 

we have KL1 ( 0  (L_ 1) and KL2 ~ 0 (L+2). As before this entails Re )t(L~ ) > 0, and Re A~L~ ) < 0 in this 
regime. For v > V~L we have two L_ fixed points L_ ~ and L_ 2. Although Re A(L ~ ) may go through zero at 
some v > V~L, it is clear that even if this happens there is always one fixed point with three attractive 

#SFrom eq. (2.25) we have for v ~ 0, Q2 L ~ (q0 + iK0 )2, SO we can define KLI = --K 0 < 0,  Kt ,  2 ~ K 0 > 0 at small v, and for v --, oo 
we have KL1 ~ - v b  l, KL2 ~ --e/v. Fur thermore ,  f rom eq. (2.24b) it follows that  K L (viewed as a function of  v) can only go th rough  
zero for e > 0, and since d~L/dV = -2bz[(v/q  L -  2cl)2 + 4b2]-1  < 0 when  K L = 0, each root can only go through zero once. 
These  results together  imply that KL1 < 0 for any e, and that KL2 goes th rough  zero once as a function of  v for e > 0. This zero 
occurs at v = VcL = Icte -- tobtl/(ble) 1/2, so for e > 0 we have KL2 > 0 for v < %L and KL2 < 0 for v > VcL as stated in eq. (2.43). 
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eigendirections and one with a single attractive eigendirection. If we denote the latter by L_ 1, we finally 
have the following stability properties for the two linear fixed points: 

e < 0 :  L 1 ( + + - ) ,  L + 2 ( + - - ) ,  f o r a l l v ,  (2.44a) 

e > 0 :  L _ I ( + + -  ),  L + 2 ( + - -  ), f o r 0 < v < V c L ,  (2.44b) 

L _ I ( + + - ) ,  L _ z ( - - - ) ,  with lKLII>IKLZl, for v>vcL  , (2.44C) 

with VcL given in eq. (2.43). 
The stability of the nonlinear fixed point is determined by the secular equation 

A3+aN A2+ +~ N A + T N = 0 ,  (2.45) 

with 

a N = 2~1v, 

~'N = ~,~"~ + ( ~ , v -  2,,,,) ~ - 2 .~  [ (~ ,b~-  ~,c3)+ 2(~,~,~- ~ ,c . ) .~] ,  

~'N = ~"~N(-- v~',br 1¢"~ + :","~,) + ~"~, [(~,c3 + ~l~'~)+ :(~lC, + ~l",)"~]), 

= 2a~{  

--/~1U 

--( el v -- 2qN) [(blc 3 + f ib3)+ 2(blC 5 -1- clbs)a 2 ] 

[ (b lb3-  Elc3)+ 2(b,bs-~,cs)a2]). 

(2.46) 

(2.47) 

(2.48a) 

(2.48b) 

The signs of the real parts of the roots of eq. (2.45) are obtained quite generally from the formulas given 
in the appendix. We will denote N fixed points as N+ or N_ depending on the sign of YN. Since a N > 0, 
according to (A.2d) an N_ fixed point always has + - - ,  whereas according to (A.2a, b) an N+ fixed 
point can have - - - or + + - depending on v and qN, which determine the sign of ( a N t i  N - YN). 
From eq. (2.48a) it is clear that Yrq is always a decreasing function of v on the upper branch where eq. 
(2.22) holds, so that for large enough v we have YN < 0, and there are only N_ fixed points. For v ~ 0 on 
the other  hand there is one N+ and one N fixed point, since by eq. (2.19) there are two fixed points 
with qN of opposite sign, and the coefficient of qN in eq. (2.48a) has a definite sign. In order to describe 
the fixed-point structure it is simplest to follow their evolution from v = 0 at fixed q~, considering ~0 to 
be a function of qN and v, given by eq. (2.19). The fixed point with YN < 0 at v = 0 retains YN < 0 and we 
denote it as N _ l ( +  - - ). The other fixed point is N 2 ( +  - - ) for sufficiently large v, and N + ( +  + - ) 
for v = 0 .  For intermediate v the structure is either N + ( +  + - )  or N + ( - - - ) ,  depending on 
parameters. In summary, we thus have 

V<VcNI: N _ ( + - - - )  and N + ( + + - ) ,  (2.49a) 

V c N I < V ' ~ V c N 2 "  N _ I ( + - -  ) and N + ( - - - ) ,  (2.49b) 

V>V~N2: N _ I ( + - - )  and N _ z ( + - - ) .  (2.49c) 

The precise values of VcN 1 and VcN 2 depend on parameters and will not be needed in what follows. 
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Anothe r  proper ty  of  the N states is the group velocity Vg of  the waves obta ined f rom eq. (2.19), 

Vg = d to r , Jdq  N = t3g + v, 

t3g = d t o / d q N  = - v  + 2c lq  N - (c  3 + 2c5a ~ ) ( d a ~ / d q N ) ,  

qN = - ( 2 b 1 ) - l ( b 3  + 2 b s a 2 ) ( d a ~ / d q N ) .  

(2.50a) 

(2.50b) 

(2.50c) 

The  quanti ty ~g is the group velocity in the f rame moving with velocity v. Use of  eq. (2.19b) to evaluate 

d a ~ / d q  N and compar ison with eq. (2.48) yields 

5g = y N ( b  2 + c 2 ) [ 2 a 2 ( b 3  + 2bsa 2 ) ]  - ' ,  (2.51) 

so that  eq. (2.51) implies for the physically relevant upper  b ranch  (2.22) 

sgn 5g = sgn YN. (2.52) 

The  implications of  eq. (2.52) for the stability of  fronts  are discussed in section 4. 

2.3. Coherent structures 

2.3.1. Definitions o f  fronts, pulses, sources and sinks 
Besides the N and L fixed points, we can define o ther  solutions of  the P D E  (2.10) by finding 

heteroclinic trajectories of  the dynamical  system (2.5), (2.15), jo in ing  different L and N fixed points [20]. 

These  represent  coheren t  structures,  of  which we can define the three different classes #6 ment ioned  in 

the introduct ion and illustrated in fig. 1: 
• pulses, going #7 f rom an L+ to an L fixed point;  
• fronts, going f rom an N fixed point  to an L_  fixed point,  or f rom an L+ fixed point  to an N fixed 

point;  
• domain  boundaries ,  joining two N fixed points. 
Necessary condit ions for the existence of  such orbits are obta ined by requiring that  the orbit  be 

or thogonal  to any unstable direction at an incoming fixed point  #7. For  example a pulse orbit  coming into 
an L_  ( + + - ) fixed point  must  be adjusted to be or thogonal  to bo th  of  its unstable ( + ) directions. This 

is achieved by adjusting the parameters  in the system, typically v or  to, at fixed e, b i, c i. 
A front  will be called positive if it represents  a situation where  the N state invades the L state, i.e. if 

v > 0 under  our  convent ion that  N is on  the left and L on the right. Domain  boundar ies  whose N states 
have group velocities t3g, eq (2.50), of  opposi te  sign are defined as sinks if they have incoming waves 
(t3g > 0 for ~ ---> - 0% t3g < 0 for ~ ~ oo) or  sources if they have outgoing waves (~3g < 0 for ~: ---, - 0%/3g > 0 

for  ~ ~ + ~ ) .  

~6The nomenclature for coherent structures is not uniform in the literature: pulses are also referred to as solitons or s-waves, 
fronts are known as kinks or shocks, sinks are called shocks, sources are called targets, and domain boundaries are sometimes 
referred to as holes, pulses or fronts. 

#7We define the orbits as going from s ¢ = -no to ~: = +oo. 
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2.3.2. Counting arguments for  the existence o f  coherent structures 
The results we have obtained in section 2.3.1 for the stability of the fixed points, together with 

symmetry considerations, allow us to find necessary conditions for the existence of the various coherent 
structures. Consider e.g. a trajectory flowing from an N fixed point to an L fixed point. If the N fixed 

point has n N unstable directions, there are n N - 1  free parameters characterizing the flow on the 

nN-dimensional subspace spanned by the unstable eigenvectors. Together with the parameter v and to, 

this yields n N + I free parameters. If the L fixed point that the trajectory needs to flow into has n L 
unstable directions, the requirement that the trajectory should come in orthogonal to these yields n L 

conditions. The multiplicity of this type of trajectory will therefore be n = n N - n L + 1, and, depending 
on n, we will say we are left with either an n-parameter family (n >_ 1), or a discrete set of structures 
(n = 0), or no structure at all (n < 0). These arguments, based as they are on necessary conditions, yield 

an upper limit #8 for the multiplicity of a particular class of structures, i.e. the likelihood of finding 

nearby structures i f  one is known to exist. We shall typically consider the parameters e, bi and c,. to be 

fixed, and find multiplicities as v and to are varied. In cases where an N state is involved we can 

eliminate w in favor of qN via eq. (2.19), and it is usually more convenient to consider v and qN as the 

parameters to be varied. 
Clearly, the counting arguments are based on the assumption that the various conditions for flow into 

and out of the fixed points are independent. When the dynamical system has symmetries, it can happen 

that fewer parameter adjustments are needed in order to satisfy the constraints, thus leading to larger 
multiplicities of solutions. In the discussion below we will first consider the cubic-'quintic complex 

Ginzburg-Landau equation in the general case with no special symmetries. We will then consider 
particular choices of the {e, bi, ci} where the multiplicities change as a result of additional symmetries 

(see section 3.2.3). 

2.3.21. Fronts. A positive front is an orbit from N to L_, and a negative front an orbit from L+ to N. 

(We are only considering v > 0, since v < 0 is equivalent by the transformation (2.40).) For e > 0, 
according to (2.44b, c) there are two L fixed points L _ I ( +  + - )  and L _ 2 ( -  - - ) ,  and either one or 

two N _ ( +  - - ) fixed points #9 depending on v. When there is one N fixed point, the other fixed point 

is N + ( + + - )  or N + ( - - - ) .  An orbit from N _ ( + - - )  to L ( + + - )  has a unique outgoing 
direction, and in order to arrive at L_ (+  + - ), the incoming direction must be made orthogonal to both 

unstable eigenvectors, requiring adjustment of two parameters, v and qN" Thus we expect in general a 

discrete set of such fronts, with velocities vf and tof. For a front going from N _ ( +  - - ) to L _ ( -  - - ), 
on the other hand, all incoming directions are stable at L_, so we expect a two-parameter family of such 

fronts, indexed by v and qN" The N + ( +  + - ) fixed point has a one-parameter continuum of outgoing 
directions, so fronts represented by N + ( +  + - ) ~ L  (+  + - )  therefore exist as a one-parameter 
family, whereas N + ( +  + - ) ~ L ( -  - - ) yields a three-parameter family. 

The results we have obtained in section 2.2.3 for the stability of the fixed points, coupled with the  
above arguments, lead to the following multiplicities for positive fronts (N_---, L or N + ~  L_): 

• For e > 0: There is always at least one discrete set of N ~ L_ fronts. For v > VcL there is in 
addition a two-parameter family of N_ ~ L_ fronts. There are also families of N+ ~ L_ fronts whose 

#SStrictly speaking the counting arguments yield an upper limit for the multiplicity of orbits of the dynamical system (2.5). There 
might be other solutions of the PDE (2.1) not of the form (2.3), which one may wish to refer to as coherent structures, but we do 
not consider these here. 

#9Recall that we define L ± according to the sign of K L (eq. (2.38)), and N± according to the sign of YN (see after eq. (2.48)); or 
in view of eq. (2.52), according to the sign of the group velocity 5g. 
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multiplicities can be readily established once the Verdi and UcL are known. We shall not work these out in 
detail since we will see that fronts coming from N+ are dynamically unstable. 

• For e < O: There is a discrete set of N _ ~  L_ fronts, plus families of N + ~  L_ fronts which again 
depend on v. 

Similarly, negative fronts ( L + ~  N+ or L + ~  N_)  can be shown to have the following multiplicities: 

• For e > 0: Negative fronts ( L + ~  N) exist only for v < VcL. There is a one-parameter family of 
L + ~  N_ fronts, plus either a discrete set or a two-parameter family of L + ~  N+ fronts, depending on 

the relative magnitudes of VcL and the YeN i. 

• e < 0 :  There is always a one-parameter family of L+---> N_ fronts, plus a discrete set or a 

two-parameter family of L+--, N+ fronts for UcN 1 < U < UcN 2. 

2.3.2.2. Pulses. Pulses correspond to L + ~  L orbits so the counting is quite simple. From the results in 

eq. (2.44) we expect a discrete set to exist for e < 0 and for e > 0, with v < VcL. According to this 
argument, the condition that the discrete pulse be stationary 

vp = o, (2.53) 

would seem to require an additional adjustment, i.e. would only be satisfied in a codimension-one 

subspace of the {e, b i, c i} parameter space. It turns out, however, that for stationary pulses there is an 
additional symmetry of eqs. (2.5) and (2.15), 

~ - ~ ,  q -~  - q ,  K ~ --K, a ~ a ,  (2.54) 

which eliminates one of the necessary parameter adjustments. Indeed, starting from the L+ fixed point 

(a L = 0, qL ~ 0, r L ~ 0) an arbitrary orbit intersects the K = 0 plane at some point a0, q0, and we can use 
the parameter to to fix q0 = 0. The pulse orbit is then completed by symmetry from (a0, 0, 0) to the point 

L_ whose coordinates are (0, - q L ,  --KL)" Thus stationary pulses are generically contained in the discrete 
set {vp, top}. 

Z3.2.3. Sources and sinks. From eq. (2.52) we see that sources can be defined as N_---> N+ orbits, and 
sinks as N + ~  N_ orbits, since the subscript on  N can refer either to the sign ~9 of YN or t~s. For v = 0 
the N+ fixed point of eq. (2.15) always has according to the discussion following eq. (2.48) the stability 

properties N + ( +  + -  ). A source (target) corresponds to an N _ ( + - -  ) ~  N + ( +  + -  ) orbit and in 
general requires adjusting two parameters, but once again we can use the symmetry (2.54) to eliminate 

one adjustment for v = 0: a trajectory leaving N_(a  N ~ 0, qN ~ 0, K N = 0) in general hits the q = 0 plane 

at the point (ao,O, Ko), and we can use to (or qN) to set K 0 = 0 or a 0 = 0. This means that there is in 
general a discrete set of v = 0 sources. The source orbit going to N +(aN, - q N ,  0) is then completed by 
symmetry. A sink (shock) corresponds to an N + ( +  + - ) --> N _ ( +  - - ) orbit, and it has the additional 
freedom of a one-parameter family of departing directions from N ÷( + + - ), so we are left with a family 

of v = 0 sinks, indexed by qN" 
For v ~ 0, the above arguments yield a discrete set of sources for small v, but a possible two-parame- 

ter family of N _ ( +  - - ) ~ N + ( -  - - ) sources in the range YeN 1 < V < VcN 2 where an N + ( -  - - ) fixed 
point exists. Sinks, represented by N+( + + - ) ~ N_(  + - - ) orbits, form a two-parameter family in the 

range v < VcN~ where the N + ( +  + - ) fixed point exists. 
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For sources and sinks we may make general quantitative statements about the velocity, knowing only 
the properties of the two fixed points [39b]. Let us consider the general form (2.1) with f2 =f3  - 0 

0,h + (b~ + ic l )a2h  + f l ( I Z l 2 ) A ,  (2.55) 

with 

f l  = f i r  + ifli" (2.56) 

Then the N fixed-point conditions analogous to (2.19b, c) imply 

2 2 b l q  N = f l r ( a N ) ,  (2.57) 

which we assume to be invertible (i.e. we consider only the stable branch defined by a generalization of 
eq. (2.22)], 

2 - 1  2 
aN = f l r  ( b t q N ) ,  (2.58) 

and 

~o + uqN - c l q  2 = - f l i ( a 2 ) .  (2.59) 

The group velocity is #2 

t3g = (d¢o/dqN) = - v  + 2 c , q  N - 2bzqNf~ i / f~ r .  (2.60) 

For an N 1 ~ N 2 domain boundary we have, assuming qN1 ~ qN2, 

U=Cl(qNI + qN2) + ( fli(a2NI)qNl --fli(a22))qN2 ' (2.61) 

Ugl "1-/~g2 ~ 2 ( f l i ( a 2 1 ) - f l i ( a 2 2 )  ) - 2 h [ f ~ i ( a 2 1 ) q N l  f~i(a2N2)qN2 I (2.62) 
qNI ~-- qN-----2 '-'1[ ~ ; ~  + t'~T-7"~_ 2 -- " 

These relations, together with eq. (2.58) express v and t3g~ + gg2 in terms of qN~ and qN2 alone. For the 
cubic case 

f l  = e - (b  3 - ic3)a 2, (2.63) 

eqs. (2.61) and (2.62) become 

v = ( c ,  + b l c 3 / b 3 ) ( q  m + qN2), (2.64) 

/~gl m ( C  1 -4- b l C 3 / b 3 ) ( q N 1  - q N 2 )  = --/~g2" (2.65) 

Thus in this case any domain boundary is either a source (tSg 1 > 0 ,-- --,) or a sink ( v s l  < 0 ~ ~ ) ,  or a 

homoclinic trajectory N 1 ~ N 1 for which tSg I = t382 and qNl = qN2( ~ ~ or ~ ~ ), in which case eq. (2.65) 
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does not hold. For the quintic or higher-order equations more general domain boundaries can exist, with 
arbitrary relation between bg I and Og2- 

2.3.2.4. Summary of counting arguments. We summarize the above arguments by singling out the 
structures that will turn out to be dynamically significant in the general case with no additional 
symmetries. 

(i) There  exists a discrete set of (N_--* L_)  fronts for all e, and a two-parameter  family of such fronts 
for e > 0 .  

(ii) There  is a discrete set of pulses. Since for every pulse with velocity v there is one with velocity - v 
the discrete set will in general include stationary pulses (v v = 0). 

(iii) There  is a discrete set of sources (targets), and a one-parameter  family of sinks (shocks) at low 
velocities. At higher velocities one can have one-parameter  families of sources and two-parameter  
families of sinks. 

(iv) For the cubic equation (f2 = f 3  = 0, f l  = e -  (b 3 - i c 3 ) a  2, Bekki and Nozaki [26] have found a 
family of moving sources (see section 3.3.3), in contradiction to the counting argument.  We conjecture 
that this is due to a hidden symmetry of their solution. A similar situation may well obtain for moving 
pulses. 

2.3.3. The nonlinear diffusion equation 
The arguments given up to now provide (in the absence of additional symmetries) an upper  limit to the 

multiplicity of coherent  structures, since they only involve the stability of the phase space orbits at their 
end points. In certain cases more detailed information can be obtained by studying the full orbit. The 
simplest example is the nonlinear diffusion equation [9, 11, 22, 23], obtained by setting f l i  ----f2 = f3 = 0  in 
the starting equation (2.1), and confining oneself to real solutions, i.e. writing 

0,A r = i~xZAr + f ( A r ) ,  (2.66) 

where for the Ginzburg-Landau  case f ( A  r) =f lr(A2)  Ar, but more generally f need not be an odd 
function. The dynamical system (2.5) for uniformly translating solutions A r ( X , t ) = u ( x - v t )  then 
becomes 

O~u + v~u  + f ( u )  = O, (2.67) 

where the function u, in contrast to a --- [ul, can now be both positive and negative. The above equation 
describes a classical particle of unit mass with damping constant v (either positive or negative) moving in 
the potential 

V(u) = F f ( y )  dy. (2 .68)  

Let us consider a function f (u )  with three zeros as in fig. 3a, corresponding to the case e > 0. Then the 
points u± that are stable equilibria of eq. (2.67) are maxima of the potential V, and the unstable 
equilibrium u = 0 is a minimum of V. A front is represented by an orbit that begins at a maximum of V 
(u = u+, say) and ends up at u = 0. For large v the particle leaving u---u+ will come to rest at u = 0 
without overshoot, but below some critical damping v = v s there will be an overshoot and damped 
oscillations about u = 0. For some value v = Vmi n the particle will precisely reach the other maximum at 
u = u_ and this orbit represents a stationary kink solution between the two stable fixed points u = u ±, 
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f = t u + u 2 - u  3 
s>O 8 < 0  

(a) f, (b) f ,  

u_ 0 u+ 
~ u  

Fig. 3. Illustration of the behavior of the functions f and V of the nonlinear diffusion equation given in eqs. (2.66) and (2.68), for 
the particular case f = eu  + u 2 - u 3. (a) e > 0; (b) e < 0. 

i.e. a domain boundary in our classification. For v < Umi n the orbit goes off to u = -o0, so it does not 
represent  a finite solution of eq. (2.67). We thus have a one-parameter  family of  fronts with velocities 
Vmi n < v < 0o for e > 0. In the Ginzburg-Landau  model we have f ( u )  =f l r (UX)U = eu  + u 3 - u 5, leading 
to a symmetric potential and Vmi . = 0. For the asymmetric case f ( u ) =  eu  + u 2 -  u 3 the results of  

Ben-Jacob et al. [9] imply that Vmi . = 1 /v~- .  Note that although for any velocity in the range v > Vmi . a 
unique front exists, the decay rate KL(V) associated with these fronts is a discont inuous  function of v. In 
particular, for the velocity at which the orbit first overshoots the point u = 0 upon decreasing the velocity 
v, either KL(V) or d K L ( V ) / d v  has a discontinuity. (See section 4.2.) 

A pulse solution is an orbit beginning and ending at u = 0 and it is clear that for e > 0 none exists, 
since u = 0 is at a minimum of the potential  V(u) .  

Turning now to e < 0, fig. 3b, a front is represented by an orbit from the maximum of the potential  at 
u÷ to the maximum at u = 0. It is clear that there is no longer a family, but ra ther  a unique velocity for 
such an orbit. Similarly, there is a unique pulse orbit and it has v = 0, since the trajectory leaving u -- 0 
must return to u = 0. Moreover  it exists only for e > e l, where e I is the value such that V ( u  = O)=  

V(u =u+). 
The foregoing results allow us to compare  the actual multiplicity of  solutions with the predictions 

obtained from the arguments of section 2.3.2, based on an analysis of the orbits of  the dynamical system 
(2.5), (2.15) in the vicinity of the fixed points. As stated earlier, the counting arguments give an upper  
bound for the number  of  orbits of the dynamical system. For example, when specialized to the case 
c i = 0, the calculation of section 2.3.2.2 yields stationary pulses for arbitrary e, though we know that 
pulses only exist for e] < e < 0. On the other hand, for e > 0, eq. (2.67) has oscillatory front solutions in 
the range Umi n < U < U* = 2~ 1/2 that do not correspond to finite orbits of the dynamical system (2.5), 
(2.15) for c i = O, since [KI ~ o0 every time u = 0. These solutions are of course not predicted by the 
counting arguments based on the dynamical system (2.5) either. However, for the dynamical system (2.67) 
the counting argument  can be formulated directly using the variables u and i)eu. In these variables, the 
oscillatory front solutions do correspond to finite orbits and are consistent with the counting arguments.  

Likewise, in the general case (2.5), (2.15) we can circumvent the problem associated with the 
divergence of orbits when a --* 0 with aea finite as follows. We allow a to take on negative values as well, 
and in the region where a goes through zero with finite slope, we use the dynamical system (a, q, a~a) 
instead of (a, q, K). Since the trajectories remain unique in this set of  first-order ODE's ,  we can connect 
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them to the trajectories in the (a ,q ,  K) phase space in a unique way. Hence, the counting arguments 
based on the stability properties of the fixed points remain unchanged, and they will therefore represent 
an upper bound for the multiplicity of uniformly translating coherent structures of the PDE. The 
perturbative calculations of section 5 confirm this expectation. 

3. Analytic results 

In this section we discuss a number of exact results concerning the generalized complex Ginzburg- 
Landau equation (2.1) that can be obtained analytically. These are either in the form of symmetries, 
conservation laws, or exact solutions of the dynamical system (2.5), (2.6) for special cases. 

3.1. Symmetries and conservation laws 

Suppose eq. (2.1) has a continuous symmetry [21], i.e. it is invariant under a one-parameter family of 
transformations A ~ J~ (A)=A~ .  Then if a coherent structure exists for some value of the parameter 
(/~ = 0, say), we generate a family by applying J-~. We shall see that families also arise in systems with 
conservation laws. We therefore consider special cases of eq. (2.1) for which conservation laws and 
continuous symmetries can be found. 

3.1.1. Conservation laws 
We define the normalization integral 

_ l Z ( x , t ) l Z d x ,  (3.1) . /Y(t)  = f" 
and note that in the case 

bl =fir =f2i =f3i = 0, (3.2) 

this quantity is conserved, i.e. 

0 i X  = 0, (3 .3)  

for solutions that decay sufficiently fast at x = + oo. Similarly, we define a momentum 

= - i c  I f_~[(axA*)A - (axA)A*] dx + f_~  dxf4r(lAI2), (3.4) 

with f4r to be determined. A calculation using eq. (2.1) shows that 

~t ,~= 0, for b I = f i r  = f 2 i = f 3  = 0, (3.5) 

if f4r is given by #2 

f~,,(a 2) = 2f2r(a2).  (3.6) 

(Note that we have not found a momentum operator for f3r ~ 0, though one may exist.) 
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3.1.2. Continuous symmetries 
Apart from space and time translations which are continuous symmetries of the full equation (2.1), we 

can find special cases where other symmetries exist. The first is space-time dilatation invariance, 

x' =Ax,  tt = A2t, A' = A-1A, (3.7) 

which holds for 

f2 =f3 = 0, f i r  = -b3  a2, f l i  = c3 a2, (3.8) 

a special case of which is the nonlinear Schr6dinger equation (3.19) (b I = b 3 = 0, see below). Another 
continuous symmetry is Galilean invariance 

x ' = x + v t ,  t ' = t ,  A ' ( x ' , t ' ) = e x p [ ( ½ i v ) ( x + ½ v t ) ] A ( x , t ) ,  (3.9) 

which holds for eq. (2.1) when 

b t - - 0  and f 2 = 0  (3.10) 

(in eq. (3.9) we have set c~ = 1). 
These examples show that the standard connection between symmetries and conservation laws 

expressed by Noether's theorem (see Hill [38]) does not hold for eq. (2.1) and various special cases we 
consider, due to the lack of a variational principle. For example f2 4:0 breaks Galilean invariance even 
though there is a conserved momentum for f2r ~: 0, and conversely (complex) f l  ~ 0, f3 :~ 0 do not break 
Galilean invariance, even though we have not found a conserved momentum or any other conservation 
law for this case. 

3.2. Integrability of  the ODE's 

3.2.1. General integrability conditions 
Even in the absence of conservation laws or continuous symmetries, there are conditions under which 

the dynamical system (2.5), (2.6) is integrable, i.e. its solutions can be written down in closed form. Such 
conditions have been obtained by FlorjanCzyk and Gagnon [21] who also discuss the connection with 
Painlev6 theory (see Cariello and Tabor [21]). We will obtain similar though less general results by direct 
inspection of the ODE's. Indeed, if 

b 1 = f l r = f 2 i = O ,  C 1 = 1, (3.11) 

eq. (2.6a) can be put into the form 

t t 2 
Ocq=K[v--2q+ 2( f2r+f;r la  +f2r ] ,  (3.12) 

whose general solution, in view of eq. (2.4c), is 

1 f a  2 t t 
q(a  2 ) = ~ a 2 J  d y [ v + 2 y ( f ; r + f 3 r ) + f 2 r ] .  (3.13) 
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Then eq. (2.6b) becomes 

a~t¢ + t¢ 2 + ¢bo(a 2) + ~bl(a 2) K = O, 

¢0(a  2) = to + vq - q2 + f l i  + f2 rq ,  

¢ l ( a  2) = 2f~i a2, 

(3.14a) 

(3.14b) 

(3.14c) 

or equivalently, 

O~a + aeko( a 2) + ckl( a 2 ) ~ a  = O. (3.15) 

This equation represents the motion of a classical particle in the potential 

Vo( a 2) = ½ fa24,o( y) dy, (3.16) 

with damping ~bl(a2). In the undamped case, 

f~i = 0, (3.17) 

the equation of motion can be integrated by quadrature 

K2( a 2) = - 2 a -  2Vo( a z) + 2aoZVo(  a2),  

a(s¢) = f~  d~ { -2V0(aZ( r / ) )  + 2[aZ(rl) /a~]Vo(a2o)} 1/2, 

(3.18a) 

(3.18b) 

where a o is the value of a where K(a 0) = 0. 
From the mechanical analogy for eq. (3.15) with ~b~ = 0, it is clear that if the potential (3.16) is finite at 

a = 0 and has the correct shape, then any orbit leaving a = 0 must return to a = 0 by conservation of 
energy. In contrast to the situation in eq. (2.67) where v is a damping constant, a pulse orbit here 
requires no special adjustment of the potential, i.e. it occurs over a range in the parameters c and to, 
thus assuring a double family of pulses. Specifically, if q(a = 0) given by eq. (3.13) remains finite, the 
potential (3.16) will have a finite extremum at a = 0, and for sufficiently large Itol this extremum will be a 
maximum. The only condition for the existence of a double family of pulses is then that the nonlinear 
terms fli and f2r should be such that V0(a 2) increases to a value larger than V0(0). Similarly, the 
requirement that V0(a 2) have another maximum for a 4:0 such that V0(0)= V0(a2), imposes one 
condition, so we expect to find one-parameter  families of fronts. Note that the above arguments depend 
on the integrability of (2.5), (2.6) and the Hamiltonian nature of eq. (3.15) which follows from eqs. (3.11) 
and (3.17), and are satisfied even when f2r 4= 0 a n d / o r  f~r 4= 0. The condition f2r ~ 0 implies breaking of 
Galilean symmetry (3.9), and f~r * 0 apparently invalidates momentum conservation (3.5), but neither of 
these prevent the existence of a double family of pulses. 

3.2.2. Solitons in the nonlinear Schr6dinger equation 
The nonlinear Schr6dinger equation 

0,A = ia~A + ic3lAi2A, (3.19) 



W. van Saarloos, P.C. Hohenberg / Fronts, pulses, sources and sinks in CGL equations 327 

with c 3 = "{- 1 is not only Hamiltonian, but also completely integrable [15]. For c 3 > 0 an important class 
of solutions are the solitons of which an example is 

A ( x ,  t)  = e i ' (2 / c3 ) i /2  sech x, (3.20) 

corresponding to v = 0, to = - 1. Then a double family of solitons indexed by v and w can be generated 
by applying the Galilean and dilatation transformations (3.7) and (3.9). We shall not dwell on the special 
dynamical significance of the solitons for this integrable case. 

For c 3 < 0, we have the so-called "dark solitons" [6] 

a2 (x )  = ao 2 + (ar~ - aoZ)tanh2 [ g t ½(a 2 - a02)1c31 x ] ,  

q(x) =dla-Z(x), 

(3.21a) 

(3.21b) 

for arbitrary to > 0 and d 1 < 4to3/(27c2), where a N and a 0 are the solutions of 

( I c 3 l a 2 - t o ) a ~ - d ~ = O ,  

a02 = 2( to / Jc3 l -  a~). 

(3.21c) 

(3.21d) 

We therefore have a three-parameter family of such structures at nonzero v. For d 1 ~ 0, eqs. (3.21c, d) 
imply that a 0 ---, 0. These solitons are often referred to as "fundamental"  dark solitons [6]. For nonzero 
v, they form a two-parameter family. 

The nonlinear Schr6dinger equation and its extensions also admit spatially periodic nonlinear 
solutions (see e.g. ref. [21]), but these will not be discussed here. 

3.2.3. Pulses and fronts in the quintic-cubic and generalized derivative SchrOdinger equations 

3.2.3.1. Generalized derivative Schrb'dinger equation. Let us consider the dynamical system (2.5), (2.6) 
with 

f l r  = f 2 i  --'-- bl =f3  = 0, (3.22) 

already considered in section 3.2.1 (the condition f 3 r  = 0 is not necessary, but it is taken for simplicity). 
For this integrable system we have the general solutions written down in eqs. (3.18). Let us choose c~ = 1 
and 

f l i  ----" C3 a2 + C5 a4, (3.23a) 

f2r = S0 + S2 a2, (3.23b) 

i.e. we have combined the quintic-cubic and derivative Schr6dinger equations (2.12) and (2.13), to form 
the quintic derivative Schr6dinger equation (2.14). From eq. (3.13) the wavevector q takes the form 

q = dl a-z  + qo + qz a2" (3.24) 
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For pulse solutions we must pick d~ = 0, so eqs. (3.13) and (3.18) become 

3 2--  a 2 
q =  ½(V + So) +-~s2a =qo  +q2  , 

K 2 = d o + d2 a2 + daa 4, 

do = - t o  - ¼( v + S o )  2, 

' - ¼s2(v + So), d 2 = - ~c 3 

d 4 + = - ½ ( c  5 3s2/16) .  

The solution a(¢), given by eq. (3.18b) can be put into the form 

a2 (~ )  = ( d  3 + d s cosh d6~ ) -1,  

where the relation K = aea /a  implies 

d3 = - ( d J 2 d o ) ,  d g = ( d ~ - a d o d 4 ) / a d ~ ,  d62=ndo. 

(3.25a) 

(3.25b) 

(3.26a) 

(3.26b) 

(3.26c) 

(3.27) 

(3.28) 

This pulse solution generalizes the so-called "Alfv6n solitons" of the derivative nonlinear Schr6dinger 

equation [37], and reduces to those when c 3 = c 5 = s o = 0. It  also reduces to the to = - 4 member  of the 
nonlinear Schr6dinger pulse family (3.20) when c 5 = v = s 2 = s o = 0. As anticipated, the pulses (3.27) 
form a two-parameter  family of solutions indexed by v and to, but since the equation is neither Galilean 
nor dilatation invariant the dependence of the coefficients on v and to is nontrivial. 

If  we retain d~ ~ 0 in eq. (3.24) we find other types of solutions (e.g. domain boundaries)  but we shall 

not explore these further here. 

3.2.3.2. The quintic-cubic equation. For f2r = 0 we have the quintic-cubic SchrBdinger equation (2.12) 
studied earlier by Gagnon [40], and for v = 0 eqs. (3.25a) and (3.26) reduce to 

q = 0 ,  (3.29) 

and 

d 3 = - c 3 / 4 t o ,  d s = [ ( - c s / 3 t o  ) + ( c 2 / 1 6 t o 2 ) ]  1/2, d 6 = 2 ( - t o )  1/2, (3.30) 

implying 

to < 0. (3.31) 

1 2 and q by 1 For v ~ 0 we replace to by to + zv ~v, as implied by the Galilean invariance of eq. (2.12), or as 
can be seen directly from eqs. (3.25a) and (3.26). Now the dependence on v is trivial, but in contrast to 
the nonlinear Schr/Sdinger equation (2.11) to which eq. (2.12) reduces for c 5 = 0, the dependence on to is 

nontrivial. 
In order to study the pulse solutions in more detail we must distinguish four different cases, depending 

on the signs of  c 3 and c 5, i.e. on the quadrant  in the (c 3, c 5) plane. (We assume v = 0 as in eqs. (3.29) 
and (3.30).) 

In quadrant  I, c 3 > 0, c 5 > 0, for Itol --, 0 we have d 3, d 5 > 0 and d 3 -~ d 5, so the pulse (3.27) resembles 
the soliton of the nonlinear Schr6dinger equation and has amplitude proportional  to Itol ~/2. For Itol >> 
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ao > 0  

0 I~1 

NO PULSES 

C5 

II I 

III IV 

NLS 

0 I(~1 

C3 

NLS 
I I 

CO max I(~1 

Fig. 4. Illustration of the range of existence of pulse solutions in the quintic-cubic Schr6dinger equation (2.12) in the four 
quadrants of the (c3, c 5) plane. The notations NLS, ¢~N'~, etc. are explained in the text. 

3c2/16c5, on the o the r  hand,  we have d 5 >> d 3 and 

1/4[ ( ~ / ~ - T ~ ) ]  - 1 / 2 
a = (31tol/c5) cosh , (3.32) 

so it is a 2 ra ther  than  a which has the fo rm of  the soliton (3.20). We  indicate  this in fig. 4 by the nota t ion  
Ni-ffL . 

In  quadran t  I I  (c 3 < 0, c 5 > 0) pulses exist once again for  all to < 0, but  since this is the dark  soliton 
regime (3.21) when  c 5 = 0, the pulses do not  reduce  to NLS solitons for  I to l - ,  0. Ins tead  they have finite 
ampl i tude  

lim a( ~ =  O) = [31c31/2c5] t/2. (3.33) 
IoJf--,0 

In  quad ran t  I I I  (c a < 0, c s < 0 )  we have d 5 < - d a ,  d 3 < 0  and the solutions have a square- root  
singularity at some finite ~:, so they are not  normal izable  and we will ignore this case. 

In quad ran t  IV  (c 3 > 0, c 5 < 0), the small-ltol behavior  is as in quadran t  I, but  there  is now a maximum 
value of  Itol, 

tomax "~- 3 c 2 / 1 6 1 c 5 1  • (3 .34 )  

W h e n  Itol---, tor, ax (i.e. d 5 ~ 0 in eq. (3.30)) the width of  the pulse diverges logarithmically,  and the 
ampl i tude  approaches  

z = a  2 = 3c3/41c51. a max 

This  cor responds  to a pa i r  o f  fronts, each one  of  which has the fo rm 

(3.35) 

af2(~ :) = a~ [1  + exp(  - 2KLSe)] --1, (3 .36a)  

KL = + (--3C2/16C5) 1/2 = + (tOmax) 1/2, (3.36b) 

(we have displaced the edge  to ~ --- 0). Thus  fronts  exist for  a par t icular  to, but  o f  course  there  is still a 
family indexed by v. Note  tha t  when  Itol -- tomax we have 

x ( a  2) = ( - c 5 / 3  ) 1/2(aZ + 3c3/4c5) ,  (3.37) 
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i.e. K is a l inear  funct ion of  a 2. T h e  p roper t i es  of  the pulse solution (3.30) in the quintic-cubic 
Schr6dinger  equa t ion  are summar ized  in fig. 4. 

3.3. E x a c t  solut ions  o f  the complex  G i n z b u r g - L a n d a u  equat ion 

Even  if the re  are no conservat ion laws or symmetr ies ,  and if the integrabil i ty condit ions are not  
satisfied, as is the case for  the complex  G i n z b u r g - L a n d a u  equat ions  (2.1) or  (2.10), it is still possible to 
find par t icular  exact  solutions #~° for cer tain p a r a m e t e r  values. 

3.3.1. Non l inear  f r o n t  

Guided  by the fo rm (3.37) and by heurist ic  stability a rguments  [see ref. [11] and sect ion 4], we make  
the following ansatz  [8] for  a f ront  solution of  the full complex  G i n z b u r g - L a n d a u  equa t ion  ~H (2.10), 
which we shall re fer  to as the "non l inea r  front  ''#~2, 

q ( a 2 )  = qN + eo( az  -- a ~ ) ,  (3 .38a)  

K(a  2) = e l( a z -- a Z  ) , (3.38b)  

with constants  qN, aN, e0, el to be  de te rmined .  A similar solut ion wag found independent ly  by Klyachkin 
[42], but  he  did not  invest igate its dynamical  significance (see also Cariel lo and Tabo r  [42] and Powell 
et al. [43]). Inser t ion  of the ansatz  (3.38) into the  O D E ' s  (2.5), (2.15) leads to two quadra t ic  polynomial  
equat ions  in the var iable  a2(~). Requi r ing  that  these  re la t ions be  satisfied identically, we find six 
re la t ions (for the  coefficients of  a °, a 2 and a 4 in the  two equat ions)  which af ter  some rewrit ing b e c o m e  

09 ..-- --UqN + Clq 2 -- C332 -- C5 a 4 ,  (3 .39a)  

e = b l q  2 + b3a 2 + b5 a 4 ,  (3.39b) 

3e 2 - e 2 = [~lbs - e l c  5, (3.39c) 

4e le  0 = - (61b5 +/g lc  5), (3.390) 

~1c3-[~1b3  + ([~lel + 6 l e o ) v -  2qNe 0 + ( 2 e 2 - - g e ~ ) a ~  = 0 ,  (3 .39e)  

/~1c3 + 61b3 - (61el - [~ leo)V + 2 q N e  1 -- 6 e o e l a  ~ = 0, (3.39f)  

where  according to eq. (2.7) 61 = b l ( c  2 + b2) -~,  c l  = c1( c2 + b2) -~ .  For  b I • 0 the  solution of  the system 

(3.39) may  be wri t ten in the fo rm 

qN = qtN = e2 + e3 a 2 ,  

u = u t = e  4 + e s a  2 ,  

a 4 + e 6  a2  + e  7 = O, 

KL = KtL = - - e l a  2 ,  

(3.40a) 

(3.40b)  

(3.40c) 

(3.40d)  

*t°There is considerable literature on exact solutions of real equations such as (2.66), some of which can be found in ref. [41]. 
*ltAs explained below, the ansatz also works in the more general case in which the functions f2 and f3 of eq. (2.1) are linear 

in a 2. 
#12In ref. [8] we used the term "selected front" for eq. (3.38), but we prefer "nonlinear front" since it is only selected when the 

conditions (4.14) are met. 
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with 

e 2 = - [ ( 6 , e , - t ) l e o ) ( c . l C 3 - b l b 3 )  -1" ([he, + c.leo)(blC3 "k 6 ,b3)] /12b , (e2  + e2)],  

e3 = (gele2el + [~,eo e2 + 26,e~ + b,eoa)//~,(eo 2 + e 2 ) ,  

e4=  - [ e , ( e , c 3 - [ h b 3 )  + eo(/~lC3 + 6,b3)] / [h(e  g +e2) ,  

e 5 = 4 e t / b l ,  

e 6 = (2eEe 3 - ba/b l ) / (e2a  + b s / b l  ), 

e 7 = (e 2 - e / b l ) / ( e  ~ + b s / b l ) .  

(3.41a) 

(3.41b) 

(3.41c) 

(3.41d) 

(3.41e) 

(3.410 

An examination of the above equations shows that they provide explicit expressions for the front 
parameters v t, q'N, t°t, ( a2)  t in terms of the original parameters of eq. (2.10), since eqs. (3.41) express all 
quantities in terms of {b i, c i, e} and the pair (e 0, e~)which itself can be reexpressed in terms of {b i, c~, e} 
by solving the quadratic equations (3.39c, d). 

The multiplicity of solutions can be found as follows: First note that given {bi, c;, e}, the pair (e0, e~) is 
uniquely determined by (3.39c, d) up to a sign change of both variables, since for e I ~: 0 the equation 

3e 4 -  ( [hb5-61c5 )e  2 -  ~([~,c 5 + 61b5)2 = 0 (3.42) 

has a single positive root e~ > 0, and a 'change of sign of both e 0 and e 1 leads to an equivalent front 
(3.38) by the symmetry (2.40). Thus e 2 through e 7 are uniquely determined, and a solution that is stable 
to amplitude perturbations will be found if a 2 satisfies (2.22), 

a 2 >_ - b 3 / 2 b  5. (3.43) 

This condition implies the following multiplicities: 

4e < 2e6b3 /b  5 - b 2 / b  2, 

1 solution if: / and  

b3/b5 < e6: [4e  7 < e 2, (3.44b) 

no solution otherwise. 

e 6 < b3/bs:  

(3.44a) 

2 solutions if: (2b3/bs)e6 z 2 <e62, (3.44c) - b 3 / b  5 < 4e 7 

1 solution if: 4e 7 < (2b3/bs)e  6 - b 2 / b  2 (3:44d) - -  3 /  5 ~  

[ n o  solution if: e62 < 4e 7. (3.44e) 
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From the above equations we may show analytically that 

0,v* = esO~a 2 = [es(ble 2 + bs) (2a  2 + e6) ] -1, (3.45a) 

so for e I > 0 (the proper  choice for a front from an N to an L fixed point as in fig. la)  and b~ > 0, b 5 > 0 
(necessary for stability) we have 

sgn(O~v*) = sgn(2a 2 + e6) > 0, (3.45b) 

where we have used the stability condition (2.22). 
Another  general property of the solution (3.40), (3.41) is the group velocity z3g*, given according to eq. 

(2.60) by the expression 

c + 2c5a 2 ) 
Ctg= -V t  + 2clq* N + 2blq* N ba + 2bsa 2 . (3.46) 

As noted in section 4.2, for stability we require Cg* < 0 and although we have not succeeded in showing 
that this condition is always satisfied, in all the parameter  ranges where we have solved eq, (3.40) for v* 
numerically, t3g* was found to be negative. 

The sign of tSg is also related to the following point: The ansatz (3.38b) corresponds to a first order 
O D E  for a(~) [11]. In phase space, this means that the nonlinear front trajectory flows out of the N fixed 
point along a single unstable direction. Suppose, however, that it flows out of an N+ fixed point with 
+ + - structure along one of the two unstable eigendirections. In this case the counting argument  
implies that the nonlinear front is a member  of a one-parameter  family. Although we have not been able 
to rule out this possibility in general, the stability arguments of section 4 as well as the numerical 
simulations of section 6 are consistent with the hypothesis that whenever it is selected, the nonlinear 
front flows out of an N_ fixed point with + - - structure. In view of (2.52), it then also has t3g* < 0. 

We also note that the nonlinear front flows into an L fixed point along a stable eigendirection. As we 
will see later, for very large e this fixed point is of type L_ 2 which by eq. (2.44) has three stable 
directions. In this case, the nonlinear front therefore is a member  of a ( two-parameter)  family of fronts, 
but as we shall see, it is then not the selected front. 

For the cubic Ginzburg-Landau  equations (b 5 = c 5 --- 0, e = b = b 3 = 1) Nozaki and Bekki [25a] have 
obtained an exact front solution that can be defined by the ansatz 

q = qN + eStCL(1 -- alaN),  

K = KL(1 -- a/aN),  

(3.47a) 

(3.47b) 

which yields 

a 2 a2[1  +exp( - - tCL{)]  -2 ~--- , K L < 0, (3.48) 

where a N, x L, qN and e 8 can easily be calculated in terms of c 1 and c3° It turns out, however, that this 
solution is a member  of the family of N _ ~  L_ 2 fronts obtained in section 2, and as discussed in sections 
4 and 6, these fronts are not selected by the dynamics starting from localized initial conditions. 
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Let us now consider the Galilean invariant limit b 1 -- 0, for which eqs. (3.40) and (3.41) yield (setting 

C 1 = - b  3 - b 5 = 1) 

a~ = a 2 0 ( c 3 ,  C5), 

e = e 0 ( c  3,c5) = --a2o + a 4 0 ,  

q~ -- ½vt = q0(c3,c5),  

(3.49a) 

(3.49b) 

(3.49c) 

where a20, e 0 and q0 are de(l) functions of the parameters c3, c5, easily calculated from eq. (3.41). Thus 
the ansatz (3.38) defines a one-parameter  family of fronts (as it must from the Galilean symmetry) but 
only for the special value e = e 0. For e 4:e0 there is no solution of the form (3.38). When 0 < bl << 1, the 
family collapses to a particular solution (choosing the one with v t > 0) of the form 

v* = 2 b l l / 2 ( e  - e0) 1/2 + v~, (3.50a) 

qtN = b l l / : (  e - e0) 1/2 + q~l,  (3.50b) 

where vii and qtN1 are de(l) functions of c 3 and c 5. Thus v*(b 1, e )  is singular for bl ---) 0, e ---) e 0 and a 
perturbation expansion of (3.40) and (3.41) in bl is rather delicate. 

Note also that eq. (3.39d) shows that in the case b~c s + bsc  I = 0 one has e 0 = 0 (since e x =~ 0), so that 
the wavenumber q is a constant. The other expressions also simplify considerably in this case. 

3.3.2. E x a c t  pu lse  solut ion 

For the complex Ginzburg-Landau equation (2.10) we make the following pulse ansatz ([8], see also 
ref. [42]) which generalizes the exact solution of Hocking and Stewartson [24] to the quintic case, 

r 2 = d o + d2 a2 + d4 a4, 

q = d 7 + dsK. 

This ansatz leads to the equations 

C l  v - -  2d 7 = blV = 0, 

Cl e - bl to - b i rd7  = 2dsdo,  

[~le + (ato + 6 1 v d 7 - d ~ = d o ( d  2 -  1), 

b l C  3 -1 t- ( l b 3  = - 3 d E d 8 ,  

/~lb3 - 61c 3 = - d E ( d  E - 2), 

/91c 5 + ~1b5 = _ 4d4d8, 

[~1b5-61c  5 = - d 4 ( d  2 -  3). 

(3.51a) 

(3.51b) 

(3.52a) 

(3.52b) 

(3.52c) 

(3.52d) 

(3.52e) 

(3.520 

(3.52g) 

For b I = 0 (the Galilean invariant case) we find a family of solutions with arbitrary v. When b I , 0, we 
must have v = d 7 = 0 by eq. (3.52a), and we are left with 6 equations in the 5 unknowns do, d2, d4, d 8 
and to. This overdetermined set is only soluble in a codimension-one subspace of the set (e, c l, c 3, c5), 
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which we parametrize as follows: 

Fig. 5. Subspace of the (c3, c 5) plane where exact pulse 
solutions of the form (3.51) exist, in the subcritical case 
(b3 /b  1 < 0) for fixed c I > 0. The  subspace is indicated by the 
thick solid lines. The plane is divided into sectors by the 
dashed lines blc 5 + bsc I = 0 (horizontal), blc 3 + b3c I = 0 

(vertical) and c 5 ( b l / 2 b  5) - c3 (b l /3b  3) + ~c 1 = 0 (diagonal), 
meeting at P. The subspace is traced out  along the segments  
I --,IV marked d s < 0 as d 8 goes from -oo to 0, and along the 
segments  I ~ IV marked d s > 0 when d 8 goes from 0 to + oo. 
The signs of the terms of eqs. (3.55) and (3,54c) in the 
different sectors are indicated on the figure. 

6b tb3d  8 - 2 c t b 3 ( d  2 - 2) 
c3-- 6c~ds + 2 b ~ ( d ~ -  2) . . . .  (3.53a) 

4 b t b s d  8 - c l b s ( d  2 - 3) 
c5 = 4 c ~ d 8 + b ~ ( d 2 _ 3 )  (3.53b) 

Elimination of d 8 from eqs. (3.53a) and (3.53b) yields a relation between c 1, c 3 and c 5 (which does not 
involve e). For fixed c~ > 0, this subspace is indicated by the thick solid lines in fig. 5 for the subcritical 
case b 3 < 0. The curves are obtained by tracing c 3 and c 5 according to eqs. (3.53) upon varying d 8 from 

- oo to 0 (segments, I, II, III, IV marked d s < 0) and from 0 to + oo (segments I, II, III, IV marked d 8 > 0). 
Within the subspace the solution is 

U = 0 ,  

e C3Csbt + c1(3c3b5 - 2c5b3) 
= bl clbab5 + (3b3c 5 -  2c3b5) ' 

d o = K~ = - e / 2 d 8 d  9, 

3b3 

d 9 = ~lb3 + c3b I + 

2b5 

gtb5 + csb I ' 

(3.54a) 

(3.54b) 

(3.54c) 

(3.54d) 

the maximum amplitude a 0 being the smallest root of 

4 ( c t b 3 + b l C 3 ) a ~  + 2e 

a 4 + - ~  c l b 5 + b l C  5 ( 6 x b s + b l c s ) d 9  =0"  
(3.55) 



I'E. can Saarloos, P. C Hohenberg / Fronts, pulses, sources and sinks in CGL equations 335 

According to these equations, exact pulse solutions exist in the subspace whenever (i) d 0 = X2L is, 
according to eq. (3.54c), positive, and (ii) eq. (3.55) has a positive real root. Clearly, eq. (3.54c) shows that 
for given b i and ci pulses exist either for e > 0 or for e < 0 but not for both. Whether  pulses do indeed 
exist for given sign of e, and if so, over what range, is determined by eq. (3.55). Consider again fig. 5 

corresponding to the case b 3 / b  I < 0 and c~ > 0 fixed. The signs of the various terms entering eqs. (3.55) 
and (3.54c) are indicated in the different sectors of the plane. For the existence of pulse solutions on the 
various line segments, these results imply 

• I: pulses exist for all e > 0; 
• II: no pulses exist; 

• III: pulses exist for 0 < e < emax; 
• IV: pulses exist for emi n < e < 0; (3.56) 

where ema x and Emi n can be calculated in terms of the b i and c i. Note that for e = emi n and e = ema x the 
quadratic equation (3.55) for at~ has a double root, so the pulse ansatz (3.51) reduces to the one for the 
nonlinear front, eq. (3.38). Hence at emi n and ema x there exists a nonlinear front solut ion (3.38) with 
c t = 0. Since by eq. (3.45) ~v t > 0, the pulses of segment IV always coexist with a positive nonlinear front 
v t > 0. As shown in section 4.2, this means that these pulses are always uns tab le  to the formation of a 

front. The pulses in segments I and I I I  only exist for e > 0, when the A = 0 state (L fixed point) is 
linearly unstable. 

For the case b 3 / b  ~ > 0 shown in fig. 6 (supercritical bifurcation) the phase diagram follows from the 

previous one by applying the symmetry c 3 --, - c3, c 5 ~ C5, d o --* d o, to ~ ~o, d 9 --~ d 9 within the subspace 
(3.53). Pulse solutions are then only found in segments I and II of  fig. 6, and only for e > 0. The above 
results imply that the pulses obtained from the ansatz (3.51) are n e v e r  expected to be stable in an ideal 
infinite system. From the ansatz (3.51) it is easy to find the functions a(~) and q(~:) (the former turns out 
to be given by eq. (3.27)). Niemela et al. [2] have found that the resulting expressions fit their 
experimentally observed pulse shapes rather  well, but the coefficients d i were fitted and not related to 
any starting model. Moreover,  in view of the abovementioned instability in an infinite system the 
significance of the fit is obscure. In section 7 we shall comment  briefly on the possible stability of pulses 
in a finite system for e > 0. 

3.3.3. S o u r c e s  a n d  s inks  

For the cubic Ginzburg-Landau  equation (b 5 - c  s ---0, e = b~ = b 3 = 1) a simple source solution has 
been written down by Nozaki and Bekki [25b] (they call it a hole) in the form 

q2 2 2 2 
= qN a / a N ,  

a x  = aNK0(1 - - a 2 / a 2 N ) ,  

leading to a solution with v = 0 and 

a2 (  x ) = a 2 t anhE( r0x) ,  

q ( x )  = qN tanh KoX + ~ t~(x) ,  

+ c1 )/(1 + 

qN = ( ~ K o ) ( C l  -- t o ) f ( 1  + Clio), 

a 2 = ( c  I - -  t o ) / ( c  I + c 3 ) ,  

(3.57a) 

(3.57b) 

(3.58a) 

(3.58h) 
(3.58c) 

(3.58d) 

(3.58e) 
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Fig. 6. As fig. 5, but for the supercritical case b 3 > 0. 

where to is the solution of the equation 

to2(1 - eoCt) - (2c I + eoclc  3 + eo)to + c 2 - eoC 3 = O, (3.58f) 

with e 0 = -~(1 + c2 ) / ( c ~  + c3). Using eq. (2.65) we indeed verify that this solution is a source, since we 
have 

q + =  lira q ( x )  = qN sgn K 0, (3.59a) 

~g+= 2(c I + c 3 ) q N  sgn K 0 = 
2sgn Ko( C l - to)2 

3Koa2(1 +c~ )  
> 0, (3.59b) 

the condition for a source. We shall test the stability of this solution in section 6. 
For Cl ,C3~Oo,  one of the roots of eq. (3.580 becomes to ~ - c3 ,  which to leading order implies 

Kg = t0 /2C l ,  qN = 0 and a 2 = 1. After a rescaling of time it is easily seen that eq. (3.51) reduces to the 
fundamental dark soliton (3.21) of the nonlinear Schr6dinger equation in this limit. 

A more complicated domain boundary (N~ ---, N 2 orbit) for the cubic equation was also found by Bekki 
and Nozaki [26]. Contrary to our previous examples this solution is not simply expressed in terms of 
polynomials q (a  2) and K(a2), but rather in the explicit form 

"4( s r )=a2  l + e  -2~0~ exp i 

~(~:) = ½[q++ q_ tanh Ko~:], 

(3.60a) 

(3.60b) 
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where a 2, K o, q+ and q_ are real and z is complex• Insertion of eq. (3.60) into the O D E  for .4(~), 

• 0 2  ^ (1 + i t o )A  + vOe,~ + (1 + lCl) ~A - (1 - ic3)l,412A = 0, (3.61) 

leads to an algebraic equation with terms of order 1, e -2Koe, e -4""~ and e -6K"~ (and a common 
denominator  (1 + e-2'q,~)3). Equating the 4 coefficients to zero we find 4 complex equations in the 8 real 

coefficients a 2, K 0, q+, q_, Re z, Im z, o~ and v, thus a priori a discrete solution. The equations found in 
this manner  are not in a convenient form for analytic evaluation, but a numerical solution reveals that 
they in fact lead to a continuous family parametr ized by v. 

Bekki and Nozaki [26], in a clever application of Hirota 's  method of factorization [25b], have 

succeeded in finding the analytic solution by parametrizing the ansatz (3.60) as 

,e~(~) = e iq+/2 GF - °  +i,), (3.62a) 

G = a2(e K"~° + z e-K('~), (3.62b) 

F = e ~°e + e-~°~, (3.62c) 

with the real pa ramete r  a replacing q_. Inserting the form (3.62) into the differential equation (3.61) and 
using the relations 

FaeG = GaeF + 2K0a2(1 - z ) ,  (3.63a) 

(O~F)(0eG) = xZoGF - 2ro2a2(1 + z ) ,  (3.63b) 

we arrive at the relation 

[1 + iw + ½ivq + -  1(1 + i c l )  (qz+ + 4Ko2a2)] F 2 _ i a [  v + i(1 + i c , )q  + ]FOeF 

-(1 -ic3)lGI 2 - 4Ko2(1 + ic,)(2 + ia)(1 + ia) 

+2Koaz{[v + i(1 + i c , ) q + ] ( 1  - z )  + 2,%(1 + ic,)(m + ia)(1 + z ) } F / G  = O. (3.64) 

Letting s ¢ ---, 5= oo we equate the coefficients of e ± 2~o~: to zero to find the fixed point conditions, 

1 +ito + i v q 2 -  (1 + i c l )q  2 -  (1 - ic3)a22 = 0, 

1 + ito + ivql - (1 + i c l )q  2 -  (1 - ic3)a2lzl 2 = O, 

where 

1 I 
q] = ~ ( q + - - q _ ) ,  q2 = -~(q++q_) ,  

are the fixed-point wavevectors, and 

q _ =  - 2 x 0 a .  

(3.65a) 

(3.65b) 

(3.66) 

(3.67) 
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We are then left with an expression of the form 

C 1 + C2F/G = 0, (3.68) 

where C1, 2 are complex constants, independent of ~. The only solution of eq. (3.68) is C 1 = C 2 = 0, i.e. 

aZ(1 + [ZI 2 ÷ Z ÷ Z * )  --  a -2 (q l  -- q2)2(1 + ic l ) (2  + iot)(1 + i a ) / ( 1  -- ic3) = 0, (3.69) 

[ v + i ( l + i c ~ ) ( q l + q 2 ) ] ( 1 - - z ) - - a - l ( q E - - q l ) ( l + i c z ) ( l + i a ) ( 1 - - i c 3 ) - l ( l + z ) = O .  (3.70) 

We thus have again 4 complex equations (3.65a, b), (3.69) and (3.70) in 8 real unknowns, i.e. in general a 
discrete solution. However, the imaginary part of eq. (3.69) yields 

c~ = d  2 = - d  4 _+ (2 + d~) 1/2, (3.71) 

d4  = 3 7(clc3 - 1 ) / ( c  I + c3), (3.72) 

and from eq. (3.65) we have the general fixed-point relations 

a 2=1z12a 2 = 1 - q 2 ,  a 2 = 1 _ q 2 ,  (3.73a) 

to =,c 1 - v(1 + qlq2) / (q l  + q2), (3.73b) 

v = (c I + c3)(q I + q2). (3.73c) 

Using eq. (3.73c) we solve eq. (3.70) for z to find 

Z = q l  + q2 -- "r / (ql  - -  q 2 )  = iz le iO,  (3.74) 
q l + q E W ' r / ( q l  - - q 2 )  

"q = - ( 1  - i~x-1)(1  + i c , ) / ( 1  - i c 3 )  = r/, + i'r/i, (3.75) 

and note that the imaginary part of eq. (3.69) together with eq. (3.75) yield the relation Re r/(2 + ia)  = 0, 
which implies 

a = 2"0r/r/i. (3.76) 

Equation (3.74) can be transformed to 

2 2 (q~ +q2)  do + ( q x - q 2 ) 2 d ~ =  1, (3.77) 

t a n 0 =  2r/i(q22 - q2) (3.78) 
( q 2  ÷ q l )  2 - - I r / 1 2 ( q 2  - q l )  2 '  

d0 z = (1 + r/r)/4"Or, (3.79) 

d 2 = (I-q[ 2 + -qr)/4-G, (3.80) 

where the sign in eq. (3.71) may always be chosen such that "G > 0, thus assuring that (3.79) and (3.80) 
are positive. We are now left with the real part of eq. (3.69), which turns out to be satisfied identically, 
when eqs. (3.73)-(3.80) hold, thus completing the analytic solution of Bekki and Nozaki [26], which 
corresponds to a one-parameter family of solutions. (It turns out that their version of eq. (3.78) is 
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incorrect. The numerical values provided in their fig. lb  agree with eq. (3.78) above). To summarize, the 

solution (3.62) is found for any Ivl < Vma x = KC 1 + c3)/do[ by calculating a from eq. (3.71), ~7 from eq. 
(3.75), ql and q2 from eqs. (3.73c), (3.77), (3.79) and (3.80), to and a 2 from eqs. (3.73), x 0 from eq. (3.67), 
and O from eq. (3.78). 

We may now verify that the family (3.64), parametr ized by v, represents sources. Indeed, assuming 
x 0 > 0 we have for ~ --, +oo, qN =q2 ,  and we note that r/~ > 0 implies the condition a ( c  I + %) < 0. Then 

eqs. (2.65) and (3.67) lead to 

sgn t3g 2 = sgn[(c  1 + c 3 ) ( q  2 - 01)] = - s g n [ a x o ( C l  + c3)] = sgn K 0 > 0, (3.81a) 

which is the condition for a source. For K 0 < 0 and s r --, + oo we have qN ---- ql and 

sgn/~gl = sgn[(Cl + C3)(ql - -  02)] = sgn[ a x 0 ( c  , + c3) ] = - sgn K 0 > 0, (3.81b) 

once again the condition for a source. 
The existence of a family of sources for general values of the parameters  c a and c 3 of  the cubic 

equation violates the counting arguments presented in section 2.3.2.3, .and in our view presents a serious 
challenge to our understanding of phase space methods as applied to coherent  structures. We believe 
that it is the special symmetries of  the ansatz (3.60) that allow an escape from the counting arguments,  

which assume "generic" intersections of  manifolds in phase space. 
In fact, the existence of a family of solutions of  the form (3.60) would be equally surprising if they 

turned o u t  to be sinks: the counting argument  of section 2.3.2.3 for the existence of a family of sinks is 
based on the extra degree of f reedom provided by the two unstable directions of the outgoing fixed point 
N + ( + + - ). However, since the solution (3.60) can be expanded in powers of  e ± 2K(,e, the corresponding 
trajectory approaches each fixed point along a f ixed eigendirection. From naive counting, one expects 
such solutions to form a discrete set irrespective of whether  they are sources or sinks. 

Let us discuss the symmetry of eq. (3.60) in more detail. Besides the usual parity symmetry (2.40) of the 
dynamical system (2.5), which translates to 

P: v -~ - v ,  ql ~ - q l ,  q2 ~ - q 2 ,  t¢ 0 ~ - x  o, (3.82) 

the ansatz (3.60) has a "relabell ing" symmetry, 

R: q 1 ~ q 2 ,  a 2 ~ a  2, K 0 ~ - - K  0, Z ~ Z  -1.  (3.83) 

Moreover,  from the form of eq. (3.60) it follows that the unstable eigenvalue at the N + ( -  - + ) fixed 

point A~0 +) = 2 %  is equal and opposite to the stable eigenvalue Ato - )  = - 2 %  at the N _ ( +  + - ) fixed 
point #~3. Surprisingly, the relation A<o + ) =  -A<o -)  turns out to be sufficient to determine the orbit 
completely. Indeed, for a given v and to, the dynamical system (2.5) for the cubic equation has two N 
fixed points. Now consider v fixed with [v[ < Vma ~ = I(c I + c3) /do l .  For arbitrary to, the eigenvalues at the 
two fixed points are different; now adjust to so as to satisfy the symmetry A~0 +) = -A~0 -). The flow out of  
and into the two fixed points along the two corresponding eigendirections is thereby determined, but we 
see no a priori reason why these two one-dimensional manifolds should intersect. Nevertheless, the 
existence of the family of solution (3.60) shows that they do intersect for arbitrary c~ and c3, and for 

#13It follows from the discussion of section 2.2.3 that the N_ fixed point has a ( +  + - ) structure for small v. For larger v, in 
particular close to the maximum v of the family (3.60), the N_ fixed point is often found to have a ( -  - - ) structure. In these 
cases, the naive counting allows for the existence of a two-parameter family of source solutions. 
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arbitrary It)I< Urea x. Apparently imposing a symmetry at the fixed points guarantees that it will be 
maintained all along the trajectory in this case! 

While we have noted these symmetries, and we believe that they are related to the existence of a 
family of sources, we have been unable to find an argument showing directly how the symmetry leads to a 
breakdown of genericity in phase space. Presumably this breakdown is limited to the cubic equation, but 
it could also lead to a family of moving pulses generalizing the solution of Hocking and Stewartson [24]. 

4. Marginal stability conjectures and selection criteria 

Having described a large class of exacf solutions of our basic system (2.10), and having provided 
explicit expressions for some of these, we wish to investigate their dynamical properties, i.e. their stability 
and the likelihood that they will be reached from typical initial conditions. Our major hypothesis is that 
in certain cases to be specified the exact front solution v t, to t, eq. (3.40), controls the dynamics of the 
PDE (2.10) for a large class of initial conditions. Since this hypothesis is related to earlier marginal 
stability conjectures we first summarize these. 

4.1. Linear marginal stability 

The linear marginal stability hypothesis has been applied quite generally to fronts advancing into 
unstable states (e > 0) about which the dynamical equation can be linearized. Let us introduce the 
complex dispersion relation, analogous to eq. (2.25) for the dynamical equation linearized about the 
unstable state 

O(Q)=12r+ i12  i, Q=qL-- iKL.  (4.1) 

Thea the linear marginal stability hypothesis [9-14] states that the selected velocity v* has the property 
that in a frame moving with that velocity a disturbance will neither grow nor decay. As shown in ref. [11] 
its value can be obtained from the function 12(Q) = 12(qL, KL) by first using the relation 

012iOqL ~L = O, (4.2) 

to define the functions qL(KL), 12i(KL) = 12i(qL(KL) , KL) , and a family of "stable" fronts with velocities 

(4.3) 

Then the chosen front v*, KL, qL is obtained from the marginal stability condition 

dv 
dK L = 0 ,  (4.4) 

as the minimum of the curve V(rL). 
For the complex Ginzburg-Landau equation the linear dispersion relation is given by eq. (2.25) with 

12 =to + Qv =to + (qL -- iKL)U" (4.5) 
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The qL obtained from eq. (4.2) is given by 

qL = --ClKL/bl, 

and the branch of solutions (4.3) is 

(4.6) 

U ( K L )  = - - K L / / b  1 - - e K L '  , e > 0 .  ( 4 . 7 )  

Thus the marginal stability values obtained from eq. (4.4) are 

- 1/2 
v * =  2 ( e / b l )  , (4.8a) 

[ .- x l / 2  
K~= - [ O l e  ) , (4.8b) 

to* = - c l e  / b l ,  (4.8c) 

and a solution only exists for e > 0, i.e. when the A = 0 state is unstable. 
It is well known [9-14] that the linear marginal stability mechanism also applies to models which do 

not admit uniformly translating front profiles, such as the Swift-Hohenberg equation (1.7). The new 
feature of the complex Ginzburg-Landau equation is, however, that this property of the linear front (i.e. 
whether it is uniformly translating or not) depends on parameters. To see this, note that with v* and to* 
given by eqs. (4.8), eqs. (2.19) become 

e = b l q ~  2 .2 .4 + b3a s + b5a N , 
- 1/2 , 

- c , e / b ,  + 2 ( e / b l )  qN = c ,q~  2 -- c3a~ 2 -- csa~ 4" 

(4.9a) 

(4.9b) 

A necessary condition for the existence of a uniformly translating solution is that these two equations for 
a~ and q~ should have a solution. It should be stressed that these conditions are different from the 
"conservation of nodes" argument [11] first used by Dee and Langer [9], to relate the parameters in the 
leading edge of the front to the wavelength A N of the nonlinear state behind the front, which yields 
2"rrA~ 1 = Re to* /v*  - q ~ .  The latter relation only holds for nonuniformly translating fronts; for profiles 
of the uniformly translating type (2.4), conservation of nodes is trivially satisfied in the frame moving with 
the front. From eq. (2.43) we find 

VcL = 2 C l ( e / b i )  1/2 < v*,  (4.10) 

so that if eq. (4.9) has a solution, the results of section 2.3.2 imply the existence of a two-parameter 
family of uniformly translating fronts containing the linear front v* as a member. For the cubic equation, 
(2.10) with b 1 = b 3 = 1 and c s = b 5 -- 0, the solution of eq. (4.9) is 

q ~ =  (1 + c 2 ) 1 / 2 -  (1 +c2)  '/2 

Cl jr. C3 , (4.11a) 

( a ~ )  2= 2 (CLC3- 1) + (1 + c~)l/2(1 + c32) i/2 
( C l  + C3)2 (4.11b) 

Since a solution of eqs. (4.11) exists for any value of c~ and c a, we generally expect that there will exist a 
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corresponding uniformly translating solution of the cubic Ginzburg-Landau equation. Whether  this 
solution will actually be observed depends also on the Benjamin-Feir  stability of the nonlinear state 
(4.11) (see e.g. ref. [25a]). 

To analyze the implications of eq. (4.9) in the case of a subcritical bifurcation, let us choose the scaling 
b I = - b  3 = b 5 = 1 and first consider the behavior in the two limits e ---, 0 and e ---, pp. For e ~ oo we can 

1 1 solve for a~ as a function of q~ on the upper branch (2.22), provided - V ~ -  ~ < q~ < V~-- ~.  By 
investigating the left-hand and right-hand sides of eq. (4.9b) as a function of q~ in this interval, it is easy 
to see that eq. (4.9) always has a solution in this limit. This is analogous to what was found in the cubic 
case. For e = 0, on the other hand, we find by eliminating q~ that the equations only have roots with 
i <  . 2  2 - a N  < 1 in the parameter  ranges 

--2c 3 + c  t < c  5<  --c3, 

--c 3 < c 5 < --2c 3 + c 1. (4.12) 

It follows that there are large sectors of parameter  space where fronts propagating with the linear 
marginal stability speed v* are not uniformly translating for e ---> 0 (the size of these sectors shrinks with 
increasing e): We shall return to this question in section 4.2 below and in section 6 where we show some 
numerical examples of nonuniformly translating fronts. In the examples that we discuss phase slips occur 
in the front region, and we have found no way to express the wavenuinber qN of the nonlinear state 
behind the front in terms of v*, K~ and q~. 

As noted by previous authors [9-11], the linear marginal stability criterion only applies for fronts with 
localized initial conditions, e.g. A ( x ,  O) = O, x > x o. For a front decaying sufficiently slowly as x ---, + 0% 
e.g. for 

A ( x , O )  ~ e -I~lx, Iml < IK*I, 

the selected front velocity will be 

(4.13a) 

v (~) = - ~//~1 - e / f f  > v*. (4.13b) 

This is an example of a violation of the linear marginal stability criterion caused by a particular initial 
condition, and also an illustration of the stability of the fronts on the branch V(KL). On the other hand, 
this branch is only accessible from a restricted (and somewhat artificial) set of initial conditions, and it 
has been termed "irrelevant" by Powell et al. [43]. These authors point out that in a number of cases (e.g. 
the real Ginzburg-Landau equation, c i - 0 ,  with oscillatory initial conditions) the approach of the 
velocity to the selected value v* is via a set of unstable fronts with v < v*, rather than along the stable 
set V(KL). Moreover, it has been shown by one of us [11, 14] that for the real Ginzburg-Landau equation 
with Im A = 0, nonnegative initial conditions also lead to fronts whose velocity approaches v* from 
below. 

4.2. Nonlinear selection 

Another  violation of the linear marginal stability criterion which we term "nonlinear selection" occurs 
when there exists a discrete front, with a velocity v* and a spatial decay rate LK*L[ satisfying 

v * > v *  and [K*LI > [K~.I. (4.14) 
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It was noticed earlier for a number  of  models [9, 11], and proved rigorously [27] for the nonlinear 
diffusion equation (2.66), that when the conditions (4.14) are satisfied it is indeed the front v t, KtL that is 
selected over the linear front v* K* Moreover,  this is consistent with an extended (nonlinear) marginal L" 

stability hypothesis [11] since in that case the front Vt, KtL is still the stable one with the minimum 
velocity, i.e. fronts with v > v* are linearly stable, while those with v < v* are unstable. Our  conjecture [8] 
is that this result applies quite generally, and moreover,  that for the complex Ginzburg-Landau  equation 
(2.10) the relevant discrete front is the one obtained from the ansatz (3.38), which we termed the 
"nonlinear  front ''#~2. 

In particular, recalling the L fixed-point structure (2.44) we see that if for e > 0 and v > v* > VcL we 
choose the orbit going to L_ ~ rather  than L_ 2, i.e. the discrete orbit rather  than a member  of the family, 
we may satisfy eq. (4.14) since IKL~I > I'lL21- Furthermore,  as will be discussed in section 6, for large e 
the nonlinear front (3.40) satisfies v t > v* but not  IK*[ > IK*I, so it is not selected. When this occurs the 

nonlinear front flows into L_ 2, and is therefore a member  of a two-parameter  family. 
For e < 0, on the other hand, there is no family of fronts emanating from N_, i.e. no linear front v*, 

and our conjecture is that v t will be selected whenever such a front has v t > 0. When v t < 0, or when 
the ansatz (3.38) does not lead to a solution with real v and to, we conjecture that pulse solutions will in 
general exist, at least for large enough e < 0, though their stability depends on initial conditions. When e 
becomes sufficiently negative, i.e. e < e 2 for some e 2 < 0, the pulses no longer exist or are always 
unstable, and an initial condition with A ~ 0 decays to A = 0. 

Let us briefly discuss fronts emanating from an N÷ fixed point. Since these are constructed from N 
states with the group velocity tTg (in the frame moving with velocity v) positive (see eq. (2.52) and 
footnote 9), we argue that a small disturbance will overtake the front and will therefore destabilize it. We 
thus conjecture that fronts emanating from N÷ are never stable. This is why we did not study their 
multiplicity in great detail in section 3.3.1. 

In summary, our conjectures on the evolution of a localized initial condition can be stated as follows 
(see fig. 7): 

• For e > 0, we calculate the linear front v*, K*L from eq. (4.8) and the nonlinear front v t, K* L from eq. 
(3.40). The linear front will be selected unless there exists a nonlinear front with 

v * > v *  and [KiLl > [K~I, (4.15) 

in which case the nonlinear front will be selected. In general we expect linear marginal stability at large e 
and we define e* such that v* is chosen for e > e* and v* is chosen for e < e*. If  no solution of eqs. (3.38) 
is found satisfying (4.14) we have e* = 0. 

• For e < 0, if there is a solution of eqs. (3.38) with v* > 0 near  e = 0, and if e 3 is the value of e where 
v* = 0, then the front v* will be selected for e 3 < e < 0. When v* < 0 (i.e., in view of (3.45), for e < e 3) or 
if eqs, (3.38) yield no solution with real v, then the situation is more complicated. The solutions depend 
more sensitively on initial conditions, but in general we expect to find stable pulses over some range 
e 2 < e < e3, while for e < e 2 an initial disturbance A(x,O)-- / :  0 will decay to zero. Note that in general 
pulses only exist as a discrete set, and this set is expected to contain s ta t ionary  pulses (v = 0). Since we 
can calculate v* analytically from our ansatz via eq. (3.40) we can predict the value of e 3 for given {bi, ci} , 

but we have no such general prediction for e 2. 

A useful way to illustrate the implications of  these rules and conjectures is to plot the regions where 
v* (e = 0) > 0 in the {c~, c 3, c 5} paramete r  space. This is shown in fig. 8 for the three cases c 1 --- 0, c 1 = 2 
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Fig. 7. Illustration of front and pulse selection on a schematic bifurcation diagram and plot of front velocity vs. e for (a) the 
supercritical and (b) the subcritical case. The  uniform amplitude nonlinear  state has amplitude aN0 and wavevector qN = 0. In the 
supercritical case (a), linear marginal stability is expected to hold in general, with a velocity v* which vanishes at e = 0. As 
explained in the  text, the nonlinear state created behind this front has ampli tude a~  and wavevector q~.  In the subcritical case (b) 
the nonlinear front, when it exists, has velocity v f and leaves behind a state with amplitude a t ,  while the linear marginal stability 
front has velocity v* and in simple cases an amplitude a~.  In each region of e the selected front is indicated by a solid line, while 
the other  one is drawn as a dashed line. Stable pulse solutions are found in the range e 2 < e < e 3 indicated by crosses, where e 3 is 

defined by vf(e 3) = 0. For e < e 2 a disturbance typically decays back to the a = 0 state. 

and Cl = 10, where these regions are contained between the solid lines in the (c3, c 5) plane. Since 
according to eq. (3.45) ~v  t > 0, the upper  range of stability of pulses in these areas is e 3 < 0. Outside 
these regions, there are no nonlinear fronts with positive speed v t for any e < 0, and hence stable pulses 
may exist up to e 3 = 0, and for e > 0 fronts will propagate  with speed v*. According to eq. (4.12), 
however, linear marginal stability fronts can only by uniformly translating for e ~ 0, in the area between 
the dashed lines of  fig. 8. For c t = 0, fig. 8a shows that this area falls inside the range where 
v t (e -- 0) > 0. Thus, depending on c 3 and c 5, either uniformly translating nonlinear fronts or nonuni- 

formly translating linear fronts can arise for e $0. As fig. 8 illustrates, for increasing values of c 1 the 
regions of paramete r  space where one may observe uniformly translating linear fronts, will expand. Note 
also that as mentioned earlier, for increasing e the parameter  ranges where vt(e)  > v*(e), will shrink. 

According to fig. 8, uniformly translating fronts typically only exist in a band near  the diagonal 
c 5 = - c  3. Apparently,  in the subcritical case smooth front propagation for e --- 0 is only possible if the 
nonlinear dispersive terms roughly cancel each other. Furthermore,  according to the rules formulated 
above, pulses will remain stable up to e 3 = 0 outside the solid lines. Hence a strong effective nonlinear 

dispersion promotes  the stability of pulses. 
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Fig. 8. Illustration of the range of existence of  nonlinear fronts with v t > 0 in the (c3,c 5) plane for e = 0 and constant  c 1. The  
region where v* (e = 0) > 0, and hence e 3 < 0, is bounded by the two solid lines. Outside this region, our  rules predict e 3 = 0. The  
dashed lines bound the region where according to eq. (4.12) uniformly translating linear front solutions can exist. Thus  outside the 
areas bounded by the solid and dashed lines, linear marginal stability fronts will be selected but they will be nonuniformly 
translating in the limit e $0. (a) c 1 = 0; (b) c I = 2; (c) c 1 = 10. 
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4.3. Effect of  Benjamin-Feir instability 

We have already excluded from consideration fronts emanating from N÷ fixed points, because we 
argued in section 4.2 that they would be unstable. It is still possible, however, even with N_---> L_ fronts, 
to have the wavevector qr~ of the N state be outside the band of Benjamin-Feir  stability determined by 
(2.32). In contrast to the "nonlinear instability" associated with the positive group velocity t3g of fronts 
emanating from N÷ states, the Benjamin-Feir  instability is "linear",  and so does not eliminate the 
corresponding N_ ~ L front completely. Indeed, since we have found t3g to be always negative (see 
after eq. (3.46)), the instability in the region behind the front is only convective in the frame moving with 
the front. As in the case of spiral waves in two dimensions, where the range of stability extends into the 
Eckhaus unstable regime because the instability is only convective [45], the emergence of a convectively 
unstable state behind the front need not necessarily destroy the propagating front. Nevertheless, we are 
no longer dealing with a uniformly translating solution, so we must add to our selection criteria the 
proviso that the N state be in the stable band. It will turn out that if qN is outside the stable band, but 
not too far outside, then the calculated v* is often still a good approximation for the average velocity of 
the chaotic front produced. Since we have an analytic expression for the Benjamin-Feir  stability band, 
eq. (2.32), we can make precise predictions concerning this aspect of front stability, and verify these 
predictions numerically. 

Another  difference between the linear Benjamin-Feir  instability and the nonlinear instability associ- 
ated with front-pulse  competition, is that the former does not show the approximate symmetry along the 
diagonal c 5 = - c  3 displayed in fig. 8. In particular, since effects of the nonlinear dispersion terms are 
additive in linear stability considerations, we find (cf. eq. (2.35)) that for c I > 0 nonlinear amplitude 
states a N in the first quadrant of the (c 3, c 5) plane tend to be unstable, while those in the third quadrant 
tend to be stable. As discussed in section 6 below, t h e  resulting dynamical behavior is indeed quite 
different in these two quadrants. 

4.4. Implications of  the terms f2 and f3 in eq. (2.1) 

In the analysis of the multiplicity of solutions in section 2.3.2 on the basis of counting arguments, we 
took f2(IAlZ)=f3(IAI2)=O in eq. (2.1). Although it is straightforward to include these terms, the 
analysis becomes quite cumbersome, and we confine ourselves here to a qualitative discussion of the 
resulting change. 

Since constant terms in f2 and f3 can be eliminated by a Galilean transformation, we will assume 
f2(0) = f3(0) = 0 in the present discussion, so that the L fixed points are unaffected by these terms. The 
counting argument will therefore once again lead to a discrete set of pulse solutions. However, the 
symmetry (2.54) which in the case v = 0, f2 = f3 = 0 gives rise to the stationary pulses, is absent if f2 4:0 
or f3 4: 0. Thus, as emphasized by Brand and Deissler [44], for f2 4: 0, f3 4: 0, pulse solutions will typically 
have a nonzero velocity; we show in section 5 that its value can be calculated perturbatively starting from 
the quintic derivative Schr6dinger limit (2,15). 

The N fixed points are of course affected by ]:2 and f3: although only f2 enters the relation between 
a N and qN, both terms alter the stability of the N fixed points in the dynamical system (2.5). 
Nevertheless, for large v terms proportional to v still dominate the expression for aN, fin and YN in eq. 
(2.45), and in analogy with the results in section 2.2.2, we expect a discrete set of fronts for large v. For 
small v, however, the stability of the fixed points may be very different. In particular, since the symmetry 
(2.40) is now absent, and since the sign of a N is no longer the same as the sign of v, it may be possible 
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for the N fixed point to have a ( +  + + )  structure for small v. This would imply the existence of a 
two-parameter family of fronts in the subcritical case for e < 0. 

In spite of these complications, it is easy to see that the nonlinear front ansatz (3.38) still solves the 
dynamical system (2.6) if f2 and f3 are of the form 

f2 = (s2 + irE) a2, f3 = (s3 + ira) a2, (4.16) 

since upon substitution into eq. (2.6), these terms only generate terms of a form already present in eq. 
(2.6). Thus, the nonlinear front velocity v t will be given by expressions similar to eq. (3.40). We have not 
analyzed these equations, but they are worth investigating further since, as will be discussed in section 7, 
the more general model is useful for understanding convection experiments. 

5. Perturbation expansions 

Perturbation expansions of pulse and front solutions about soluble cases have been carried out by 
many authors, either starting from the real equation ((2.10) with fni = f2  =f3  = 0) for which there is a 
Lyapunov function [29-31] or starting from various Hamiltonian limits [15-19]. There is a large literature 
on perturbations of the integrable nonlinear Schr6dinger equation, exploiting the inverse scattering 
method [15], or using more elementary techniques [17-19]. We wish to start from the cases considered in 
section 3.2 which are not integrable as PDE's but for which the dynamical system (2.5), (2.6) can be 
integrated. Specifically, we choose the generalized derivative Schr~dinger equation, for which eq. (3.22) 
holds. As shown above, the system possesses a double family of pulses indexed by v and to, and in some 
cases also a one-parameter  family of fronts indexed by v. It also has two conserved quantities JV, eq. 
(3.1), and : ,  eq. (3.4). The perturbations we consider break the conservation laws and pick out discrete 
members of the above families. A general way to calculate the effect of such perturbations is to consider 
the slow modes of the dynamical evolution operator,  and to obtain solvability conditions from the 
equations of motion. As shown for example by Elphick and Meron [17] these conditions lead to nonlinear 
equations for the parameters v and to (the constants of the unperturbed system) whose stable fixed 
points are the values selected by the perturbation. In our case we extend the approach of Fauve and 
Thual [18] who use a simpler method based on the conserved quantities dV and : ,  and arrive at 
equations for v and to similar to those of Elphick and Meron [17]. Note that unlike the case considered 
by the latter authors, for our system the effect of the perturbation is not to break dilatation and Galilean 
symmetries, but to destroy the Hamiltonian nature of eq. (3.15) and to violate the conservation laws (3.3) 
and (3.5). As mentioned in the introduction, our example shows that breaking the symmetries is 
insufficient to pick out discrete v and to. (Although the example of eq. (3.15) with fai = 0 but far 4:0 
shows that violating the conservation laws does not necessarily destroy the double family of pulses, in the 
case treated below it does.) 

5.1. Perturbation about the quintic derivative SchrOdinger limit 

Let us begin by considering the equation 

Ot A = .lOxA2 + i f l i ( l a l 2 ) a  + 8x[ f2r(lAl2)h] + bB, 

n = 8x2A +j r(lA 12)A - n r + iBi,  

(5.1a) 

(5.1b) 
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i.e. we take 

c 1 = 1, 
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b I = b << 1, (5.2) 

and for simplicity we have set f2i =]'3 = 0 in the perturbation B (5.1b), which is considered to be ~'(1) 
[i.e. f i r  = b- l f l r  =@(1)]. The unperturbed system has two conserved quantities, A r and ~ ,  eqs. (3.3), 
(3.5), but no nontrivial symmetries such as Galilean or dilatation invariance. We calculate the effects of 
the perturbation bB on normalizable solutions by calculating the time derivatives at, C" and a t ~  which 
are of ~'(b). Indeed, using the equation of motion (5.1) and the definitions (3.1), (3.4), we find 

a,./r --- b f ( BA* + B ' A )  dx ,  

a,.~ = 2b f [ iB*(a, ,A) - i B ( O x A *  ) + fzr( AB* + BA*)] dx.  

(5.3a) 

(5.3b) 

We therefore introduce a slow time variable 

T = bt, (5.4) 

and make the ansatz 

A (  x,  t)  = e-i '°~r)~o(¢, v( T ) , t o (T ) )  + bA l, (5.5) 

where 

d 0 ( ¢ )  = a(s  ¢) e i'~¢) (5.6) 

is the double family of pulse solutions, e.g. (3.25)-(3.28) indexed by v and to, that exist for b = 0. The 
only dependence of the first term in eq. (5.5) on the perturbation b is via a slow time dependence 
v(T),  to(T). Inserting the ansatz (5.5) into eqs. (5.3) and neglecting the term bA~, we find in lowest order 
in b, 

0r¢¢ = 2 f Bra ds ¢, 

= - 4  f [( q + f2r)aBr - a'Bi] d~, 

B r = a" - qZa +fqr a, 

B i = 2qa' + q'a. 

(5.7a) 

(5.to) 

(5.7c) 
(5.70) 

We now make the particular choices 

i l r  = ~ -- b3 a2 - b5 a4,  

f2r  -- So + $2 a2,  

f l i  = c3 a2 + c5 a4,  

(5.8a) 

(5.8b) 
(5.8c) 
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with 

C: = e / b ,  6 3 = b 3 / b  , 6 5 = b s / b  , (5.9) 

which, as mentioned earlier, are considered to be of order  unity. Note that the Hamiltonian limit of the 
complex Ginzburg-Landau equation (2.10) corresponds to the case f2r = 0, but we keep f 2 r  ~ 0 in the 
following analysis. The zeroth-order solution (5.6) has a(s c) given by (3.25a) and 

1 3 2 __ ( 5 . 1 0 )  q =  -~( s o + v )  + zs2a - q o  + q2 a2. 

Inserting these solutions into eqs. (5.7) we obtain 

arF~v'= - 2 N o 2  + 2 ( ~ - q 2 ) N 2 o  - 2(6 3 + 2 q o q 2 ) N 4 o -  2(6 5 +q2)N6o ,  (5.11a) 

0 T ~ =  --2(q0 + So)br J / ' -  ~ q 2 [ ( e - q g ) N 4 o -  (63 -b 2qoq2)g60- (65 -1- q~)Ns0 ] 

+ 8qoNo2 + 44qzN22, (5.11b) 

where we have introduced the notation 

Utm = f[a(~)]'[a'(#)] m d ~ : .  (5.12) 

On the other hand from the definitions (3.1) and (3.4) we find, for A ( x ,  t )  given by (5.5) and (5.6) the 
expressions #14 

= N20, (5.13a) 

= 2(q0 v)N2 ° 2 - - ~q2N4o . (5.13b) 

Since the integrals Nim a r e  known functions of v ( T )  and ~o(T), we obtain from eq. (5.11) a system of 
coupled nonlinear first-order ODE's  for v ( T )  and a~(T). At the fixed point Orv = areo = 0 we have 

a r ~  = arA/" = 0, (5.14) 

from which we obtain two relations determining v and ~o. 
1 0) we find from eqs. (5.13) and For the quintic-cubic Schr6dinger equation (s o = s 2 = 0, qo = ~v, q2= 

(5.11) 

O r v = - 4vNoz/N2o.  (5.15)  

Now by Galilean invariance (3.9) of the unperturbed system we have 

1 2 Ntm(~o,v)  = N,m(~o + zv ,0).  (5.16a) 

#14We use the notation .At and ~ to denote functionals of A(x, t) and A*(x, t), and Ntm for their values when the particular 
ansatz (5.6) is used. 
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Moreover, it is easy to see that 

N 2 1 , 2 m ( t o , O ) > O  for 0 <  Itol <tomax, (5.16b) 

so the only fixed point solution of eq. (5.14) with nonzero amplitude is v = 0, in accordance with the 
result of Elphick and Meron [17] for perturbations of the nonlinear Schr6dinger equation. Our derivation 
generalizes their conclusion to the case of the quintic-cubic Schr6dinger equation, and allows for general 
perturbations of the form (5.1b). The amplitude of the pulse will then be given by the fixed point of eq. 
(5.11a), which by (5.13a) may be written in the form 

0r to  = 2(0o, N20 ) - 1[ ~N20 _ ~3N40 _ ~5N60 _ No2]" (5.17) 

We shall investigate this equation in more detail in the next subsection. 
Turning to the quintic derivative Schr6dinger equation in the simple case s 2 = 0, i.e. taking only s 0 4:0 

in eq. (5.11), we find 

N2OOT v -- 4SoOTN2o = -- 4( S o + V) No2, 

OrN2o = - 2No2 + 2[ ~ -  ]-(s o + v)2] N2o - 2/~3N4o - 2/~5N6o. 

The fixed point values of v and to are given by 

U = --S0~ 

to =toO, 

(5.18a) 

(5.18b) 

(5.19a) 

(5.19b) 

where to o is the fixed point of eq. (5.17) valid for v = s o = 0, since the dependence of the Ntm on to, s 0 
and v is, according to eqs. (5.10) and (5.16a), via the variable to + ]-(s o + v) 2 for the Galilean invariant 

case s 2 = 0. 
For the case s o 4: 0, s 2 ~ 0, eqs. (5.11) are coupled first-order nonlinear ODE's  for v(T)  and to(T) of 

the form 

G l l O T V  + G12OTto = Glo, 

G210T v + G220Tto = G20 , 

with 

G l l  -- 0vg20 , G12 = 0a, g20 , 

Glo = 2[(e-q~)N2o-(/~3 + 2qoq2)N,o-(/~5 + qZ)N6o-  No2], 

G21 = 2(qo v)b~.N2o 2 _ _ 5q2OvN40 - N20 , 

-- 5q20oN40, G22 = 2(qo v)Oo, Nzo -- 2 

G2o . . . .  4(3qo v)(gz-qZ)N2o+[4(3qo v)(b3+2qoqz)-28q 2~, 

+ [4(3q0_  v ) (~  5 + q 2 ) +  ~_q2(/~3 + 2qoq2)]N60 
28q /~ + 3 z~ 5 +q2)N80 + 4 ( 5 q 0 -  v)No2 + 44q2N2z, 

(5.20a) 

(5.20b) 

(5.21a) 

(5.21b) 

(5.21c) 

(5.21d) 

(5.21e) 
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I 3 where according to eq. (5.10) qo = ~(So + v) and qz = ~sz, and the Ntm are known functions of v and w. 
This system will in general reach either a fixed point or a limit cycle, with a pulse velocity of order unity, 
which depends in general on all the parameters of the unperturbed starting equation (2.14). We have not 
analyzed eq. (5.20) in detail but we expect nontrivial results to emerge, analogous to those observed in 
reaction-diffusion systems [46]. 

5.2. Pulses and fronts in the perturbed quintic-cubic Schr6dinger equation 

Let us return to the analysis of eq. (5.17) appropriate to the quintic-cubic case where s o = s 2 = 0, and 
u = 0, 

- - I  ^ - -  

i~r0)=2[o, N20] [eNzo b3N40-bsN60-N02].  

From the general formulas 

( c ,  "l'/Z(4gl0)l ,/z 1 ~b(g), 

Nt2(t°) = I 2c ' 1 + t ' ~ ] -  / ~-~ + 

for l even, where 

g = ( s g n c 3 ) [ 1  + ( sgn  c5)o3 ] -1 /2 ,  

d~ = 161c50)1/3c ~ = 10) l/0)ma~, 

~b(g)  = 2(1 - g 2 ) - ' / 2  arctan[ (  1 _ g2)1/2(1 + g) -1] ,  c5 > O, 

4~(g) =(g2_ l ) - ' /Z ln[(1 +g + g27tg-Y~_ 1) / (  1 + g _  gZ~/~_ 1)], 

we obtain the limiting formulas 

Nt ° ~ 10)l(t-l)/2, Aft z ~ 10)1(t+3)/2, o3 << 1, c 3 > 0, 

gto~10)l -wz, gt2~10)l 1/2, ~ < < 1 ,  C 3 < 0  , C 5 > 0  , 

and 

N/o ~ Io)1 (I-2)/4, NI2 ~ 10)1 (/+4)/4, o~ >> 1, c 5 > O, 

Nlo ~ 2 ~ - ~ 3 ( 3 £ 3 / / 4 £ 5 )  (1-1)/2 ln(0)ma x -- 10)[) - I /2 ,  

Nt2 ~ constant, I0) 1 --' 0)r.ax, c 5 < 0, c3 > 0. 

g 2  1 d z ] 
(½l + 1)(½1 + 2) dg  2 ] N(t+z)°' 

C 5 < O, 

(5.22) 

(5.23a) 

(5.23b) 

(5.24a) 

(5.24b) 

(5.24c) 

(5.24d) 

(5.25a) 

(5.25b) 

(5.26a) 

(5.26b) 
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Fig. 9. Summary of possible scenarios for the existence and stability of pulses as determined by perturbing around the 
quintic-cubic Schr6dinger equation (2.12). In each quadrant where pulses exist, a cross on the [to[ axis denotes a fixed point and an 
arrow the direction of the flow according to eq. (5.22). 

Although it is straightforward to calculate the various terms in eq. (5.22) and obtain the dynamics of 
to(T) in detail, this is not necessary to gain a qualitative understanding of the existence and stability of 
pulses in the various quadrants  of the (c 3, c 5) plane discussed in section 3.3.3. Our  aim is to describe the 
fixed-point structure of eq. (5.22) qualitatively as ~ = e / b  I varies, with  b3 = b 3 / b l  < O, b5 = b s / b l  > O. 

In quadrant  I (c 3 > 0, c 5 > 0) we have 01~,lN20 > 0, so sgn arltol = sgn~ for Ito[ ~ 0 and sgn arltol < 0 
for large Itol when N60 dominates. This means that there is at least one fixed point for ~ > 0. For ~ < 0 
there are either no fixed points (this is the case for large I~l) or a pair of fixed points #15, one stable and 
one unstable, at ~2 < ~ < 0. The unstable fixed point goes to to = 0 at ~ = 0 and there is only the "s table"  
fixed point for ~ > 0. The two different scenarios are illustrated by a flow diagram in Itol in fig. 9, and by a 
schematic bifurcation diagram for the pulse amplitude in fig. 10, where stable and unstable solutions are 
represented by solid and dashed lines, respectively. A similar analysis leads to the bifurcation diagrams 
shown in figs. 9 and 10 for quadrants II  (c 3 < 0, c 5 > 0) and IV (c 3 > 0, c 5 < 0). (As shown in section 3.3.3 
there are no unperturbed pulses in quadrant  III .)  

It should be clear from the above discussion that the stability we are establishing only refers to the 
particular class of perturbations compatible with the ansatz (5.5). Thus pulses are "s table"  from this 
point of view for f > 0, even though it is clear that arbitrary perturbations about the A -- 0 state will 
grow for ~ > 0 since this state is linearly unstable. 

Let us ask whether  we can draw any conclusions about front selection from the perturbat ion theory. 
We note first that since front solutions are not normalizable, a rigorous t reatment  must use the more 
general formalism mentioned above which involves solvability conditions. Furthermore,  the analysis is 
complicated by the existence of at least two characteristic times in the evolution of v (T ) ,  the relaxation 
time at the edge of the front and the diffusive time with which a perturbation changes the amplitude of 
the N state created by the front (see ref. [29]). We shall circumvent these difficulties by modifying the 

#15Although we consider this unlikely, we have not been able to rule out the existence of more than one pair of fixed points. 
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Fig. 10. Summary of the bifurcation structure of pulses as implied by the results of fig. 9. Dashed lines indicate unstable pulses 
within the dynamics of eq. (5.22), and solid lines stable pulses. 

pulse perturbat ion theory to obtain a nonrigorous estimate of  the front velocity in quadrant  IV where a 
family of fronts (3.36) was found in the unper turbed system. 

Let us take as our initial condition a pulse state made up of a positive and negative front (3.36) with 
1 velocities +v f  (to be determined),  the edges being placed at x = + ~L, respectively (see fig. 11). This 

1 state is an approximate pulse solution with velocity Vp = 0, but with wavevectors +qN = + ~Vf for x ~ 0, 
and a discontinuity in phase at x = 0. We now let this solution evolve according to eqs. (5.18), taking 
e 3 < e < 0 in scenario (a) of the fourth quadrant  of  figs. 9 and 10, with e $ e 3. For e > e 3, the stable fixed 
point which exists for e < e3, and for which I~ol ---, ~Om,x in the limit e I" e3, has just disappeared. Since for 
e 1" e3 the shape of this pulse approaches that of two separate stationary fronts [see eq. (3.36)], for e > e 3 
the pulse will develop into two fronts moving apart  at a velocity which may be calculated as follows: We 
assume that the discontinuity at x = 0 remains localized, so for long times the frequency reaches tOm,x, 
the amplitude reaches a 2 = 3c3/41c51 given in eq. (3.35), and the two fronts drift apart  as the size L(T) 
of the pulse grows. The evolution of this state can be estimated by calculating a r . ~  as in eq. (5.18b): 

= k = - + ( - )N o - - F, N o, (5.27) 

A 

-L/2 0 I-/2 
X 

Fig. 11. Schematic sketch of the profile used to obtain the 
nonlinear front velocity v* within the perturbation analysis. 



354 W. van Saarloos, P.C Hohenberg / Fronts, pulses, sources and sinks in CGL equations 

where (for c 3 = - c  5 = 1) 

N2t,o = a~L(T) + @(L°) ,  (5.28a) 

N02 = @(L°) ,  (5.28b) 

1 qf = ~vf, a~ ---- ~.3 ( 5 . 2 8 C )  

For self-consistency we require a uniform growth of the pulse at the velocity 2vf, i.e. 

OrL ( T) = 2vf, (5.29) 

so eq. (5.27) yields 

v f =  [ ( ~ _  ~ 2 ^ ^ ~vf ) -b3a ~ -bsa4 ]L(T) + @( L°). (5.30) 

In order to cancel the term proportional to L(T) we therefore determine the front velocity vf to be given 

by 

v 2 = 4~ - 363 9 ̂  - ~ b  5 .  

Let us now consider the nonlinear front (3.38) in this c a s e  ( c  1 

order in b 1. According to eq. (3.50) we find precisely 

( u t )  2 = 4~ - 3/9 3 9 ^ - ~ b  5 = v 2. 

(5.31) 

= c 3 = - c  5 = 1) expanded to lowest 

(5.32) 

Thus for 

3 9 b (5.33) 8 > 8 3 = ~ b 3 +  16 5,  

the perturbation theory leads to selection of a front with velocity vf precisely equal to the velocity v* of 
the nonlinear front given by the ansatz (3.38). In this way we have derived the nonlinear front selection 
of section 4.2 to lowest order in perturbation theory. A similar front selection phenomenon was found 
some years ago in the perturbed S ine -Gordon  equation by McLaughlin and Scott [47]. 

Finally, let us comment  briefly on the nearly real limit Icl[ << 1, where perturbation theory is also 
possible [29-31]. In particular, Malomed and Nepomnyashchy [30] have found a perturbative front 

solution (their "kink")  near  e = e l  = - 3 b ~ / 1 6 6 5 ,  the point where the a = 0 and aNO=aN(qN = 0 )  
solutions have the same "f ree  energies" in the real case, and where v* = 0 .  For 0 < Ic~l << 1, their 
velocity c (in their eq. (2.13)) agrees with v*, eq. (3.40b), (and with Klyachkin's [42] result) to @(c/2) and 
to lowest order in e - el. This calculation then gives e 3 (where v t = 0) to @(c~). For 0 < e 3 - e << 1 they 
were able to construct a stable pulse solution whose width L diverges near e 3. Specifically for the case 

b I = - b  3 = 16bs/3  = 1, c I = c 5 = 0 they find 

L ~ 4 c 2 ( e 3  - e )  - 1  

These results are consistent with our conjectures and are qualitatively similar to those found in the 

Hamiltonian limit in scenario IV.a of fig. 10. 
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6. Numerical  results 

The rules formulated in section 4.2 as well as the results of the perturbation expansion in section 5 
show that there is an intimate connection between the existence and stability of pulse solutions and the 

dynamics of fronts. A representative example for the complex equation (2.10) was already given in ref. 

[8], where with b 1 = - b  3 = b 5 = 1, c 1 = -0 .1 ,  c 3 = 0.2, c 5 = 0.15 the nonlinear front v t exists, and its 
velocity v t goes through zero at e 3 = -0 .11.  Since, as discussed in section 3.3.1, d v t / d e  > 0, the front 

velocity v t is positive for all e > e 3. In agreement with the rules formulated in section 4.2, it was found 

that localized or pulse-like initial conditions develop into two fronts that propagate out in opposite 
directions. For e 3 < e < e t, the asymptotic front speed approached v t given by eq. (3.40) with the 

predicted qtN, while for e > e t the front velocity approached the linear marginal stability velocity v*. 
Moreover, stable pulse solutions were found in the finite interval e 2 < e < e 3. 

Equations (3.44) for the nonlinear front v t show that the latter does not exist in all regions of 

parameter space. However, since e only enters the expression for e7, it is clear that if a nonlinear front 
exists for some e = e', the equations can be solved for all e > e'. As a result, the existence of a nonlinear 
front in a certain region of parameter space is determined mainly by the ci's and bi's #16, not so much by 

e. We therefore plot in fig. 12 the behavior of v t as a function of c 3 for two fixed values of e. In both 

cases, the nonlinear front only exists over a finite range of c 3 values. Moreover, as illustrated in the 
figure, near the left edge of the range of existence, the nonlinear state a t ,  qt N is Benjamin-Feir  unstable. 
This feature of the solution occurs frequently and it can be understood as follows: upon varying one of 

the ci, the edge of the interval of existence is associated either with a point where two solutions of eq. 

(3.39) bifurcate [cf. eq. (3.44)] or where the solution on the upper branch ceases to exist. An example of 

the first mechanism occurs in fig. 12a and 12b on the right edge for c~ = 1.3, and in this case the state 
t t qN,aN at the bifurcation point need not be Benjamin-Feir  unstable. In the other case, however, it is 

clear from eq. (3.39b) that at the point where the solution disappears e - b lq  2 goes through zero, i.e. q~ 
coincides with the outer edge of the band of allowed wavenumbers, and hence is unstable. This happens 
at the left edge of the c 3 interval in fig. 12. 

As the data points in fig. 12a illustrate, in the case e = -0 .03  localized initial conditions indeed evolve 
into fronts propagating with the nonlinear velocity v t, in the c3-parameter range where v t > 0 and where 

the state a t ,  qt N is linearly stable. Moreover, outside the range of existence of nonlinear fronts, we 

observe stable v = 0 pulse solutions, as indicated by the crosses. As fig. 12b illustrates, for e = 0.03 > 0 
there are of course no stable pulse solutions, and one obtains fronts propagating with v t or v*, 
whichever is greatest, in agreement with our conjectures. 

The open symbols in fig. 12 show that slightly beyond the point c~3 BF) where the state t t aN, qN becomes 
Benjamin-Feir  unstable, fronts still propagate with an average velocity close to v t. The behavior of the 
front velocity as a function of time for e = 0.03, (with c a = 0.1 and c 3 = 0.05) is shown in fig. 13. In these 

examples, the velocity is measured at the point where the amplitude a = 0.02, and the velocity in these 
two cases is seen to be remarkably periodic; this was somewhat unexpected, since the Benjamin-Feir  
unstable state generated by the front eventually does lead to an irregular pattern. Presumably, the 

(nearly) periodic behavior of the front velocity is associated with the fact that at these parameter values 
the nonlinear state is only weakly unstable. By contrast, in fig. 14 we show a snapshot of a front for 

#16Note that even if the equations can be solved for all e > e', this does not imply IKtl > Ir* I, so the range over which the 
nonlinear front is selected will depend on e. 
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F i g .  12. Front velocity vs. parameter c a of the complex Ginzburg-Landau equation (2.10), for f i xed  c I = 1, c s = - 0 . 8 ,  and 
( a )  e = - 0 . 0 3 ,  (b )  e = + 0 . 0 3 .  The velocity v 1" obtained from the ansatz (3.38) is shown by the solid line, and the linear marginal 

* * p r o d u c e d  by  eq .  (3 .38)  is stability velocity v* is given by the dot-dashed line. For c 3 < c  (BF) the nonlinear state aN, q N 3 
Benjamin-Feir unstable. The symbols represent numerical solutions of eq.  (2.10) .  Solid circles and triangles correspond to fronts 
with constant velocity, open circles are the average velocity of fronts with time-dependent velocity, and crosses indicate that pulses 
were formed. These results confirm the conjectures made in section 4. 

different parameter values, leading to a strongly unstable state, and in this case the measured front 
velocity shown in fig. 14b is much more irregular. 

The velocity as a function of time near the point where the front velocity crosses over from c t to v* in 
the case e = 0.03 is shown in fig. 15 for the parameter values of fig. 12b and c 3 = 1.3 and 1.4. In these two 
cases, v* > u t. Remarkably, however, we find that the front velocity initially oscillates around v t (these 
oscillations are not associated with an instability behind the front, since the qt N, atN state at these 
parameter values is still linearly stable), but finally does approach v*. The transient behavior is longer for 
the run in which c 3 is closer to the crossover value. In passing, we note that the long-time front velocity 
appears to approach v* from above  in fig. 15, in disagreement with the asymptotic behavior predicted by 
van Saarloos [11] and by Powell et al. [43], and observed in the nonlinear diffusion equation. 

We now illustrate the fact that in regions of parameter space where there is no nonlinear front with 
u t > 0, the long-time dynamics depends sensitively on the initial conditions. Figure 16 shows a calculation 
for parameter values corresponding to the first quadrant of the (c 3, c 5) plane of fig. 8, which are far from 
those where a nonlinear front exists, and for which all uniform amplitude states are Benjamin-Feir 
unstable. As fig. 16a illustrates, a rather extended initial condition l eads  to a transient behavior 
reminiscent of a two-pulse solution. Eventually, however, it approaches a stable single pulse solution. In 
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F i g .  13. Front velocity measured at the point where a = 0 .02  

for eq .  (2 .10)  w i t h  e = - 0 . 0 3 ,  b 1 = 1, b 3 = - 1, b 5 = 1, c 1 = 1, 

c 5 = - 0 . 8  a n d  c 3 = 0 . 1  (solid line) and c3=0 .05  (dashed 
line). As shown in fig. 12a, at these values of c 3, v* > 0, but 
the state generated by the front is Benjamin-Feir unstable. 
The figure shows that the front velocity becomes time 
dependent, but the average velocity is relatively close to u t.  
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c 5 = -  1.25. (a) The profile a(x) for t = 152; (b) the front 
velocity measured at a = 0.02 as a function of time. 
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Fig. 15. P lo t  of  the  front  veloci ty  as a funct ion  of  t ime  for eq. 

(2.10) wi th  e = 0 . 0 3 ,  b I = - b  3 = b  5 = 1, c 1 = 1, c 5 = - 0 . 8  and  
c 3 = 1.3 (sol id  line), c 3 = 1.4 (da shed  line). As  fig. 12b shows, 
at  these  p a r a m e t e r  values ,  v* > v*. I t  is seen  tha t  the  front  
veloci ty  does  i ndeed  app roach  v * =  0.55, bu t  only  a f te r  a 

re la t ive ly  long t rans ien t .  

fig. 16b, however, we show that starting with an even wider initial condition, the system does approach a 
stable bound state of two pulses at long times. 

Deissler [48] has presented examples where smooth localized initial condition lead to chaotic dynamics 
in a localized region ("slugs"). Figure 17 shows that this behavior can coexist with stable pulse behavior 
for parameter  values close to those of Deissler, at which all uniform amplitude states are strongly 
chaotic. (The pulse-like solution shown in fig. 17b at time 200 still has not fully relaxed, but we have 
checked that a stable pulse solution is approached eventually.) 

We would expect that for arbitrary parameter  values, chaotic "slugs" either shrink or spread. If they 
shrink, it means that these chaotic states are only transients, as they will evolve into either an A = 0 state 
or into (multiple) regular pulse solutions. If on the other hand they spread, they will eventually fill the 
whole system. We have performed a few exploratory runs that confirm this picture. In fig. 18 we show 
one example of a slug that dies away completely, as well as one obtained from a different initial 
condition, that settles into a stable pulse, for the same parameters as in fig. 17, except that e was 
decreased to e = -0 .02 .  In these plots, we have used the quantity d r  = fdx IA ]2 introduced in (3.1) to 
measure the size of the "slugs". In fig. 19, we show the same quantity at the larger value e = -0 .005  for 
the same initial conditions but with two different system sizes, L = 300 and L = 600. We used periodic 
boundary conditions and a pseudospectral code with 1024 and 2048 modes, respectively. It is seen that in 
each case, the chaotic regions spread till they fill the whole system, consistent with the fact that the 
long-time average value roughly doubles when the system size is doubled. 

The above numerical results show evidence that stable pulses can coexist with spreading chaotic fronts. 
Although these findings do not contradict our rules and conjectures regarding the competition between 
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Fig. 16. Illustration of the dependence on initial conditions 
for eq. (2.10) with e =  -0.03, b I = - b 3 = b 5  = 1, c I = 1.4, 
c 3 = 0.33, c 5 = 0.36. For these parameter values, all uniform 
amplitude states are Benjamin-Feir unstable, and there is no 
nonlinear front (keeping all other parameters fixed, there is a 
nonlinear front for - 1.57 < c 3 < 0.15). (a) The initial condi- 
tion 

A = ¼ exp(iqx) [1 + tanh(¼(x - - X l ) ) ] [ 1  -- tanh(¼(x - x 2 ) ) ]  

with q=0.15,  x 1 = 60, x2=90,  goes through a transient 
solution reminiscent of a two-pulse state, but eventually 
evolves into a single pulse solution. (b) An initial condition of 
the same form with x I = 60, x 2 = 120 evolves into a two-pulse 
state. Similar behavior has been observed for c] = 0.5, c 3 = 0.5, 
c 5 = 0.5. 
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Fig. 17. Illustration of the dependence of the final state on 
initial conditions. For these runs b l = - b 3 = b s = l ,  e =  
-0.01, c I = -2.2,  c3= -0.5,  c 5 = - 2  in eq. (2.10). These 
values arc close to those of Deissler (fig. 8, ref. [48a]), 
corresponding to e = -0 .0125 ,  c t = -2 .5  and all other pa- 
rameters the same. (a) The initial condition cosh- l [½(x-  
150)]exp(iqx) with q = 0.15 converges to a single pulse. (b) 
The initial condition exp[iqx - ((x - 150)/Ax) 2 ] with q = 0.15 
and Ax = 30 leads to chaotic behavior similar to that seen by 
Deissler. 

p u l s e s  a n d  f r o n t s ,  t h e  s p r e a d i n g  o f  t h e  c h a o t i c  f r o n t s  c a n n o t  b e  s t u d i e d  w i t h  t h e  m e t h o d s  d e v e l o p e d  in 

t h i s  p a p e r .  

I n  s e c t i o n  4.2, w e  s h o w e d  t h a t  fo r  e > 0 b u t  sma l l ,  t h e r e  a r e  l a r g e  r e g i o n s  o f  p a r a m e t e r  s p a c e  w h e r e  

t h e  l i n e a r  m a r g i n a l  s t ab i l i t y  f r o n t s  c a n n o t  b e  u n i f o r m l y  t r a n s l a t i n g  in  t h e  q u i n t i c  e q u a t i o n  (2.10) .  T h e  

r u n s  s h o w n  in  figs. 1 7 - 1 9  w e r e  c a r r i e d  o u t  in  r e g i o n s  o f  p a r a m e t e r  s p a c e  w h e r e  all  n o n l i n e a r  a m p l i t u d e  

s t a t e s  a N a r e  s t r o n g l y  B e n j a m i n - F e i r  u n s t a b l e ,  a n d  t h e y  t h e r e f o r e  l e a d  to  c h a o t i c  b e h a v i o r .  F o r  c 1 > 0, 

c 3 < 0, c 5 < 0, h o w e v e r ,  (i .e.  in  t h e  t h i r d  q u a d r a n t  o f  t h e  (c  3, c 5) p l a n e  o f  fig. 8) m o s t  n o n l i n e a r  s t a t e s  a r e  

B e n j a m i n - F e i r  s t a b l e .  T o  e x p l o r e  t h e  b e h a v i o r  o f  n o n u n i f o r m l y  t r a n s l a t i n g  l i n e a r  f r o n t s  in  t h i s  r e g i m e  
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Fig. 18. Examples of chaotic transients that (a) die away 
(A --+0 for all x)  or (b) evolve into a stable pulse solution. In 
these plots, instantaneous values of X = f dx IAI 2 are shown 
for times t = 5, 10,. . . ,  and the runs were made with the same 
parameter values as in fig. 17, except that e = -0.02.  The 
initial conditions were in both cases a Gauss°an, as in fig. 17a, 

corresponding to ./Y(t = 0 ) =  (½~r) 1/2 Ax. (a) q = 0.15, Ax = 
20 and ./Y(t = 0) = 25.07; (b) q = 0.15, Ax = 15 and .d/(t = 0) 
= 18.8. Note that the initial condition with the smaller value 
of X leads to a stable pulse of size f f  = 2.8. 
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Fig. 19. Instantaneous values of .~' = / d x  IAI 2 as a function 
of time for e = - 0.005 but otherwise the same parameters as 
in fig. 18. We used a pseudospectral code with 1024 modes 
and system size L = 300 in (a), and 2048 modes and L = 600 
in (b). The initial conditions were a Gauss°an as in fig. 17 with 
q = 0.15 and Ax = 20. This corresponds to .,¢'(t = 0) = 25.07. 
In part (a) the slug fills the whole system around a time of 
order 800. For t > 800, Jr" fluctuates around an average value 
of about 50. For part (b) with a system that is twice as long, 
the slug continues to spread. We have checked that in this 
case, the average of ./Y saturates at a value of about 100 for 
t > 1600. 

we have carried out some runs for b t = - b  3 = b 5 = c t = - c  3 = - c  5 -- 1 and e = 0.25. It  is easy to check 
that for these paramete r  values eqs. (4.9) have no solution. In fig. 20, we show snapshots of the resulting 
front at times t = 100, 150 and 200. It  is seen that the front profiles consist of  six regions: ( i )  a leading 
edge whose velocity approaches  the marginal stability value v* = v~  from below, roughly in agreement  
with the predictions of  ref. [11]; (ii) a strongly nonlinear region where "space-t ime defects" (i.e. 
instantaneous zeroes of  a) are created, at a rate of about 0.7 per  unit of time; (iii) a region where both a 
and q are slowly varying functions of x, and where defects occur; (iv) a front propagating to the right 
into the slowly modulated state with speed v = 0.53; (v) a well-defined nonlinear state aN; and finally 
(vi) a region associated with our boundary condition at x --- 0. Note that since the front (iv) propagates  
with a speed less than v*, both regions (iii) and (v) are expanding. Because the generation of defects 
creates phase jumps we see no way of predicting the propert ies  of region (v) from the linear marginal 
stability values that characterize region (i). Nevertheless, runs carried out with a number  of  different 
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Fig. 20. Snapshots  of  a propagating front for e = 0.25 and 
b] = - b 3 = b  5 = c  1 = - c  3 = - c  5 = 1 at times (a)  t = 100, (b) 
t = 150 and  (c) t = 200. The steep local minima in the profile 

result from space-time defects that have just been generated 
or that are about to occur. For t = 200 the  local wavevector 
q(x) is also shown in (d). The profile contains a front 
propagating with the predicted linear marginal stability veloc-  

ity v* = 1.4 in the leading e d g e  (x  >_ 300), as well as a front 
propagating with velocity v = 0.53 in the nonlinear regime. 
W e  have no way of predicting this latter velocity theoretically. 
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Fig. 21. Plot  of the minimum amplitude ami n as a function of  

time in numerical integration of  eq. (2.10) in the cubic case 
with b 5 = c 5 = 0, e = b 1 = b 3 = 1, c l = 0.3 and  c 3 = - 0 . 4 .  The 
source solution eq. (3.57) of  Nozaki and Bekki [25b] for which 
ami n = 0 was taken as initial condition. The exponential 
increase of ami n shows that this solution is linearly unstable. 
T h e  simulations were performed with a pseudospectral code 

with 1024 modes, and the length L of  the system was 
L =  160. 

initial conditions (Gaussians with different widths) all lead to the same state in region (v). Hence it 
appears that the state in this region is uniquely selected. 

We may point out that Powell et al. [43] attribute special dynamical significance to front profiles with 
zeroes that persist in time. In all our simulations, however, we observe front profiles that either have no 
zeroes, or that have zeroes associated with space-time defects, i.e. only at isolated points in time. 

The stability of the source solutions (3.58) and (3.60) has very recently been investigated by Sakaguchi 
[49]. An isolated v = 0 source solution given by eq. (3.58) can be unstable in at least two ways: (i) The 
wave number qN given by eq. (3.58d) can be Benjamin-Feir unstable. However, since these solutions are 
sources, small perturbations that grow due to the Benjamin-Feir instability propagate away from the 
core where a --* 0, and thus do not necessarily destroy the solution in this region. (ii) The core region 
itself can be unstable. One way in which this can happen, observed by Sakaguchi [49], is that the 
stationary source moves away, i.e. it becomes a propagating source solution (3.60). Another mechanism 
that we have found numerically, is that the minimum value ami, ( a m i n  ---- 0 for the solution (3.58)) remains 
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essentially stationary, but grows exponentially in time (see ref. [50]). In fig. 21, we illustrate this for the 

supercritical case b 1 = b 3 = 1, c I = 0 . 4 ,  c 3 = - 0 . 3 ,  b 5 = c 5 = 0.  W e  see that ami n grows exponentially till it 
reaches a value of order unity, after which the solution relaxes to a uniform amplitude state a = a N, 
q = qN, K = 0. (Note that since the Nozaki-Bekki  source (3.58) has a wavevector qN for x ~ ~ and a 
wavevector --qN for x ---> - -~,  an additional structure has to be included in the initial conditions in order 
that the solution satisfies periodic boundary conditions. In our runs this was done by an additional sink 

1 structure a distance x = ~L --- 80 away from the source. This sink connects the qN and --qN states and 
gives rise to a corresponding phase shift. We have checked that the presence of the sink does not perturb 
the source during the length of the simulations.) According to Sakaguchi [49a] there is actually a small 

1 region of paramete r  space for c l c  3 < 0 [near the line cl = ~(c 3 - 1)] where the v = 0 sources are stable. 
Clearly, the phase diagram of both the stationary and the moving source solutions is extremely rich, and 
much further work is needed #17. 

Moreover,  since the solution (3.58) is the extension of the fundamental  dark soliton to the case 
e, bl, b 3 > 0, it would be interesting to explore #~7 the stability of stationary as well as moving sources 

perturbatively for e, b 1, b 3 << 1. 
We now wish to test the assertion, made in section 4, that the nonlinear front is selected only if 

v t > v* and  IK*I > IK* I. As a first example we consider the front solution (3.47) of  Nozaki and Bekki [25b], 
which exists for e > 0 in the case of a supercritical bifurcation. This front always turns out to have 
IK*[ <1~*1, but v t is sometimes greater  and sometimes less than v*. According to our simulations, 
however, in all cases the asymptotic front velocity was v*, in agreement  with condition (4.14). Another  
example concerns the behavior of v t for e >> e t. It turns out that although for e > e t we have v* < v* 

(see fig. 7a), at very large values of e there can be another  crossing when v* > v*, in which case one 
always has I,~*1 < IK*I (a similar behavior occurs in the real case for all e > et; see ref. [11]). We have 
carried out a simulation of eq. (2.10) in the subcritical case with b t = - b  3 = b 5 = 1, c I = -0 .1 ,  c 3 --0.2, 
c 5 = 0.15, e = 100, for which Ix~l = 9.95, IK*LI -- 5.98, v* = 20.40 and v t = 22.61, and found once again it is 
v* and not v t that is selected, in agreement  with the criterion (4.14). 

7. Conclusion 

In this paper  we have a t tempted a comprehensive analysis of coherent  structure solutions of  the 
one-dimensional complex Ginzburg-Landau  equation, and a partial analysis for generalizations of that 
equation. There  is an enormous literature covering such solutions, which we have tried to summarize, 
clarify and extend. Our  primary result concerns the selection problem posed by the multiplicity of  
available solutions; we have formulated it as a set of  conjectures regarding f ron t /pu l se  competition, 
which reduce to previously known results in special cases. We have tested and verified the conjectures by 
numerical calculations and analytical perturbat ion theory for the complex Ginzburg-Landau  equation. 

Our  primary focus has been on the behavior near  subcritical bifurcations in order to elucidate the 
relation between front propagat ion and the existence of pulse solutions. In ref. [11], one of us 
conjectured that if the bifurcation is subcritical, front propagation into unstable states for 0 < e << 1 will 
be governed by nonlinear fronts, while near  a supercritical bifurcation, front propagation is governed by 
linear marginal stability. This conclusion was based on the analysis of real equations of the form (2.66). 
Our  present  work on the complex Ginzburg-Landau  equation requires us to rephrase these conjectures 
in the following way: In the case b 3 > 0, corresponding to a supercritical bifurcation, we have found no 

#17The s tabi l i ty  of  source  and  s ink so lu t ions  has  recent ly  been  s tud ied  in the  subcr i t i ca l  case [51]. 
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nonlinear fronts (3.38) that satisfy (4.14). Thus, according to our rules and the result (4.11), the selected 
front above a supercritical bifurcation will indeed be a uniformly translating solution propagating with 
the linear marginal stability velocity v*, as envisaged in ref. [11]. Now consider the case of a subcritical 
bifurcation, b 3 < 0. If a nonlinear front exists with v*(e---0) > 0, our conjectures imply that front 
propagation near e = 0 will indeed be governed by this nonlinear front, and we will have e 3 < 0. The new 
features not anticipated in ref. [11] are: (a) the nonlinear front does not necessarily exist. In this case the 
front dynamics (if fronts are created!) is still an open question. (b) Even if the nonlinear front exists but 
if it has v*(e = 0 ) <  0, then e3 = 0 and we do not obtain fronts propagating into the A = 0 state. For 
e > 0, fronts do propagate, though not with the velocity v* < 0; instead they have the linear marginal 
stability velocity v*. Note that even though these fronts give rise to a finite amplitude state a~ (see fig. 
7), they are extremely wide for small e since according to eq. (4.8b) IKL[ ~ V~-. Whether  the linear fronts 
are uniformly translating or not depends on the parameters {e, c i} in a known way, as illustrated in fig. 8. 

The distinction between subcritical and supercritical bifurcations is made on the basis of the 
bifurcation behavior of the uniform amplitude solution aNo = aN(q N = 0). Whether  or not stable pulses 
exist depends directly on whether this bifurcation is subcritical or supercritical. For front propagation, on 
the other hand, our results show that in the parameter  ranges where there is no nonlinear front or where 
v*(e = 0 ) <  0, the dynamical distinction between supercritical and subcritical bifurcations becomes less 
sharp. We will return to this question in section 7.2. 

7.1. Comparison with experiment 

Coherent structures have been observed experimentally in a number of systems with oscillatory 
dynamics, e.g. binary-fluid convection, [2] Taylor-Couet te  flow [4, 5], parametric waves in fluids [3], plane 
Poiseuille flow [20], optical waveguides [6] and oscillatory chemical reactions [7]. Amplitude equations in 
the form of Ginzburg-Landau models can be derived for most of these systems by expanding the basic 
equations near the threshold for the oscillatory instability. It is well known, however, that in many cases 
of experimental interest the states of the system lie outside the domain of applicability of the amplitude 
expansion, either because the bifurcation is subcritical with stabilization far from the linear instability, or 
because of the existence of "parasitic" small parameters that invalidate the expansion. Examples of the 
latter are the ratio of the mass diffusion and thermal diffusion coefficients called the Lewis number .2 a in 
binary-fluid convection [52] (for that case both of the above mechanisms are operative!), or the ratio 
r l / r  2 of the characteristic time scales of activator and inhibitor in oscillatory chemical reactions [7]. Even 
in cases where one might hope to have a controlled amplitude expansion, precise and controlled 
experiments on complicated t ime-dependent states are difficult to carry out, so there is not at present a 
body of relevant experimental data which one could hope to explain quantitatively by our theoretical 

model. 
Under  these circumstances we may ask whether we can understand the qualitative or semiquantitative 

aspects of the experiments. Apart  from the very existence of pulse-like states in many of these systems, 
the most detailed and varied observations have been made in binary-fluid convection where pulses, 
fronts, sources and sinks have been reported [2]. An important aspect of this system, of course, is that it 
has a basic pattern with nonzero wavevector q0 (type I o in the classification of Cross and Hohenberg [1]), 
so that the simplest amplitude equation has the coupled form [53] 

" 2 atA R - s o o x A  R eA R + ( l  + lcl)oxA R - ( b  3 - i c 3 ) l h R l z A R + ( b  E+ic2)[ALI2AR, (7.1a) 

OtAL + SoOxA L -- e h  L + (1 + icl)Ox2ZL -- (b 3 - iC3)IAL]2AL + (b 2 + ic2)IARI2AL, (7.1b) 
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for right- and left-traveling waves. If one assumes that in the absence of wall reflection it is sufficient to 
consider a single direction of propagation (i.e. A L = 0), one is still left with an equation with the 
convective term SoaxA. If this term is alone, as in eq. (7.1a) with A L = 0, we can eliminate it by a 
Galilean transformation, but if A L ~ 0, or if the nonlinear term S2ax(IAI2a) is added to eq. (7.1) (as it 
should in general), then we can expect the convective nature of the linear instability [53, 54] to have 
important physical consequences. Moreover, even in the absence of the nonlinear s 2 term the SoOxA term 
cannot be transformed away in a finite nonperiodic system. 

With these caveats, let us ask how much of the behavior of pulses and fronts in one-dimensional 
binary-fluid convection experiments we can account for qualitatively by our model. The experimental 
detection of stationary pulses is an apparent confirmation of the theory, but of course it contradicts the 
predictions of eq. (2.10), since that equation refers to the frame moving with velocity s o rather than the 
lab frame. Thus according to eq. (2.10) pulses should move with velocity - s  o in the lab frame. To 
account for the observations we invoke first geometrical imperfections which, as demonstrated by 
Kolodner [55], lead to trapping of the pulses near regions where the local velocity vanishes. This 
interpretation implies a nonzero pulse velocity Vp(e) in an ideal system, which one might try to explain 
[44] by appeal to the nonlinear term S2ax(IAI2A) added to eq. (7.1), using the arguments of section 5.2. 
From a qualitative point of view what needs explanation is the fact that for all experiments Vp(e) << Is01, 
whereas the arguments of section 5.2 only say that in general vp(e) ~ - s  o. 

The observation of stable pulses for e > 0 is more problematical [2]. According to our hypotheses these 
should be destabilized by two different mechanisms. First of all by a positive front (either v* or v*) 
which leads to the spreading of the pulse. As the discussion of section 4.2 shows, unless the nonlinear 
dispersion terms nearly balance, we expect stable pulses to exist up to e 3 = 0. For e > 0, v* will then be 
selected. A possible way in which the spreading might be inhibited if indeed v* is selected, arises 
through finite-size effects, since the width of the linear front is large for small e [Ix~l ~ e-1/2 according 
to eq. (4.8b)]. The second mechanism for destabilizing pulses is the linear instability of the A = 0 state 
for e > 0. Here  again in a finite system, the convective nature of that instability might suppress its effects 
since disturbances do not grow large enough in an annulus before they are reabsorbed by the pulse [55], 
This latter explanation, of course, hinges on the fact that pulses move with a velocity different from the 
group velocity s o of linear disturbances, so in order to substantiate it the nonlinear term s2(axlAI2Z) must 
be taken into account. As noted in section 4.4 this term can be included in the analysis of the nonlinear 
fronts, but its effect on pulses can so far only be studied with the perturbative methods of section 5. In 
any event, the observation by Niemela et al. [2] that the exact pulse solution (3.51) fits their data, cannot 
at present be regarded as a quantitative confirmation of the theory. 

The observation of stationary front pairs (Kolodner et al., Bensimon et al. [2]) has similar problems. If 
we assume that they are trapped by imperfections (contrary to the original interpretation given by the 
experimenters), we still need to understand how a front pair with equal and opposite qN can be selected 
at the same value of e (no source or sink was observed between the fronts). Here again, it seems to us 
likely that a qualitative understanding of the observations will have to take into account the nonlinear 
convective term [44] more explicitly. 

7.2. Open theoretical problems 

The most straightforward question we have not answered concerns the detailed behavior of the 
perturbation equations (5.20) for pulses near the generalized derivative Schr6dinger limit. Since we have 
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not explicitly evaluated the nonlinear front solution (3.38) for that model, the detailed behavior for e > e 3 
remains open, as does the bifurcation diagram for pulses as a function of e, analogous to fig. 10. In 
particular, it would be interesting to find a case where the perturbation equations (5.20) lead to a limit 
cycle, and to simulate the full PDE near that limit. Would the system show oscillatory pulses, or is this an 
indication of some other behavior? An analogous situation was found for reaction-diffusion systems in 
ref, [46]. 

We also note that in the quintic-cubic Schr6dinger equation (2.12) there are no pulse solutions in the 
third quadrant c 3 < 0, c 5 < 0 (with c 1 > 0) of figs. 4 and 9. Moreover, as fig. 8 illustrates, in the subcritical 
case b 3 < 0 nonlinear front solutions can only be found in the second and fourth quadrants of the (c 3, c 5) 
plane. Since there are no exact pulse solutions of the form (3.51) either [cf. fig. 5], we have at present no 
analytical information on the dynamics in this parameter  range. Furthermore,  we have found that even 
for b I = - b  3 = b 5 = 1 the range of existence of a nonlinear front with v t > 0 is concentrated near the 
plane c a = - c  5 in the {c~,c3, c 5} parameter  space. As discussed above, a partial cancellation of the 
nonlinear dispersion terms tends to favor nonlinear front propagation. 

As we have pointed out in section 6, the behavior of both the stationary and the moving source 
solutions of Bekki and Nozaki [26] appears to be extremely rich. These solutions will have to be studied 
in more detail, both analytically, e.g. by perturbing around the dark soliton solutions, and numerically. 
Also, the very existence of a family of source solutions and its relation to symmetry properties deserve 
further study. 

Another  open problem concerns the asymptotic approach to the front velocity v* in the linear 
marginal stability regime. According to the predictions of van Saarloos [11, 14] and Powell et al. [43], the 
front velocity should approach v* from below. Numerical simulations for real equations of the form 
(2.66) are consistent with these results. Our simulations of the complex Ginzburg-Landau equation 
shown in fig. 15, however, indicate that here v* is approached from above. A more detailed investigation 
of the asymptotics is clearly necessary, but we stress that all results on this and other models known to us 
are consistent with the conjecture that the asymptotic front speed is always larger than or equal to v*. 
Such a result is also suggested by the intuitive arguments of ref. [11], though a more rigorous derivation is 
certainly desirable. 

Since the selection problem for the complex Ginzburg-Landau model (2.10) is still only partially 
elucidated in parameter  regions where there is no selected front, we have no general guidelines to help 
us understand whether a given initial condition will lead to a localized or extended state, and whether 
the solution will be regular or chaotic in those parameter  regions. Generalizations to higher-order 
equations such as the Swift-Hohenberg model or more complicated models without a Lyapunov function 
would also be desirable, but from the work of Collet and Eckmann [56], Eckmann and Procaccia [57], and 
Aranson et al. [33] we know that the behavior can be quite rich indeed, and it is not clear whether the 
concepts we have developed will be useful in pursuing these questions. Finally, the corresponding 
problems in two and higher spatial dimensions [58] pose even greater challenges for the years ahead. 
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Appendix. Signs of the real parts of the roots of a cubic equation 

In the study of  stability propert ies,  one  of ten needs  to know the signs o f  the real parts  o f  the roots of  a 

cubic equation.  If  the cubic equat ion is writ ten as 

A 3+t~A 2+/3A + 3 " = 0 ,  (A.1)  

the signs of  the real parts  of  the roots  are given by 

For  3" > 0 
if a > 0  and t r / 3 - y > 0 : - - - ,  (A.2a)  

otherwise:  + + - .  (A.2b)  

For  3' < 0 
if a < 0  and a / 3 - 3 ' < 0 :  + + + ,  (A.2c)  

otherwise:  + - - (A.2d)  

These  formulas  can, o f  course,  be obta ined f rom the well-known explicit expressions for  the roots of  a 

cubic equat ion [59]. More  direct proofs  of  (A.2a) (and hence  also (A.2c)) are, e.g. given by Pontr jagin [60] 
and Suter  [61], and the o ther  two results (A.2b) and (A.2d) then follow immediately  f rom the fact that  

the produc t  of  the three roots of  (A.1) is equal to - 3 ' .  

The  above formulas  can also be obta ined  directly by not ing that  (A.1) is equivalent to 

(A + a ) ( A  2 + bA + c)  = 0, (A.3) 

with 

t~ = a + b ,  /3 = ab  + c ,  y = ac  . (A.4)  

Consider  e.g. the case y > 0, so that  we can ei ther  have a < 0, c < 0 or  a > 0, c > 0. For  c < 0, the 
quadrat ic  form in (A.3) always has one  root  with a positive real par t  and one with a negative real part.  

Thus  the s tructure of  the case a < 0, c < 0  is always ( +  + - ) .  W h e n  a > 0, c > 0, we see that  for 

f l  = ab  + c < 0 we necessarily have b < 0, and hence  a ( +  + -  ) s tructure,  while for /3 > 0 we have 

s g n ( a / 3 - y ) = s g n [ b ( a 2 + / 3 ) ] = s g n b ,  and so a ( - - - )  s t ructure for a / 3 - y > 0  and a ( + + - )  
s t ructure  for a/3  - y < 0. Thus,  for  y > 0, the s tructure is always + + - except when  both  /3 > 0 and 
a/3  - 3' > 0. This is equivalent  to the condit ion (A.2a, b). 
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