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An important element in the long-time dynamics of pattern forming systems is a class of solutions we will call “coherent
structures”. These are states that are either themselves localized, or that consist of domains of regular patterns connected by
localized defects or interfaces. This paper summarizes and extends recent work on such coherent structures in the
one-dimensional complex Ginzburg-Landau equation and its generalizations, for which rather complete information can be
obtained on the existence and competition of fronts, pulses, sources and sinks. For the special subclass of uniformly
translating structures, the solutions are derived from a set of ordinary differential equations that can be interpreted as a flow
in a three-dimensional phase space. Fixed points of the flow correspond to the two basic building blocks of coherent
structures, uniform amplitude states and evanescent waves whose amplitude decreases smoothly to zero. A study of the
stability of the fixed points under the flow leads to results on the existence and multiplicity of the different coherent
structures. The dynamical analysis of the original partial differential equation focusses on the competition between pulses
and fronts, and is expressed in terms of a set of conjectures for front propagation that generalize the “marginal stability”
and “pinch-point” approaches of earlier authors. These rules, together with an exact front solution whose dynamics plays an
important role in the selection of patterns, yield an analytic expression for the upper limit of the range of existence of pulse
solutions, as well as a determination of the regions of parameter space where uniformly translating front solutions can exist.
Extensive numerical simulations show consistency with these rules and conjectures for the existence of fronts and pulses. In
the parameter ranges where no uniformly translating fronts can exist, examples are shown of irregularly spreading fronts
that generate strongly chaotic regions, as well as nonuniformly translating fronts that lead to uniform amplitude states.
Recent perturbative treatments based on expansions about the nonlinear Schrédinger equation are generalized to
perturbations of the cubic-quintic and derivative Schrédinger equations, for which both pulses and fronts exist in the
unperturbed system. Comparison of the results with the exact solutions shows that the perturbation theory only yields a
subset of the relevant solutions. Nevertheless, those that are obtained are found to be consistent with the general
conjectures, and in particular they provide an analytic demonstration of front/pulse competition. While the discussion of
the competition between fronts and pulses focusses on the complex Ginzburg-Landau equation with quintic terms and a
subcritical bifurcation, a number of results are also presented for the cubic equation. In particular, the existence of a family
of moving source solutions derived by Bekki and Nozaki for this equation contradicts the naive counting arguments. We
attribute this contradiction to a hidden symmetry of the solution but have not been able to show explicitly how this symmetry
affects the phase space orbits.

*Present address.

0167-2789 /92 /$05.00 © 1992 - Elsevier Science Publishers B.V. All rights reserved



304 W. van Saarloos, P.C. Hohenberg / Fronts, pulses, sources and sinks in CGL equations

3.2.1. General integrability conditions 325
3.2.2. Solitons in the nonlinear Schrédinger equation 326
Contents 3.2.3. Pulses and fronts in the quintic-cubic and
generalized derivative Schrodinger equations 327
1. Introduction 304 3.2.3.1. Generalized derivative Schrodinger equation 327
2. The generalized complex Ginzburg—-Landau equations 3.2.3.2. The quintic-cubic equation 328
and the three-mode dynamical system 310 3.3. Exact solutions of the complex Ginzburg-
2.1 Definitions of the PDE’s and ODE’s 310 Landau equation ‘ 330
2.1.1. General case 310 3.3.1. Nonlinear front 330
2.1.2. The complex Ginzburg-Landau equation 311 3.3.2. Exact pulse solution 333
2.1.3. Other special cases 31 3.3.3. Sources and sinks 335
2.2. Fixed points and their stability for the complex 4. Marginal stability conjectures and selection criteria 340
Ginzburg-Landau equation 312 4.1. Linear marginal stability 340
2.2.1. Fixed points 312 4.2. Nonlinear sefection 342
2.2.2. Stability in the PDE dynamics 314 4.3. Effect of Benjamin-Feir instability 346
2.2.3, Stability in the ODE dynamics 316 4.4. Implications of the terms f, and f; ineq. (2.1) 346
2.3. Coherent structures 318 5. Perturbation expansions 347
2.3.1. Definitions of fronts, pulses, sources and sinks 318 5.1. Perturbing about the quintic derivative Schrodinger
2.3.2. Counting arguments for the existence of limit 347
coherent structures 319 5.2. Pulses and fronts in the perturbed quintic-
2.3.2.1. Fronts 319 cubic Schrodinger equation 351
2.3.2.2. Pulses 320 6. Numerical results 355
2.3.2.3. Sources and sinks 320 7. Conclusion 361
2.3.2.4. Summary of counting arguments 322 7.1. Comparison with experiment 362
2.3.3. The nonlinear diffusion equation 322 7.2. Open theoretical problems 363
3. Analytic results 324 Acknowledgements 364
3.1. Symmetries and conservation laws 324 Appendix. Signs of the real parts of the roots of a cubic
3.1.1. Conservation laws 324 equation 365
3.1.2. Continuous symmetries 325 References 365
3.2. Integrability of the ODE’s 325

1. Introduction

" A number of nonequilibrium pattern forming systems are known to display solutions we can call
“coherent structures”. These states are either themselves localized in space or they consist of a spatially
extended regular pattern with a localized defect [1]. Examples are fronts, pulses, sources or sinks in
one-dimensional systems, and targets, spirals, dislocations or grain boundaries in two dimensions. Such
structures have been identified in experiments on thermal convection in pure fluids and binary mixtures
[1, 2], on parametric surface waves in fluids [3], on Taylor—Couette flow between rotating cylinders [4, 5],
in nonlinear light-wave propagation in fibers [6], and in oscillatory chemical reactions [7]. They play an
important role in the dynamics of nonequilibrium pattern forming systems, for example in the selection
of a final steady pattern at long times, and in the time evolution of periodic, quasiperiodic or disordered
(chaotic) patterns.

The simplest set of models that account for this type of behavior, at least semi-quantitatively, are the
so-called Ginzburg-Landau models, of which a prototype is the complex Ginzburg~Landau equation

yA=eA+(1+ic)82A4+ (1+ic;)|A1PA ~ (1 —ics)l A4, (1.1)

where A(x,t) is a complex function and &, c,, ¢; and ¢ are real coefficients. (Most, but not all, of our

discussion will concern the case illustrated in eq. (1.1), where the bifurcation at € = 0 is subcritical.)
The present study will confine itself to spatially infinite systems in one dimension and will focus

primarily on temporally periodic or quasiperiodic solutions, with only limited attention given to chaotic
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states that arise for many regions of the parameter space (g, c;). Our primary interest is to describe

coherent structures, i.e solutions or features of solutions that are localized in space. These features can

be stationary, uniformly translating (with constant velocity v) or time dependent, with a velocity v(z) that

is either periodic or chaotic in time. A brief account of this work was published earlier [8].

The main physical question we wish to answer can be phrased as follows: Suppose we start with the
uniform A = 0 state at time ¢ =0, and introduce a small localized perturbation at x = 0. What will the
system look like at long times? The most likely outcomes are:

(i) The system decays back to 4 =0,

(i) A localized pulse, or a set of pulses are formed. If so, is the velocity zero, constant, periodic or
chaotic?

(iii) A stable finite-amplitude state can grow in the system by the creation and propagation of a front
that invades the A = 0 state. For this case, we may ask what the wavevector and frequency of the
finite amplitude state will be, as well as the velocity of the moving front.

(iv) The system can become chaotic everywhere.

For any of the above examples we may ask how sensitive the outcome will be to the particular initial

disturbance.

The present paper contributes to answering the above set of questions for the complex
Ginzburg-Landau model, eq. (1.1) and extensions thereof, by formulating a set of conjectures which
generalize the “marginal stability” [9-11] and “pinch-point” [12-14] hypotheses of earlier authors for
front dynamics, and reduce to these in appropriate special cases. Moreover, we verify our conjectures by
carrying out detailed numerical computations as well as by an analytic perturbation expansion near the
dissipationless limit of eq. (1.1), obtained by letting |c,),|c;,lcs| = ®, where exact front and pulse
solutions are available. In contrast to the expansion about the nonlinear Schrédinger limit cs=0, |esl,
lc,| = « given earlier [15-~18], our unperturbed system has both fronts and pulses, and we can therefore
study the front—pulse competition analytically.

In order to formulate our selection hypotheses we first provide a detailed analysis of uniformly
translating solutions of the partial differential equation (PDE) (1.1). These can be obtained from a set of
three ordinary differential equations (ODE’s) in the variable ¢ = x — vt. Specifically, we set [19-21]

A(x,t) =e " A(x —vt), (1.2a)

A(€) =a(£)ei*®, (1.2b)

and define the variables g(¢) =9,¢, and «(¢)=29,a/a. Insertion of egs. (1.2) into (1.1) leads to the
ODE’s

da=xa, %q=40(a,q,x), ¢k =%(a,q,«), (1.3)

which can be considered as a dynamical system in the pseudo-time ¢ (the functions & and .7 are
calculated below). This system has parameters &, c,, ¢3, €5, U and w, the first 4 of which are fixed by the
starting PDE, and the last two can be varied to find different solutions. Fixed points of eq. (1.3) are
nonlinear wave states of eq. (1.1) with uniform envelope, and heteroclinic orbits of eq. (1.3), joining
different fixed points, are the coherent structures we seek to characterize. The important ones, fronts,
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(a) FRONT (b) PULSE
|A| |Al
x X
(c) SOURCE (d) SINK
1Al | Vg Yy IAl | Vg Yy
‘_—_/t :_/t Fig. 1. Schematic sketch of various coherent structures: (a)
front; (b) pulse; (c) source; (d) sink. The quantity 5,, defined
in eq. (2.50) is the group velocity of the nonlinear state in the

frame moving with the structure.

pulses, sources and sinks are schematically indicated in fig. 1. By studying the stability properties of the
fixed points with the dynamics of eq. (1.3) we can find the multiplicity of solutions of eq. (1.3) of a given
type. In some cases we find a discrete set and in others a one- or two-parameter family, parametrized by
v and/or w. The physically relevant front solutions are a two-parameter family plus a discrete set for
e >0, and a discrete set for £ < 0. Furthermore, there is in general a discrete set of pulses which by
symmetry includes stationary (v = 0) ones, a discrete set of sources, and a one-parameter family of sinks.

It should be noted that in the absence of additional symmetries these counting arguments generally
yield an upper bound for the multiplicity of coherent structures, since they only take into account the
restrictions on the orbits of eq. (1.3) resulting from the stability properties of the fixed points. Further
restrictions may arise from the behavior of the orbits between the fixed points. This is illustrated by
consideration of a special case of eq. (1.1), the nonlinear diffusion equation [22, 23]

du=20u+f(u), (1.4)

where u and f are real functions. In this limit a mechanical analogy can be found, from which exact
results are easily obtained for the multiplicity of fronts and pulses. From a comparison with the counting
arguments we can show that in general*! the latter overestimate the multiplicity of solutions, i.e they
allow for orbits that are not found as actual solutions of the system (1.3).

Besides studying the multiplicity of coherent structures we can also find a number of exact front, pulse,
source and sink solutions of eq. (1.3), some of which have been obtained by previous authors (20, 24-26].
A particularly important one is an exact front solution with velocity v' and spatial decay rate ] which
we call the “nonlinear front”. It can be obtained analytically when it exists, and it turns out to play an
essential role in the selection of patterns.

Apart from the trivial symmetries of space and time translation, parity and multiplication by a constant
phase, we know of no symmetries of the cubic or quintic complex Ginzburg-Landau equation (1.1) with
general parameters. We therefore expect our analysis to yield an upper bound on the multiplicity of
coherent structures. For special parameter values new symmetries do appear, e.g. Galilian or dilatation

#1For the real equation (1.4) there are also finite front solutions that correspond to singular orbits of the dynamical system (1.3)
for which k — +. For these the counting argument may be reformulated in terms of different variables (see section 2.3.3).
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invariance, and these typically lead to continuous families of solutions. Surprisingly, Bekki and Nozaki
[26] have presented a family of exact solutions of the cubic Ginzburg—Landau equation which we show to
be sources, whereas on the basis of the stability of the fixed points of the dynamical system (1.3) only a
discrete set of sources is in general expected. As we will discuss, we conjecture that this discrepancy is
due to the existence of a “hidden symmetry” of the Bekki—Nozaki solution.

Front selection has been discussed in the literature primarily in terms of what has come to be known
as “linear marginal stability” [9-11]. This involves a “linear front” with velocity v* and decay rate «,
which are simply obtained by use of a stationary phase argument [10, 13, 23] from the dispersion relation
of the starting equations linearized about the 4 = 0 state. Our selection conjectures [8] are a generaliza-
tion of previous selection hypotheses [9-13], and reduce to these in cases where the latter are known [27]
to apply. They can be stated as follows: Let us start from an initial localized disturbance embedded in the
A =0 state. Then for & >0, the linear front v*,«} is selected from the family, unless there exists a
nonlinear front with v'>v* and |k}|>|«}| For &£ <0, if a nonlinear front with v’ >0 exists it is
selected. If »* <0, or if no nonlinear front exists, then the results depend more sensitively on initial
conditions. Typically, there is an interval ¢, < e < &5 < 0 in which pulses are selected, with either periodic
or chaotic time dependence depending on the shape of the initial disturbance. For ¢ < ¢, the disturbance
decays back to 4 = 0, and if £; < 0 then the interval £; < & < 0 is the one mentioned above where v’ > 0,
and the nonlinear front is selected. Since ¢, is defined by the relation v™ =0 (unless v* = 0 for some
e > 0, in which case £, = 0), we can find ¢, analytically for given parameters (e, ;) in eq. (1.1). The value
of ¢,, on the other hand, is not in general obtainable analytically.

A caveat for these predictions concerns the stability of the created front. From the wavevector gJ; or
gr; of the wave state left behind the front, we can predict whether this state is stable to modulational
(Benjamin—Feir) [28] instabilities. If it is, we expect the front to be a stable solution, but if not, the front
will be unstable, i.e. its velocity will depend on time. In that case we expect the time-averaged velocity o
to be close to the predicted value, either v* or v*. More generally, for & > 0, all results known to us are
consistent with the conjecture that v* represents a strict lower bound, i.e. T > v* for all cases.

All of the above results and conjectures have been tested by numerical calculations of the PDE (1.1).
As shown in what follows, our calculations provide confirmation of the conjectures, i.e. we have found no
counterexamples. In view of the large parameter space involved in these tests (parameters €,c;, and
arbitrary initial conditions) we cannot say we have definitely confirmed the conjectures, only that we have
found consistency. There may well be parameter ranges and /or initial conditions where the behavior is
different. :

Another way to approach the selection problem is by perturbing about known solutions in special
parameter regimes [15-18, 29-31]. We have chosen to start from a system we call the generalized
derivative Schrodinger equation

8, A =icld +ics| A’ +icsl AU +,[(so+5,1417) 4], (1.5)
and to perturb with a dissipative term on the rhs of eq. (1.5) of the form
b\B=b,(3}A4+|A41°A - Al'4). (1.6)

It turns out that the unperturbed system (1.5) leads to an integrable [21] dynamical system (1.3) whose
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orbits can be calculated analytically. In particular, we find a two-parameter family of pulses indexed by v
and w, whose existence is connected to the Hamiltonian property of the dynamical system (1.3) resulting
from eq. (1.5), which the general case does not possess. We also have a one-parameter family of fronts
indexed by v, having fixed frequency w(v). The dissipative perturbation (1.6) then has the effect of
selecting from the members of the families particular values of v and «. Mathematically the selection is
achieved [15-18, 29-31] by introducing a slow time variable T =b,¢, and finding nonlinear differential
equations for v(T) and «(T), whose fixed-point solutions are the values selected by the perturbation. In
the absence of the s, and s, terms in eq. (1.5), only stationary (v = 0) pulses are selected, as already
noted by Elphick and Meron [17] and by Malomed [16]. However, for s,,s,# 0 the velocity is a
complicated function of all the parameters, which is #(b?), i.e. not small when 0<b; < 1. An
interesting feature of the dynamics of v and e in the slow time variable T is that it has direct relevance
for the PDE, unlike the dynamical system (1.3). Indeed, stability in the slow dynamics is a necessary
condition for the stability of the corresponding pulse in the PDE, though of course it is not sufficient in
view of the restricted class of disturbances considered in the perturbative calculation. Nevertheless, we
obtain expressions for the domain of stability of pulses ¢, < & < &4, and for the domain £, < ¢ where the
nonlinear front is selected. We can compare the values of &, and of the nonlinear velocity v*(¢) with our
general expressions, and we find detailed agreement to lowest order in the perturbation b,.

Elphick and Meron [17] have previously carried out a similar perturbation theory, expanding about the
nonlinear Schrédinger limit, (1.5) with ¢5=s,=s,=0. As pointed out by the authors, this equation
possesses dilatation and Galilean symmetries, both of which are broken by the dissipative perturbation
that selects a particular pulse. It is clear from our calculation, however, that this example is misleading
since the dissipationless terms in eq. (1.5) proportional to ¢ and s, already break these symmetries, but
the double family of pulses remains. As mentioned above, the important effect of the dissipative
perturbation is to destroy the Hamiltonian property of the dynamical system (1.3), and thereby select
discrete pulses.

Besides the exact nonlinear front, we have examined a number of other exact solutions of eq. (1.1)
proposed by previous authors and have found some additional ones. We show, for example, that the
front found by Nozaki and Bekki [25a] is part of the family that contains the linear front v*, «f, and is
therefore not in general selected since it does not coincide with the linear front. The family of “hole”
solutions proposed in ref. [26] is shown by us to be a family of sources. We have generalized the pulse
ansatz of Hocking and Stewartson [24] to the quintic case (1.1), but we find that the ensuing pulse is
confined to a subspace of the parameter space (¢, c;,¢s), and moreover that it is never in the stable
domain &, <e <eg,.

Although we have made definite progress in elucidating the selection problem we posed above, our
main results are conjectures rather than proofs, and even if the conjectures are accepted as true, there
remain gaps in our understanding. First of all, for large sectors of the parameter space there is no
nonlinear front v, ], and our conjectures do not provide unambiguous information. In some of these
regions the system no doubt has only chaotic attractors and their study requires quite different methods.
For example, in numerical calculations we have observed the invasion of the stable 4 = 0 state by an
expanding chaotic domain for £ < 0. Such strongly chaotic fronts are not covered by our methods and
conjectures, even though they do not contradict them. In fact stable pulse solutions were also found in
the same parameter range for different initial conditions. Analogously, there are cases for £ <0 where
uniform amplitude states are stable but no nonlinear fronts exist. According to our rules stable pulse
solutions are also expected to exist in these parameter ranges, and to be attracting for sufficiently
localized initial conditions. On the other hand there must exist other initial conditions which will lead to
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the stable uniform amplitude states, but we have not determined whether these states can be created via
front propagation.

The above limitations arise because our formulation is strongly tied to the 3-mode dynamical system
(1.3), whose form depends on the second-order spatial derivatives in eq. (1.1). We know, however, that
both linear [9-11] and nonlinear [11] marginal stability are applicable more generally, for example to the
fourth-order Swift—Hohenberg model [32]

du=cu— (af+qg)2u —ud, (1.7)

and its extension to the subcritical case [11]. Fourth-order models, moreover, may have stable pulses even
for the real equation [33], and one might ask whether the selection problem and front /pulse competition
can be understood in this more general context. Moreover, from the study of (1.7) and other models with
higher space derivatives it is clear that linear marginal stability is valid even if the front it creates is not
uniformly translating in time [34, 35]. For the complex Ginzburg-Landau equation (1.1), we may predict
analytically whether the linear front is uniformly translating, i.e. whether it connects to an appropriate
nonlinear state via an orbit of eq. (1.3). In one example where it does not, we have found numerically
that the velocity v had nontrivial time dependence due to the generation of space-time defects behind
the front (see section 6 and ref. [36]). A similar effect was observed by Dee [34] for fronts propagating
into linearly unstable nonlinear states a,. Whether a uniformly translating solution is created or not, all
results known to us are consistent with the conjecture that for ¢ > 0, v* is a lower bound for the time
averaged velocity U at long times. Moreover, unless a nonlinear front intervenes, this bound is actually
reached in the leading edge, i.e. T = v*.

Finally, we may mention a limitation of our perturbative treatment, revealed by comparing the results
to the exact solutions we have found, in the limit of small values of the parameter b,. From this
comparison we see that whole classes of nonperturbative solutions exist, i.e. the perturbation theory only
picks up a subset of the relevant solutions, those that are continuously tied to solutions of the
unperturbed problem. v

In section 2 the dynamical system consisting of 3 coupled ODE’s is defined, its fixed points are
identified and their stability is studied for the complex Ginzburg-Landau equation (1.1). This allows an
analysis of the multiplicity of coherent structure solutions, i.e. fronts, pulses, sources and sinks. Section 3
identifies those cases possessing symmetries and /or conservation laws, where a more complete analysis
of the dynamical system is possible. In particular, for the generalized derivative Schrédinger equation the
dynamical system is integrable and all pulse and front solutions are obtained analytically. For the general
nonintegrable case, certain “integrable orbits” of the dynamical system provide particular exact solu-
tions. The basic selection conjectures for the complex Ginzburg-Landau equation are presented in
section 4, and their relation to the modulational (Benjamin—Feir) instability is discussed. Section 5 is
devoted to the perturbation expansion about the generalized derivative Schrodinger limit mentioned
above. This calculation provides an analytic confirmation of the selection conjectures for certain sectors
of parameter space, as well as a calculation of the limits £, and €5 of pulse stability. In section 6 various
numerical simulations are carried out, to test the results and conjectures of the previous sections.
Excellent agreement is obtained with the basic front/pulse selection hypotheses; in particular, the
dependence of the results on initial conditions in the domain &, <& <e¢, is illustrated. Section 7
concludes with a brief summary, a discussion of the experimental relevance of our work, and a list of
open theoretical problems.
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2, The generalized complex Ginzburg-Landau equations and the three-mode dynamical system
2.1. Definition of the PDE’s and ODE’s

2.1.1. General case
We start with the generalized Ginzburg-Landau equation (first-order in time and second-order in
space) for the complex function A(x,t) in one space dimension*?,

8,A=(b,+ic,)2A+f(IA) A +0,[f,(147) 4] + [, £5(141)] 4, (2.1)
where the f, are general complex functions of the real argument |A|* with

fi=ftify (1=1’2’3)’ (2.2)

and b, and ¢, are real constants (the coefficient of 3, 4 can always be made unity by dividing through).
We will primarily study a particular class of solutions of eq. (2.1), namely uniformly translating
solutions, that have the form

A(x,t) =e “d(x —ut), (2.3)

where w and v are real parameters. For this class of solutions the partial differential equation (PDE)
(2.1) reduces to a set of ordinary differential equations (ODE’s) for the amplitude and phase of A.
Indeed, setting*?

A(§) =a(£) e, (2.42)

E=x—ut, (2.4b)

a(¢) =94, «k(§)=a 'Y, (2.4¢)
and inserting (2.4) into (2.1), we find after some algebra

aga =Kda,

%q=¢&(a,q,x),

k=% (a,q,k), (2.5)
where

= _Elw +C—1UK - Blvq - 2Kq + El[flr + 2(fér+fér)'<a2 +f2rK _fZiq]

_Bl[fli+2(féi+f:;i)Ka2+f2iK+f2rq]’ (2.6a)
F=—Cw— EIUK —évg — K’ +q° _Bl[flr +2( f3, +f§r)'<az + fark _fZiq]
"51[f1i+2(féi+f§i)Kaz+fziK +f2rq]’ (2.6b)

#ZWe use the notation 8,A for partial derivatives and, when no confusion can arise, for total derivatives as well (e.g.
8a=da /dé). Occasionally we will use a prime to indicate a derivative with respect to the argument.

#3The representation of the dynamics of eq. (2.1) in terms of the 3 variables a, x, g becomes singular when a(¢) has zeroes. In
such cases a better representation is in terms of the 4 variables a(¢), 8;a, ¢(£) and 8;¢ (see Landman [20] and section 2.3.3).
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where
by=b(b2+c2)", &=c(bP+c}) (2.7)
and the f, are functions of a2, so f}, =df, /da? etc.

2.1.2. The complex Ginzburg—Landau equation
Many of our results will be confined to a special case of eq. (2.1), which we call the complex
Ginzburg-Landau equation, for which

fi=e—(bs—icz)a’ - (bs —ics)a’, (2.8)

where the coefficients &, b;, ¢; are real. Note that imaginary constant terms icy, in f, and icy, in f, [ie.
linear terms icgyA4 + icy 8,4 in eq. (2.1)] can be removed by the transformation A — Aeicoo! ~corx /261,
Moreover, a constant real term in f, can be eliminated by a Galilean transformation (see below). Apart
from such constant terms in f, we define the Ginzburg-Landau equation by the ghoices

f2=f3=0, , (29)
50 eq. (2.1) becomes
yA=cA+ (b, +ic;)2A — (b —ic;)|AIPA — (bs — ics)| Al*4. (2.10)

We now still have the freedom to set any three of the coefficients (no two of which are in the same
term) to unity in absolute magnitude, by appropriate choices of scaling of time, space and 4. When
by > 0, the equation has a supercritical bifurcation at ¢ =0, and one often takes bs =c5 =0 (bs is not
needed for stability) and b, = b; =|¢|= 1, so the equation has two parameters, ¢, and ¢;. When b; <0,
we have a subcritical bifurcation, and we must retain b5 > 0 (or some higher-order term) for stability (sce
fig. 2). It is then usual to take b, = —b; = b5 = 1, and the equation has the four parameters ¢, c,, c; and
¢s. We shall retain the form (2.10) for later convenience in analyzing the dynamical system (2.6)
[corresponding to the f, given by eq. (2.8)], but unless otherwise noted we assume the subcritical case
b, <0.

2.1.3. Other special cases
A special cases of eq. (2.10) is the “nonlinear Schrédinger” equation (e =b, =b, =by;=bs=c5=0,
Cl = 1)
3, A =102A4 +ic,) 41’4 (NLS), (2.11)

which is both Hamiltonian and integrable. Its extension, the “quintic-cubic Schrédinger” equation
(e=b,=by=bs;=0,c,=1),

9,4 =1i02A4 +ics) A4 + ic5| A4 (QCS), (2.12)

is Hamiltonian but not integrable. Other interesting cases are the “derivative nonlinear Schrédinger”
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(a)
1Al
ba >0
0 €
(b)
1Al
Fig. 2. Bifurcation diagram for the complex Ginzburg-
( by <O Landau equation (2.10) showing (a) a supercritical and (b) a
. subcritical bifurcation. Solid lines denote stable states and
‘\\ dashed lines unstable states, Only solutions with wavevector
SNl gn = 0 are represented. For gy # 0 the solution is obtained by
. N the transformation & — ¢ — b;g, but the stability properties
€9 0 € are more complicated.
equation [37] (b, =f, =0, f,, =5, + 5,/ 4I*, ¢, = 1)
8,4 =124 + 509, A +5,0,(14°4), (DNS), (2.13)

and the combination of egs. (2.12) and (2.13) which we will call the “quintic derivative Schrddinger”
equation,

3,4 =102A +509, 4 +5,0,(|A1°4) +ic; 4’4 +icsl A4  (QDS). (2.14)

The special case ¢ = 0 of eq. (2.14) has been referred to as the modified nonlinear Schrédinger equation
(MNS, see Ohkuma et al. [37]). Like the NLS or DNS, the MNS is integrable (see Wadati et al. [37]) but
the general case (2.14) is not.

Equation (2.14) is invariant under the transformation x = —x, t =» —t, A —» 4*. Such a transforma-
tion yielding the identity when applied twice, is called an involution. Equations like (2.14) for which an
involution exists are termed ‘“reversible” by Roberts and Quispel [38], who discuss some general
implications of such reversibility. We shall study these special cases, as well as other variants of the basic
system (2.1), in what follows.

2.2. Fixed points and their stability for the complex Ginzburg—Landau equation

2.2.1. Fixed points
For the complex Ginzburg~Landau equation (2.10) the functions & and % of (2.5) reduce to

= ~b(w +vq) +&(e+vK) = 2kq — (5103 + 61b3)a2 - (5105 + c"lbs)a“, (2.15a)

T = —&(w+vg) —by(e +vk) +q° — k> + (byby — &yc5)a® + (bybs — &cs)a’, (2.15b)
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with b 1» €, given by eq. (2.7). The set of coupled ODE's (2.5) may be considered as a dynamical system
[19, 20] in the pseudotime variable £ = x — vt, and orbits in the three-dimensional phase space of eq. (2.5)
will correspond to uniformly translating solutions of eq. (2.10). The simplest “orbits” are fixed points,
which satisfy

da=09,q9=08xk=0, (2.16)

and by eq. (2.15) we can distinguish two types:
« The “nonlinear” (N) fixed points with

ay#0, kn=0, (2.17)

with g in general nonzero, and

« The “linear” (L) fixed points with
a =0, K #0, ’ (2.18)

and ¢, again nonzero in general. The nonlinear fixed points correspond to traveling-wave solutions of
the PDE,

A%, 1) = ay e~ iontHians, (2.19a)
with

e =b,q% + bya? + bsay, (2.19b)

wn =0 + gy =C,q% — c;a% — csay. (2.19¢c)

In the supercritical case (b; > 0, b5 = 0) the band of allowed wavevectors is

0<bgi<e. (2.20)
For b; <0 and b5 > 0, there is a subcritical bifurcation at ¢ = 0 and a saddle-node bifurcation at

esn = &9 = —b3/4bs. (2.21)
For & > ¢, the branch of ay solutions that is stable to amplitude perturbations (see below) has

2bsal +b,> 0, (2.22)
(see fig. 2). The band of allowed wavevectors in this case is

0 <b,q% <e+b%/4b;. (2.23)
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Thus for given values of the parameters (¢, b;, c;) the solutions (2.17) corresponding to N fixed points

form a two-parameter family indexed by v and » or by v and qN#4.
At the linear fixed point (2.18) we have

w=—vqy —2bk g +c,(qi —«}), (2.24a)

e= —vKp +2c,k.q +bi(qf — ki), (2.24b)

which may also be rewritten as the complex linear dispersion relation

w= —vQ,_+i£—i(b1+icl)Q12_, (2.25)
where
QL =qy —ikL. (2.26)

From egs. (2.19) and (2.25) it is clear that for fixed w and v there are always two L fixed points, whereas
the multiplicity of the N fixed points on the upper branch (2.22) depends strongly on parameters; the
number of fixed points can vary from zero to four.

2.2.2. Stability in the PDE dynamics

The linear stability of the plane-wave states (2.17) in the original (PDE) dynamics of eq. (2.10) can be
obtained by the standard linearization. Let

A(x,t) = d(x,t) et (2.27)

Then the amplitude and phase satisfy the PDE’s

3 = bl[agd - a(axdi)Z] — c,[2(3,8)(8,8) + ad2| + ed — b;a® — bsd®, (2.28a)
3¢ = bl[zd-l(axa)(axé)# a2¢| + cl[d'lafd - (8x¢;)2] +cyd% + csdt. (2.28b)
Let us write

a(x,t)=ay+d,,
d(x,1) =qux—ont + &,

¢, = b exp[iQx + 1], (2.29)

#ip uniformly translating solution can be written in the form (2.3) (with A a function of only one variable) in only one frame of
reference, so there is a one-to-one correspondence between states of the PDE (2.1) and orbits of the dynamical system (2.5), (2.6).
Since the traveling wave solutions (2.19a), which are represented by N fixed points, can be written in the form (2.3) with any v, the
two-parameter family of fixed points of the dynamical system indexed by v and w corresponds to a one-parameter family of
traveling waves indexed by wy = + vgy. :
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and linearize eq. (2.28) about dg,, $0,. The ensuing characteristic equation for A is

A2+ XBor+ver=0, (2.30)
with
A=\ +2ic,anQ, (2.31a)
Ber(Q) =2b,0% + 2a}(2bsa} + b3), (2.31b)
ver(Q) = (¢,02 - 2ib1an Q) + b,0%(h,Q? + 2b3a}, + 4bsat)
—2a%(cs+ 2csak)(c; Q% - 2ib,gn Q). (2.31¢c)

For stability we require that the solutions A(Q) of eq. (2.30) satisfy
ReA(Q) <0, forall Q. (2.32)

Applying this condition for Q — 0 we require Bgx(0) > 0 which is the condition (2.22) mentioned earlier.
In general, the vanishing of Re A(Q) signals a modulational (or “Benjamin—Feir”) instability [28, 39]. The
set of g for which condition (2.32) holds is called the Benjamin-Feir stable band. It is easy to evaluate
AQ) numerically and to check the stability of any particular solution ay, g, of (2.19), for given values of
the parameters ¢, b;, c;.

In the limit Q — 0 we have ygp < B35. The condition (2.32) for stability is then obtained by examining
the terms of order Q* of one of the roots. We thus must retain terms to second order in yg and the
condition becomes

Re[ygr/Bar + Yar/Bir] >0, (2.33a)

or

(b + 2bsa} ) [2a4 (b bs — cic5) +ad(bib; — cic5) — 2b3q%] — 2b%g%(c; + 2¢5a})’ > 0. (2.33b)
For the cubic equation (b5 = c5 = 0, by = b, = 1) this becomes, using eq. (2.19),

g% <&e(1=cc3) /(3= cyc5+2¢3), (2.34)

in agreement with eq. (10) of Malomed [39a). Thus a necessary condition for stability in the cubic case is
the well-known relation

1-c¢e;>0. (2.35)

In the general case if eq. (2.33) is satisfied one can test for the stability with respect to higher Q by
writing the relation Re A(Q) = 0 as

Re ygg=Im ‘YBF/43123Fa (2.36)

which leads to a cubic equation in Q2. One then requires for stability that this equation should have no
positive roots. Alternatively one can simply evaluate Re A(Q) numerically as a function of Q and check,
for given values of the parameters {e, b;, ¢;}, whether it remains negative for all Q.
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2.2.3. Stability in the ODE dynamics

For later reference, we also wish to know the stability properties of the N and L fixed points, within
the dynamical system (2.5), (2.15). We therefore linearize those equations about the fixed point solutions
(2.17) and (2.18). At the linear fixed point L the three eigenvalues are

AL =k, (2.37a)
AP = —(bw + 2. ) £iléw - 2g, 1. (2.37b)

We shall denote the L fixed points by L . depending on the sign of « , i.e. L_ represents a state that is
evanescent for £ — +x,

L_: k. <0, A(x,t)~e"té =g lklx—vn (2.38)
and L, a state evanescent for { > — oo,
Lo:xk >0, A(x,t)~e"é=elulx—vn) (2.39)

In discussing the stability properties of the fixed points we assume v > 0, since the case v <0 can be
obtained from the following symmetry of the dynamical system (2.5), (2.15):

vo -v, £ —¢& Kk— —k, g— —q, a-—a. (2.40)

To determine the stability properties of the two L fixed points labelled L, and L, from egs. (2.37) we
must know the signs and magnitudes of the ;. From eq. (2.25) it follows that the two roots Q,, and Q,,
satisfy

Qr1+ 0, =iv(b, —i¢)). (2.41)
For k; = ~Im Q, this implies
Re A = — (b +2xy,) = —Re A% = (b + 2«.,), (2.42)

for all v. For £ <0 there is one fixed point*> with x <0 (L_,, k., <0) and one with x; >0
(L_,, k5> 0), and eq. (2.42) then implies that in this case Re A{}’ > 0 while Re A3’ < 0. For £ > 0, on
the other hand, the signs of x; depend on v: for v <uvy, with

Vo =le,e — wbyl/(be)"?, (2.43)

we have x,, <0 (L_,) and «;,>0 (L,,). As before this entails Re A{%’ >0, and Re {3’ <0 in this
regime. For v > v, we have two L_ fixed points L_, and L_,. Although Re A{*’ may go through zero at
some v > v, it is clear that even if this happens there is always one fixed point with three attractive

*5From eq. (2.25) we have for v = 0, @} ~ (gq + ixy)?, 50 we can define k;; = —xo <0, k2 =Ko > 0 at small v, and for v —
we have x;; ~ —vb;, Kk, ~ —¢/v. Furthermore, from eq. (2.24b) it follows that «, (viewed as a function of v) can only go through
zero for ¢ >0, and since diy/dv = ~2b,[(v/g, — 2¢,)* + 4b2]~1 <0 when k; =0, each root can only go through zero once.
These results together imply that «;; < 0 for any ¢, and that x;, goes through zero once as a function of v for £ > 0. This zero
occurs at v =uv, =lc& — wb,|/(b,e)!/?, so for £ >0 we have ky, >0 for v <vgy and ky, <0 for v > v, as stated in eq. (2.43).
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eigendirections and one with a single attractive eigendirection. If we denote the latter by L_,, we finally
have the following stability properties for the two linear fixed points:

e<0: L_(++-), Ly(+—-), forallo, (2.44a)
e>0: L_(++-), Lixy(+—-), forO<v<uvy, (2.44b)
L_(++-), L_y(——-), with|ky,[>l«,l, forv>vy, (2.44c¢)

with v, given in eq. (2.43).
The stability of the nonlinear fixed point is determined by the secular equation

B+ayA’+ +Byr +yn=0, (2.45)
with

ay =2bpw, | (2.46)

Bn= B30+ (6 — 2a5) — 2} [(Bybs — &165) + 2(Bybs — 1c5)ad (2.47)

yx =203 —0b (b (by + 2b5ak ) + 2an | (Bics + Ebs) + 2(brcs + Elbs)aﬁ,]}, (2.48a)

- 2a§,{ ~(éw —2ay)|(Bres + €1bs) + 2(bycs + E,bs)a}
—byw((B1bs — &c5) + 2(byb —5105)a2N]}. (2.48b)

The signs of the real parts of the roots of eq. (2.45) are obtained quite generally from the formulas given
in the appendix. We will denote N fixed points as N, or N_ depending on the sign of yy. Since ay >0,
according to (A.2d) an N_ fixed point always has + — —, whereas according to (A.2a,b) an N fixed
point can have — — — or + + — depending on v and gy, which determine the sign of (ayBy — ¥Yn)-
From eq. (2.48a) it is clear that y, is always a decreasing function of v on the upper branch where eq.
(2.22) holds, so that for large enough v we have yy < 0, and there are only N _ fixed points. For v = 0 on
the other hand there is one N, and one N_ fixed point, since by eq. (2.19) there are two fixed points
with gy of opposite sign, and the coefficient of gy in eq. (2.48a) has a definite sign. In order to describe
the fixed-point structure it is simplest to follow their evolution from v = 0 at fixed g, considering w to
be a function of gy and v, given by eq. (2.19). The fixed point with y, <0 at v = 0 retains yy < 0 and we
denote it as N_,(4+ — —). The other fixed point is N_,(+ — —) for sufficiently large v, and N (+ + —)
for v=0. For intermediate v the structure is either N _(+ + —) or N_(— — —), depending on
parameters. In summary, we thus have

U <Unp N_(+—--) and N_(++-), (2.49a)
Ueng <U <Unzt N_(+—--) and N _(—--), (2.49b)
US> Uzt N_(+—--) and N_,(+—--). (2.49¢)

The precise values of v y; and vy, depend on parameters and will not be needed in what follows.
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Another property of the N states is the group velocity v, of the waves obtained from eq. (2.19),

vg=dwy/dgy =0, +v, (2.50a)
bg=dw/dgy= —v+2c,qy — (c3+ 2¢5a% )(dak/dgy), (2.50b)
an = —(2b,) 7'(b; + 2bsa})(dak/day). (2.50c)

The quantity 7, is the group velocity in the frame moving with velocity v. Use of eq. (2.19b) to evaluate
da%/dqy and comparison with eq. (2.48) yields

b, = yn(b} + ¢2)[2a(bs + 2b5a)] ', (2.51)
so that eq. (2.51) implies for the physically relevant upper branch (2.22)

sgn U, = sgn yy. (2.52)
The implications of eq. (2.52) for the stability of fronts are discussed in section 4.

2.3. Coherent structures

2.3.1. Definitions of fronts, pulses, sources and sinks

Besides the N and L fixed points, we can define other solutions of the PDE (2.10) by finding
heteroclinic trajectories of the dynamical system (2.5), (2.15), joining different L and N fixed points [20].
These represent coherent structures, of which we can define the three different classes*® mentioned in
the introduction and illustrated in fig. 1:

* pulses, going*’ from an L, to an L_ fixed point;

+ fronts, going from an N fixed point to an L_ fixed point, or from an L, fixed point to an N fixed
point;

» domain boundaries, joining two N fixed points.

Necessary conditions for the existence of such orbits are obtained by requiring that the orbit be
orthogonal to any unstable direction at an incoming fixed point*’. For example a pulse orbit coming into
an L_ (+ + - ) fixed point must be adjusted to be orthogonal to both of its_unstable (+) directions. This
is achieved by adjusting the parameters in the system, typically v or w, at fixed ¢, b;, c;.

A front will be called positive if it represents a situation where the N state invades the L state, i.e. if
v > 0 under our convention that N is on the left and L on the right. Domain boundaries whose N states
have group velocities ,, eq (2.50), of opposite sign are defined as sinks if they have incoming waves
(6g >0 for { > -, §,<0for § - ®) or sources if they have outgoing waves (5, <0 for £ > —o, §,> 0
for £ > +x).

#5The nomenclature for coherent structures is not uniform in the literature: pulses are also referred to as solitons or s-waves,
fronts are known as kinks or shocks, sinks are called shocks, sources are called targets, and domain boundaries are sometimes
referred to as holes, pulses or fronts.

*#7We define the orbits as going from £ = —o to £ = +oo.
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2.3.2. Counting arguments for the existence of coherent structures

The results we have obtained in section 2.3.1 for the stability of the fixed points, together with
symmetry considerations, allow us to find necessary conditions for the existence of the various coherent
structures. Consider e.g. a trajectory flowing from an N fixed point to an L fixed point. If the N fixed
point has ny unstable directions, there are ny — 1 free parameters characterizing the flow on the
ny-dimensional subspace spanned by the unstable eigenvectors. Together with the parameter v and w,
this yields ny + 1 free parameters. If the L fixed point that the trajectory needs to flow into has n,
unstable directions, the requirement that the trajectory should come in orthogonal to these yields n;
conditions. The multiplicity of this type of trajectory will therefore be n =ny —n, + 1, and, depending
on n, we will say we are left with either an n-parameter family (n > 1), or a discrete set of structures
(n = 0), or no structure at all (n < 0). These arguments, based as they are on necessary conditions, yield
an upper limit*® for the multiplicity of a particular class of structures, i.e. the likelihood of finding
nearby structures if one is known to exist. We shall typically consider the parameters €, b; and c; to be
fixed, and find multiplicities as v and @ are varied. In cases where an N state is involved we can
eliminate w in favor of gy via eq. (2.19), and it is usually more convenient to consider v and gy as the
parameters to be varied.

Clearly, the counting arguments are based on the assumption that the various conditions for flow into
and out of the fixed points are independent. When the dynamical system has symmetries, it can happen
that fewer parameter adjustments are needed in order to satisfy the constraints, thus leading to larger
multiplicities of solutions. In the discussion below we will first consider the cubic-quintic complex
Ginzburg-Landau equation in the general case with no special symmetries. We will then consider
particular choices of the {e, b;, c;} where the multiplicities change as a result of additional symmetries
(see section 3.2.3).

2.3.2.1. Fronts. A positive front is an orbit from N to L_, and a negative front an orbit from L, to N.
(We are only considering v >0, since v <0 is equivalent by the transformation (2.40).) For £ >0,

according to (2.44b, c) there are two L_ fixed points L_(+ + —) and L_,(— — —), and either one or
two N_(+ — —) fixed points*® depending on v. When there is one N _ fixed point, the other fixed point
is N,(++~) or N,(——-). An orbit from N_(+ —~—-) to L_(+ + —) has a unique outgoing

direction, and in order to arrive at L_(+ + — ), the incoming direction must be made orthogonal to both
unstable eigenvectors, requiring adjustment of two parameters, v and gy. Thus we expect in general a
discrete set of such fronts, with velocities v; and w;. For a front going from N_(+ ——)to L_(— — —),
on the other hand, all incoming directions are stable at L_, so we expect a two-parameter family of such
fronts, indexed by v and gn. The N, (+ + —) fixed point has a one-parameter continuum of outgoing
directions, so fronts represented by N, (+ + —~)— L_(+ + —) therefore exist as a one-parameter
family, whereas N, (+ + —) —» L_(— — —) yields a three-parameter family.

The results we have obtained in section 2.2.3 for the stability of the fixed points, coupled with ‘the
above arguments, lead to the following multiplicities for positive fronts (N_—>L_or N, > L_):"

» For &> 0: There is always at least one discrete set of N_— L_ fronts. For v > v, there is in
addition a two-parameter family of N_— L_ fronts. There are also families of N, —» L_ fronts whose

#SStrictly speaking the counting arguments yield an upper limit for the multiplicity of orbits of the dynamical system (2.5). There
might be other solutions of the PDE (2.1) not of the form (2.3), which one may wish to refer to as coherent structures, but we do
not consider these here.

#9Recall that we define L + according to the sign of x| (eq. (2.38)), and N, according to the sign of y (see after eq. (2.48)); or
in view of eq. (2.52), according to the sign of the group velocity by
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multiplicities can be readily established once the vy, and v,; are known. We shall not work these out in
detail since we will see that fronts coming from N, are dynamically unstable.

* For £ <0: There is a discrete set of N_— L_ fronts, plus families of N, — L_ fronts which again
depend on v. :

Similarly, negative fronts (L, — N, or L, — N_) can be shown to have the following multiplicities:

 For &> 0: Negative fronts (L, — N) exist only for v <v_. There is a one-parameter family of
L,— N_ fronts, plus either a discrete set or a two-parameter family of L — N, fronts, depending on
the relative magnitudes of v, and the v y;.

* £<0: There is always a one-parameter family of L, — N_ fronts, plus a discrete set or a
two-parameter family of L, — N_ fronts for vy, <v <v ;-

2.3.2.2. Pulses. Puises correspond to L — L _ orbits so the counting is quite simple. From the results in
eq. (2.44) we expect a discrete set to exist for £ <0 and for & >0, with v <v_. According to this
argument, the condition that the discrete pulse be stationary

Up = 0, (2.53)

would seem to require an additional adjustment, i.e. would only be satisfied in a codimension-one
subspace of the {e, b;, c;} parameter space. It turns out, however, that for stationary pulses there is an
additional symmetry of egs. (2.5) and (2.15),

£-—-¢ qg—-—-q, k- -k, a—a, (2.54)

which eliminates one of the necessary parameter adjustments. Indeed, starting from the L fixed point
(a. =0, g, #0, k; # 0) an arbitrary orbit intersects the « = 0 plane at some point a,, q,, and we can use
the parameter o to fix g, = 0. The pulse orbit is then completed by symmetry from (a,,0,0) to the point
L _ whose coordinates are (0, —g,, —«; ). Thus stationary pulses are generically contained in the discrete
set {v,, ).

2.3.2.3. Sources and sinks. From eq. (2.52) we see that sources can be defined as N_— N orbits, and
sinks as N — N_ orbits, since the subscript on N can refer either to the sign*® of y or D,. For v=0
the N, fixed point of eq. (2.15) always has according to the discussion following eq. (2.48) the stability
properties N, (+ + —). A source (target) corresponds to an N_(+ — —)—> N_(+ + —) orbit and in
general requires adjusting two parameters, but once again we can use the symmetry (2.54) to eliminate
one adjustment for v = 0: a trajectory leaving N_(ay # 0, gy # 0, ky = 0) in general hits the g = 0 plane
at the point (ag,0, k), and we can use w (or gy) to set k,=0 or a,= 0. This means that there is in
general a discrete set of v = 0 sources. The source orbit going to N, (ay, —gy,0) is then completed by
symmetry. A sink (shock) corresponds to an N, (+ + —) - N_(+ — —~) orbit, and it has the additional
freedom of a one-parameter family of departing directions from N, (+ + — ), so we are left with a family
of v =0 sinks, indexed by qy.

For v # 0, the above arguments yield a discrete set of sources for small v, but a possible two-parame-
ter family of N_(+ — —) - N_(— — —) sources in the range vy, <v < v, where an N (- — —) fixed
point exists. Sinks, represented by N, (+ + — ) > N_(+ — — ) orbits, form a two-parameter family in the
range v < vy, Where the N, (+ + —) fixed point exists.
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For sources and sinks we may make general quantitative statements about the velocity, knowing only
the properties of the two fixed points [39b]. Let us consider the general form (2.1) with f,=f,=0

3,A+ (b, +ic)a24 +f,(141°)4, (2.55)
with
fi=fiutify. (2.56)

Then the N fixed-point conditions analogous to (2.19b, ¢) imply

bigk = fi(ad) (2:57)

which we assume to be invertible (i.e. we consider only the stable branch defined by a generalization of
eq. (2.22)],

at =fi'(biak) (2.58)
and

© +vgy — € df = —fri(ak)- (2.59)
The group velocity is*?2

U= (do/dqn) = —v +2¢.9n = 2bignfii/fir- (2.60)

For an N, —» N, domain boundary we have, assuming gy; # gn3,

. 2 —_ . 2
v=0c(gni +4qn2) + fh(a;;? _{]:(zam) )’ (2.61)
- _— fli(aﬁll) “fn(aixz) ) _ f{i(a%u) an1 fl'i(alz\lz)qNZ
Uy + 0gp = 2( P 2b, filaZ) + filaZ) | (2.62)

These relations, together with eq. (2.58) express v and ,, + i, in terms of gy, and gy, alone. For the
cubic case

fi =e—(b3—ic3)az, (2.63)
eqs. (2.61) and (2.62) become

v={(c; +bc3/b3)(qn1 +4qn2)> (2.64)
g1 = (¢, + b1¢3/b3)(an1 —dnz) = — T, (2.65)

Thus in this case any domain boundary is either a source (5, > 0 < —) or a sink (5, <0 — «), ora
homoclinic trajectory N; — N, for which i, = §,, and gy, = gn,(— = or « «), in which case eq. (2.65)
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does not hold. For the quintic or higher-order equations more general domain boundaries can exist, with
arbitrary relation between o, and 7.

2.3.2.4. Summary of counting arguments. We summarize the above arguments by singling out the
structures that will turn out to be dynamically significant in the general case with no additional
symmetries.

(i) There exists a discrete set of (N_— L_) fronts for all ¢, and a two-parameter family of such fronts
for £ > 0.

(ii) There is a discrete set of pulses. Since for every pulse with velocity v there is one with velocity —v
the discrete set will in general include stationary pulses (v, = 0).

(iii) There is a discrete set of sources (targets), and a one-parameter family of sinks (shocks) at low
velocities. At higher velocities one can have one-parameter families of sources and two-parameter
families of sinks.

(iv) For the cubic equation (f,=f,=0, f, =& —(b; —ic;)a?, Bekki and Nozaki [26] have found a
family of moving sources (see section 3.3.3), in contradiction to the counting argument. We conjecture
that this is due to a hidden symmetry of their solution. A similar situation may well obtain for moving
pulses.

2.3.3. The nonlinear diffusion equation

The arguments given up to now provide (in the absence of additional symmetries) an upper limit to the
multiplicity of coherent structures, since they only involve the stability of the phase space orbits at their
end points. In certain cases more detailed information can be obtained by studying the full orbit. The
simplest example is the nonlinear diffusion equation [9, 11, 22, 23], obtained by setting f;;=f,=f;=0in
the starting equation (2.1), and confining oneself to real solutions, i.e. writing

3,A, =02A,+f(A), (2.66)

where for the Ginzburg-Landau case f(A4,)=f,(A%) A,, but more generally f need not be an odd
function. The dynamical system (2.5) for uniformly translating solutions A .(x,¢)=u(x—vt) then
becomes

Fu +vdu+f(u) =0, (2.67)

where the function wu, in contrast to a = |ul, can now be both positive and negative. The above equation
describes a classical particle of unit mass with damping constant v (either positive or negative) moving in
the potential

v(u) = [ f(»)dy. (2.68)

Let us consider a function f(u) with three zeros as in fig. 3a, corresponding to the case £ > 0. Then the
points u, that are stable equilibria of eq. (2.67) are maxima of the potential V/, and the unstable
equilibrium u =0 is a minimum of V. A front is represented by an orbit that begins at a maximum of V'
(u=u,, say) and ends up at u =0. For large v the particle leaving u =u, will come to rest at u =10
without overshoot, but below some critical damping v = v, there will be an overshoot and damped
oscillations about u = 0. For some value v = v, the particle will precisely reach the other maximum at

=u_ and this orbit represents a stationary Kink solution between the two stable fixed points u =u ,
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f=eu+u?-ud

(a) f (b} ¢

/N
u. 0 u\ Y - ux

Fig. 3. Illustration of the behavior of the functions f and V of the nonlinear diffusion equation given in egs. (2.66) and (2.68), for
the particular case f=cu+u’—u3 (@) e > 0; (b) £ <0.

i.e. a domain boundary in our classification. For v < v, the orbit goes off to u = —, so it does not
represent a finite solution of eq. (2.67). We thus have a one-parameter family of fronts with velocities
Umin <U < for £ > 0. In the Ginzburg-Landau model we have f(u)=f, (u>)u =eu +u> — u>, leading
to a symmetric potential and v, =0. For the asymmetric case f(u)=scu +u®—u> the results of
Ben-Jacob et al. [9] imply that v, =1/v2. Note that although for any velocity in the range v > Upin @
unique front exists, the decay rate x;(v) associated with these fronts is a discontinuous function of v. In
particular, for the velocity at which the orbit first overshoots the point # = 0 upon decreasing the velocity
v, either k;(v) or dx (v)/dv has a discontinuity. (See section 4.2.)

A pulse solution is an orbit beginning and ending at u = 0 and it is clear that for £ > 0 none exists,
since u =0 is at a minimum of the potential V(u).

Turning now to ¢ <0, fig. 3b, a front is represented by an orbit from the maximum of the potential at
u, to the maximum at u = 0. It is clear that there is no longer a family, but rather a unique velocity for
such an orbit. Similarly, there is a unique pulse orbit and it has v = 0, since the trajectory leaving u = 0
must return to u = 0. Moreover it exists only for & >¢,, where ¢, is the value such that V(u=0)=
Viu=u,).

The foregoing results allow us to compare the actual multiplicity of solutions with the predictions
obtained from the arguments of section 2.3.2, based on an analysis of the orbits of the dynamical system
(2.5), (2.15) in the vicinity of the fixed points. As stated earlier, the counting arguments give an upper
bound for the number of orbits of the dynamical system. For example, when specialized to the case
¢; =0, the calculation of section 2.3.2.2 yields stationary pulses for arbitrary ¢, though we know that
pulses only exist for £, <& < 0. On the other hand, for £ > 0, eq. (2.67) has oscillatory front solutions in
the range v, <v <v*=2¢'/? that do not correspond to finite orbits of the dynamical system (2.5),
(2.15) for ¢; =0, since |k| - = every time u =0. These solutions are of course not predicted by the
counting arguments based on the dynamical system (2.5) either. However, for the dynamical system (2.67)
the counting argument can be formulated directly using the variables u and d;u. In these variables, the
oscillatory front solutions do correspond to finite orbits and are consistent with the counting arguments.

Likewise, in the general case (2.5), (2.15) we can circumvent the problem associated with the
divergence of orbits when a — 0 with da finite as follows. We allow a to take on negative values as well,
and in the region where a goes through zero with finite slope, we use the dynamical system (a, g, d.a)
instead of (a, g, ). Since the trajectories remain unique in this set of first-order ODE’s, we can connect
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them to the trajectories in the (a4, g, ) phase space in a unique way. Hence, the counting arguments
based on the stability properties of the fixed points remain unchanged, and they will therefore represent
an upper bound for the multiplicity of uniformly translating coherent structures of the PDE. The
perturbative calculations of section 5 confirm this expectation.

3. Analytic results

In this section we discuss a number of exact results concerning the generalized complex Ginzburg—
Landau equation (2.1) that can be obtained analytically. These are either in the form of symmetries,
conservation laws, or exact solutions of the dynamical system (2.5), (2.6) for special cases.

3.1. Symmetries and conservation laws

Suppose eq. (2.1) has a continuous symmetry [21], i.e. it is invariant under a one-parameter family of
transformations 4 —» .9, M(A) =A,. Then if a coherent structure exists for some value of the parameter
(n =0, say), we generate a family by applying - We shall see that families also arise in systems with
conservation laws. We therefore consider special cases of eq. (2.1) for which conservation laws and
continuous symmetries can be found.

3.1.1. Conservation laws
We define the normalization integral

#(t) =f_1|A(x,t)|2dx, (3.1)

and note that in the case

bi=fii=fii=f=0, (3.2)
this quantity is conserved, i.e.

94 =0, (3.3)
for solutions that decay sufficiently fast at x = + o, Similarly, we define 2 momentum

P=—ic,[” [(3,41) A~ (3, A) A% dx+ [~ dxf,(147), (3.4)
with f,, to be determined. A calculation using eq. (2.1) shows that

3,2=0, for b,=fi,=f=f3=0, (3.5)

if f,, is given by*?2

f‘ir(az) =2f2r(a2)' (36)

(Note that we have not found a momentum operator for f, # 0, though one may exist.)
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3.1.2. Continuous symmetries
Apart from space and time translations which are continuous symmetries of the full equation 2.1), we
can find special cases where other symmetries exist. The first is space—time dilatation invariance,

x'=Ax, t'=At, A=1"4, (3.7)
which holds for

fo=f3=0,  fi,=-bsa®,  fi=csa’, (3.8)

a special case of which is the nonlinear Schrodinger equation (3.19) (b, = b; = 0, see below). Another
continuous symmetry is' Galilean invariance

X'=x+uvt, t'=t, A, t)=exp|[(3iv)(x+31vt)] A(x,1), (3.9)
which holds for eq. (2.1) when
b,=0 and f,=0 (3.10)

(in eq. (3.9) we have set ¢, = 1).

These examples show that the standard connection between symmetries and conservation laws
expressed by Noether’s theorem (see Hill [38]) does not hold for eq. (2.1) and various special cases we
consider, due to the lack of a variational principle. For example f, # 0 breaks Galilean invariance even
though there is a conserved momentum for f,, # 0, and conversely (complex) f, # 0, f; # 0 do not break
Galilean invariance, even though we have not found a conserved momentum or any other conservation
law for this case. ’

3.2. Integrability of the ODE’s

3.2.1. General integrability conditions

Even in the absence of conservation laws or continuous symmetries, there are conditions under which
the dynamical system (2.5), (2.6) is integrable, i.e. its solutions can be written down in closed form. Such
conditions have been obtained by Florjanczyk and Gagnon [21] who also discuss the connection with
Painlevé theory (see Cariello and Tabor [21]). We will obtain similar though less general results by direct
inspection of the ODE’s. Indeed, if -

by=fi,=f»=0, =1, o (3.11)
eq. (2.6a) can be put into the form
0q=x[v—2q+2(f +fi)a’+f5] (3.12)

whose general solution, in view of eq. (2.4¢), is

a(@?) = 503 [Ty [0+ 29(fh+ Fi) + ] (3.13)
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Then eq. (2.6b) becomes

B + k2 + do(a2) + by(a¥) k = 0, (3.14a)
¢0(“2)=“’+U‘1“12+f1i+f2r41a (3.14b)
é,(a?) = 2f5a2, (3.14c)

or equivalently,
aga +ady(a?) +d>,(a2)a§a = (. (3.15)

This equation represents the motion of a classical particle in the potential

Vo(a?) = %fazd’o()’) dy, (3.16)
with damping d)l(az). In the undamped case,

fi=0, (3.17)
the equation of motion can be integrated by quadrature

k¥(a?) = —2a"*Vy(a®) + 2a0‘2V0(a%), (3.18a)

a(€) = [*dn{-2Wy(a¥(m)) + 2[a*(m) /23| Vo(ad)) ", (3.18b)

where a, is the value of a where x(ag) = 0.

From the mechanical analogy for eq. (3.15) with ¢, =0, it is clear that if the potential (3.16) is finite at
a =0 and has the correct shape, then any orbit leaving a = 0 must return to a = 0 by conservation of
energy. In contrast to the situation in eq. (2.67) where v is a damping constant, a pulse orbit here
requires no special adjustment of the potential, i.e. it occurs over a range in the parameters v and w,
thus assuring a double family of pulses. Specifically, if g(a = 0) given by eq. (3.13) remains finite, the
potential (3.16) will have a finite extremum at a = 0, and for sufficiently large |w| this extremum will be a
maximum. The only condition for the existence of a double family of pulses is then that the nonlinear
terms f,; and f, should be such that Vy(a?) increases to a value larger than V(0). Similarly, the
requirement that V,(a?) have another maximum for a # 0 such that V,(0)= V,(a?), imposes one
condition, so we expect to find one-parameter families of fronts. Note that the above arguments depend
on the integrability of (2.5), (2.6) and the Hamiltonian nature of eq. (3.15) which follows from egs. (3.11)
and (3.17), and are satisfied even when f, # 0 and/or f;, # 0. The condition f, # 0 implies breaking of
Galilean symmetry (3.9), and f;, # 0 apparently invalidates momentum conservation (3.5), but neither of
these prevent the existence of a double family of pulses.

3.2.2. Solitons in the nonlinear Schrodinger equation
The nonlinear Schrédinger equation

9, A =i32A +ics|AI*A, (3.19)
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with ¢; = +1 is not only Hamiltonian, but also completely integrable [15]. For c; > 0 an important class
of solutions are the solitons of which an example is

A(x,t) =e"(2/c,)"*sech x, (3.20)

corresponding to v =0, w = —1. Then a double family of solitons indexed by v and « can be generated
by applying the Galilean and dilatation transformations (3.7) and (3.9). We shall not dwell on the special
dynamical significance of the solitons for this integrable case.

For ¢, <0, we have the so-called “dark solitons” [6]

a*(x)=aj+ (aﬁ,—a(z,)tanhzl 1(ak — aj)lc, x], . (3.21a)

g(x) =d;a=?*(x), (3.21b)
for arbitrary o > 0 and d, < 4w>/(27c2), where ay and a,, are the solutions of

(leslag — w)ag —di =0, (3.21¢)

aj=2(w/lcsl —a}). (3.21d)

We therefore have a three-parameter family of such structures at nonzero v. For d; — 0, egs. (3.21c,d)
imply that a, — 0. These solitons are often referred to as “fundamental” dark solitons [6]. For nonzero
v, they form a two-parameter family.

The nonlinear Schrédinger equation and its extensions also admit spatially periodic nonlinear
solutions (see e.g. ref. [21]), but these will not be discussed here.

3.2.3. Pulses and fronts in the quintic-cubic and generalized derivative Schrédinger equations

3.2.3.1. Generalized derivative Schridinger equation. Let us consider the dynamical system (2.5), (2.6)
with '

fiu=fu=b=f;=0, (3.22)
already considered in section 3.2.1 (the condition f; = 0 is not necessary, but it is taken for simplicity).

For this integrable system we have the general solutions written down in egs. (3.18). Let us choose ¢, = 1
and

fii=csa* +csat, (3.23a)

far =50+ 520%, (3.23b)

i.e. we have combined the quintic-cubic and derivative Schrodinger equations (2.12) and (2.13), to form
the quintic derivative Schrédinger equation (2.14). From eq. (3.13) the wavevector g takes the form

g=da ?+qy+q,a*. (3.24)
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For pulse solutions we must pick d, =0, so egs. (3.13) and (3.18) become

a=73(v+59) + 58" =q + q,0°%, (3.25a)
k?=d,+d,a*+d,a’, (3.25b)
dy=—o—1(v+s,)°, (3.26a)
dy= — 363~ 350 + ), (3.26b)
dy= —3(cs+3s3/16). (3.26¢)

The solution a(¢), given by eq. (3.18b) can be put into the form

a?(£) = (dy+dscoshd &)™, (3.27)
where the relation x = 9,a/a implies

dy= —(dy/2dy), di=(d3—4d,d,)/4d}, di=4d,. (3.28)

This pulse solution generalizes the so-called “Alfvén solitons” of the derivative nonlinear Schrodinger
equation [37], and reduces to those when c¢; = ¢5 =5, = 0. It also reduces to the w = —4 member of the
nonlinear Schrédinger pulse family (3.20) when ¢;=v =s,=s,=0. As anticipated, the pulses (3.27)
form a two-parameter family of solutions indexed by v and w, but since the equation is neither Galilean
nor dilatation invariant the dependence of the coefficients on v and w is nontrivial.

If we retain d, # 0 in eq. (3.24) we find other types of solutions (e.g. domain boundaries) but we shall
not explore these further here.

3.2.3.2. The quintic-cubic equation. For f, =0 we have the quintic-cubic Schrodinger equation (2.12)
studied earlier by Gagnon [40], and for v = 0 egs. (3.25a) and (3.26) reduce to

q=0, (3.29)
and

dy= —cy /40, ds=[(—cs/30) +(c2/160%)]", dg=2(~w)"?, (3.30)
implying

w <0. (3.31)

For v + 0 we replace w by w + v? and g by ;v, as implied by the Galilean invariance of eq. (2.12), or as
can be seen directly from egs. (3.25a) and (3.26). Now the dependence on v is trivial, but in contrast to
the nonlinear Schrodinger equation (2.11) to which eq. (2.12) reduces for ¢ = 0, the dependence on w is
nontrivial. '

In order to study the pulse solutions in more detail we must distinguish four different cases, depending
on the signs of ¢; and cs, i.e. on the quadrant in the (c;, ¢;) plane. (We assume v =0 as in egs. (3.29)
and (3.30).)

In quadrant I, ¢, > 0, c5 > 0, for |w| — 0 we have d,,ds> 0 and d; = ds, so the pulse (3.27) resembles
the soliton of the nonlinear Schrédinger equation and has amplitude proportional to lw|'/?, For |w|>
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Fig. 4. Tlustration of the range of existence of pulse solutions in the quintic-cubic Schrodinger equation (2.12) in the four
quadrants of the (c;, ¢s) plane. The notations NLS, VNLS, etc. are explained in the text.

3c2/16¢s, on the other hand, we have ds > d; and

a = (3lwl/cs)[cosh(V2IwlE)] ", (332)

so it is @ rather than a which has the form of the soliton (3.20). We indicate this in fig. 4 by the notation

vyNLS.

In quadrant II (c; < 0, ¢5 > 0) pulses exist once again for all w <0, but since this is the dark soliton
regime (3.21) when ¢, = 0, the pulses do not reduce to NLS solitons for |w|— 0. Instead they have finite
amplitude

Jim a(¢£=0) = [3lc,l/2¢5] 2. (3.33)

In quadrant III (c; <0, ¢;<0) we have ds< —d5,d; <0 and the solutions have a square-root
singularity at some finite £, so they are not normalizable and we will ignore this case.

In quadrant IV (c; > 0, ¢5 < 0), the small-{w| behavior is as in quadrant I, but there is now a maximum
value of |w|,

W pmax = 3¢3/16cs. (3.34)

When |w| - @y, (.e. ds—0 in eq. (3.30)) the width of the pulse diverges logarithmically, and the
amplitude approaches

Bhax = ay = 3c3/4lcsl. (3.35)
This corresponds to a pair of fronts, each one of which has the form
a?(¢) =ak[1 +exp(—2x,6)] 7, (3.36a)
kp = £ (=3c2/16¢5)"" = £ (wpn0)">, (3.36b)

(we have displaced the edge to ¢ =0). Thus fronts exist for a particular @, but of course there is still a
family indexed by v. Note that when |w| = w,,,, We have

k(a?) = (—cs/3)"*(a® + 3c;/4c5), (3.37)
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ie. x is a linear function of a2 The properties of the pulse solution (3.30) in the quintic-cubic
Schrédinger equation are summarized in fig. 4.

3.3. Exact solutions of the complex Ginzburg~Landau equation

Even if there are no conservation laws or symmetries, and if the integrability conditions are not
satisfied, as is the case for the complex Ginzburg-Landau equations (2.1) or (2.10), it is still possible to
find particular exact solutions*! for certain parameter values.

3.3.1. Nonlinear front
Guided by the form (3.37) and by heuristic stability arguments [see ref. [11] and section 4], we make
the following ansatz [8] for a front solution of the full complex Ginzburg-Landau equation*!' (2.10),

which we shall refer to as the “nonlinear front””#!2,
a(a’) =qy +ey(a® — a}), (3.38a)
x(a®) =e,(a’-ag), (3.38b)

with constants gy, ay, €y, €, to be determined. A similar solution was found independently by Klyachkin
[42], but he did not investigate its dynamical significance (see also Cariello and Tabor [42] and Powell
et al. [43]). Insertion of the ansatz (3.38) into the ODE’s (2.5), (2.15) leads to two quadratic polynomial
equations in the variable a*(¢). Requiring that these relations be satisfied identically, we find six
relations (for the coefficients of a°, % and a4* in the two equations) which after some rewriting become

0= —vgy + ¢ g% — c;a — csay, (3.39a)
e =b,q% + bya% + bsay,, (3.39b)
3e? —e2=b,bs—écs, (3.39%)
de,eq= —(E,bs+bics), | | ) (3.39d)
&3 —byby + (bre, + Ere0)v — 2qneq + (263 — 4e})ad = 0, (3.39%)
bicy+¢by— (¢ie: - biey)v + 2qye, — 6ege,ad =0, (3.391)

where according to eq. (2.7) b, = b (c2 + b}, ¢, =c,(c? + b?)~L. For b, # 0 the solution of the system
(3.39) may be written in the form

dn=ak = e, +esag, (3.40a)
v=v'=e, +esa%, (3.40b)
ay, +egad +e;=0, (3.40¢)
kL =«} = —eak, (3.40d)

#10There is considerable literature on exact solutions of real equations such as (2.66), some of which can be found in ref. [41].
*11As explained below, the ansatz also works in the more general case in which the functions f, and f; of eq. (2.1) are linear
s
in a“. )
#1211 ref, [8) we used the term “selected front” for eq. (3.38), but we prefer “nonlinear front” since it is only selected when the
conditions (4.14) are met.
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with
€= - [(5181 - I;leo)(5103 - l;lb3) + (51e1 + Eleo)(l;lc3 + 51b3)]/[251(e§ + ef)] , (3.41a)
e, = (2616(2,61 +biejel + 28, + EIeS)/51(e§ +e?), (3.41b)
e, = — [el(c"lc3 - 51b3) + 60(5103 + c'1b3)]/l31(e§ +e7), (3.41c)
es=4e,/b,, (3.41d)
es = (2e,e3—b3/b,) /(€5 +bs/b,), (3.41e)
e,;=(e3—e/by)/(ef+bs/by). (3.411)

An examination of the above equations shows that they provide explicit expressions for the front
parameters v', g§, ', (%) in terms of the original parameters of eq. (2.10), since egs. (3.41) express all
quantities in terms of {b;, c;, €} and the pair (e,, e,) which itself can be reexpressed in terms of {b,, c;, €}
by solving the quadratic equations (3.39¢, d).

The multiplicity of solutions can be found as follows: First note that given {b,, c;, €}, the pair (e, e,) is
uniquely determined by (3.39¢,d) up to a sign change of both variables, since for e, # 0 the equation

~ ~ 2
3ef — (bybs — &1c5)e? — & (byes+¢,bs) =0 (3.42)
has a single positive root e? > 0, and a* change of sign of both e, and e, leads to an equivalent front

(3.38) by the symmetry (2.40). Thus e, through e, are uniquely determined, and a solution that is stable
to amplitude perturbations will be found if a satisfies (2.22),

> —b,/2b;. (3.43)
This condition implies the following multiplicities:
de, <2esb;/bs—b3/b2, (3.44a)
1 solution if: < and
by/bs < eq: de,<e?, (3.44b)

no solution otherwise.

2 solutions if:  (2b;/bs)es — b3 /b2 < 4e, <e?, (3.44c)

es <b;/bs: { 1 solution if: 4e, < (2by/bs)es — b3 /bE, (3:44d)

no solution if: 2 < de,. (3.44e)
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From the above equations we may show analytically that
vt =esd al = [es(b1e§ + bs)(2a§, + e6)] _1, (3.452)

so for e, > 0 (the proper choice for a front from an N to an L fixed point as in fig. 1a) and b, > 0, bs> 0
(necessary for stability) we have

sgn(3,0") = sgn(2a} +e5) >0, (3.45b)

where we have used the stability condition (2.22).
Another general property of the solution (3.40), (3.41) is the group velocity 7, given according to eq.
(2.60) by the expression

(3.46)

cs3 + 2csa}
o= —v*+2c1qL+2b1qL(—§—-5—I‘i).

b, + 2bsa},

As noted in section 4.2, for stability we require 5; < 0 and although we have not succeeded in showing
that this condition is always satisfied, in all the parameter ranges where we have solved eq. (3.40) for v*
numerically, 1'3; was found to be negative.

The sign of 7, is also related to the following point: The ansatz (3.38b) corresponds to a first order
ODE for a(¢) [11]. In phase space, this means that the nonlinear front trajectory flows out of the N fixed
point along a single unstable direction. Suppose, however, that it flows out of an N, fixed point with
+ + — structure along one of the two unstable eigendirections. In this case the counting argument
implies that the nonlinear front is a member of a one-parameter family. Although we have not been able
to rule out this possibility in general, the stability arguments of section 4 as well as the numerical
simulations of section 6 are consistent with the hypothesis that whenever it is selected, the nonlinear
front flows out of an N_ fixed point with + — — structure. In view of (2.52), it then also has 17; <0.

We also note that the nonlinear front fiows into an L fixed point along a stable eigendirection. As we
will see later, for very large ¢ this fixed point is of type L_, which by eq. (2.44) has three stable
directions. In this case, the nonlinear front therefore is a member of a (two-parameter) family of fronts,
but as we shall see, it is then not the selected front.

For the cubic Ginzburg-Landau equations (bs = c¢5 =0, € = b = b, = 1) Nozaki and Bekki [25a] have
obtained an exact front solution that can be defined by the ansatz

q=qy+egk (1 —a/ay), (3.47a)
k=« (l—a/ay), (3.47b)

which yields
a*>=a}[1+exp(—x )] %, K <0, | (3.48)
where ay, k;, gy and ez can easily be calculated in terms of ¢, and c;. It turns out, however, that this

solution is a member of the family of N_— L_, fronts obtained in section 2, and as discussed in sections
4 and 6, these fronts are not selected by the dynamics starting from localized initial conditions.
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Let us now consider the Galilean invariant limit b, = 0, for which egs. (3.40) and (3.41) yield (setting

alz\l =a12‘10(c3’ CS)’ (3493)
€ =go(¢3,C5) = —@xo + ako, (3.49b)
qL - %UT = qO(C31 CS)? (349C)

where a?,, €, and q, are #(1) functions of the parameters c;, cs, easily calculated from eq. (3.41). Thus
the ansatz (3.38) defines a one-parameter family of fronts (as it must from the Galilean symmetry) but
only for the special value ¢ = ¢,. For £ # g, there is no solution of the form (3.38). When 0 < b, < 1, the
family collapses to a particular solution (choosing the one with v’ > 0) of the form

ot =2b7V2(6 —£,)' % + 0, (3.50a)

ak=b7"*(e - o) +al, (3.50b)
where v} and gf, are #(1) functions of ¢; and cs. Thus v'(b,, ) is singular for b, >0, € > ¢, and a
perturbation expansion of (3.40) and (3.41) in b, is rather delicate.

Note also that eq. (3.39d) shows that in the case b,c5 + bsc; = 0 one has e, = 0 (since e, # 0), so that
the wavenumber q is a constant. The other expressions also simplify considerably in this case.

3.3.2. Exact pulse solution
For the complex Ginzburg-Landau equation (2.10) we make the following pulse ansatz ([8], see also
ref. [42]) which generalizes the exact solution of Hocking and Stewartson [24] to the quintic case,

k2=d, +d,a® +d,a*, (3.51a)
q=d,+dgk. (3.51b)

This ansatz leads to the equations

év—2d,=bp=0, (3.52a)
6 —bw—bwd;=2dyd,, (3.52b)
bie + &0 + ¢vd, — d3 =dy(d} - 1), (3.52c)
bicy+ &by = —3d,dy, | (3.52d)
bby—é,c3= —d,(d? - 2), (3.52¢)
bics+ébs = —4d,dy, (3.52f)
bibs—Eics= —d,(di - 3). (3.52g)

For b, = 0 (the Galilean invariant case) we find a family of solutions with arbitrary v. When b, # 0, we
must have v =d, =0 by eq. (3.52a), and we are left with 6 equations in the 5 unknowns d,, d,, d,, dg
and w. This overdetermined set is only soluble in a codimension-one subspace of the set (¢, ¢, c3, cs),
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Fig. 5. Subspace of the (c3,¢5) plane where exact pulse
solutions of the form (3.51) exist, in the subcritical case
(b3/b, < 0) for fixed ¢, > 0. The subspace is indicated by the
thick solid lines. The plane is divided into sectors by the
dashed lines b,cs5+ bsc, =0 (horizontal), b,c;+byc; =0
(vertical) and c5(b;/2bs) — co(b,/3b) + ¢c, = 0 (diagonal),
meeting at P. The subspace is traced out along the segments
1 -1V marked dg <0 as dyg goes from — to 0, and along the
segments I — IV marked dg > 0 when dg goes from 0 to +ce.
The signs of the terms of egs. (3.55) and (3.54c) in the
different sectors are indicated on the figure.

bics +bscy <0

II

dg>0

which we parametrize as follows:
= , 3.53
3= T6c,dy + 2b,(d2 - 2) 3 (3.532)

_ 4b bydy — ¢,bs(dE - 3)
T T4cidg + by(di-3)

(3.53b)

Elimination of dg from eqs. (3.53a) and (3.53b) yields a relation between c;, ¢; and ¢5 (which does not
involve ¢). For fixed ¢, > 0, this subspace is indicated by the thick solid lines in fig. 5 for the subcritical
case b, < 0. The curves are obtained by tracing c; and ¢ according to egs. (3.53) upon varying dg from
— oo to 0 (segments, I, II, III, IV marked dg < 0) and from 0 to + o (segments I, I1, 111, IV marked dg > 0).
Within the subspace the solution is

v=0, (3.54a)
e ¢3¢sb, +¢,(3c3bs — 2¢5bs)
= 54b
@7 7B, Teybybs + (3bscs — 2¢5b5) (3.540)
do=«2= —¢/2dgd,, (3.54c)
dy=— b 25 (3.54d)

E\by+cb,  Ebs+csh,’

the maximum amplitude a, being the smallest root of

4{ecbs+bic 2¢
4y A0 13) 2 2 =0, 3.55
%o 3(Clb5+b105 “o (€1bs +bycs)dg (3:35)
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According to these equations, exact pulse solutions exist in the subspace whenever (i) d,= ki is,
according to eq. (3.54¢), positive, and (ji) eq. (3.55) has a positive real root. Clearly, eq. (3.54c) shows that
for given b; and c; pulses exist either for £ > 0 or for ¢ <0 but not for both. Whether pulses do indeed
exist for given sign of g, and if so, over what range, is determined by eq. (3.55). Consider again fig. 5
corresponding to the case b,/b, <0 and ¢, > 0 fixed. The signs of the various terms entering egs. (3.55)
and (3.54c¢) are indicated in the different sectors of the plane. For the existence of pulse solutions on the
various line segments, these results imply

* I: pulses exist for all £ > 0;

* II: no pulses exist;

* III: pulses exist for 0 <& <eg,,,,;

» IV: pulses exist for e ;, <& <0; (3.56)
where ¢, and ¢, can be calculated in terms of the b, and c¢;. Note that for ¢ =¢;, and ¢ = ¢,,, the
quadratic equation (3.55) for a3 has a double root, so the pulse ansatz (3.51) reduces to the one for the
nonlinear front, eq. (3.38). Hence at ¢, and ¢,,, there exists a nonlinear front solution (3.38) with
vt = 0. Since by eq. (3.45) 3,07 > 0, the pulses of segment IV always coexist with a positive nonlinear front
v’ > 0. As shown in section 4.2, this means that these pulses are always unstable to the formation of a
front. The pulses in segments I and III only exist for £ >0, when the 4 =0 state (L fixed point) is
linearly unstable.

For the case by/b, > 0 shown in fig. 6 (supercritical bifurcation) the phase diagram follows from the
previous one by applying the symmetry ¢; — —c5, ¢s = ¢5, dy = dy, w = w, dy = d, within the subspace
(3.53). Pulse solutions are then only found in segments I and II of fig. 6, and only for £ > 0. The above
results imply that the pulses obtained from the ansatz (3.51) are never expected to be stable in an ideal
infinite system. From the ansatz (3.51) it is easy to find the functions a(£) and g(¢) (the former turns out
to be given by eq. (3.27)). Niemela et al. [2] have found that the resulting expressions fit their
experimentally observed pulse shapes rather well, but the coefficients d; were fitted and not related to
any starting model. Moreover, in view of the abovementioned instability in an infinite system the
significance of the fit is obscure. In section 7 we shall comment briefly on the possible stability of pulses
in a finite system for £ > 0.

3.3.3. Sources and sinks
For the cubic Ginzburg-Landau equation (b5 =c5=0, ¢ =b, =b; = 1) a simple source solution has
been written down by Nozaki and Bekki [25b] (they call it a hole) in the form

9> =qia’/ai, (3.57a)
ak = ayko(1 —a*/a}), (3.57b)

leading to a solution with v = 0 and

a’(x) = a% tanh?(kyx), ‘ (3.58a)
g(x) =gytanhkyx + w8(x), (3.58b)
kg=3(1+cw)/(1+cf), (3.58¢)
an = (3k0)(c1 — @) /(1 + cyo), (3.58d)

af = (¢, —w)/(c, +c3), (3.58¢)
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where  is the solution of the equation

w?(1~egc,) — (2c, +egcic3+€p)w + c2—eyc, =0, (3.58f)

with e, = 3(1 + c¢?)/(c, + c3). Using eq. (2.65) we indeed verify that this solution is a source, since we
have

q.,= lim g(x) =qysgnk,, (3.59a)

2sgn ko(c; — 0)°
By =2(cy + €3)gn 581 Ko = 3i0a£21‘+ c%)) >0, (3.59b)
the condition for a source. We shall test the stability of this solution in section 6.

For ¢,,c; —> », one of the roots of eq. (3.58f) becomes © = —c;, which to leading order implies
k2=w/2c,, gy =0 and a = 1. After a rescaling of time it is easily seen that eq. (3.51) reduces to the
fundamental dark soliton (3.21) of the nonlinear Schrodinger equation in this limit.

A more complicated domain boundary (N, — N, orbit) for the cubic equation was aiso found by Bekki
and Nozaki [26]. Contrary to our previous examples this solution is not simply expressed in terms of
polynomials g(a?) and x(a?), but rather in the explicit form

A =az(M)exp(if§cj(§’)d§’), (3.60a)

1+ ™ 2xof

4(¢) = 3{a.+q_ tanh k€], (3.60b)



W. van Saarloos, P.C. Hohenberg / Fronts, pulses, sources and sinks in CGL equations 337

where a,, x,, g, and g_ are real and z is complex. Insertion of eq. (3.60) into the ODE for A(),
(1+iw) A +v8, A+ (1 +ic,)82A - (1—icy)|A’A =0, (3.61)

leads to an algebraic equation with terms of order 1, e 2%0¢, ¢~*u¢ and e % (and a common
denominator (1 + e ~?v¢)?), Equating the 4 coefficients to zero we find 4 complex equations in the 8 real
coefficients a,, x,, 9., g_, Re z, Im z, w and v, thus a priori a discrete solution. The equations found in
this manner are not in a convenient form for analytic evaluation, but a numerical solution reveals that
they in fact lead to a continuous family parametrized by v.

Bekki and Nozaki [26], in a clever application of Hirota’s method of factorization [25b], have
succeeded in finding the analytic solution by parametrizing the ansatz (3.60) as

A(¢) = el9+/2GF~(*im, (3.62a)
G = a,(e vfo + z g ~<0t), (3.62b)
F= eKuf + e"‘of’ (362C)

with the real parameter a replacing g _. Inserting the form (3.62) into the differential equation (3.61) and
using the relations

F3,G = GO F + 2kga,(1 — z), (3.63a)

(3: F)(3,G) = k3GF — 2xja,(1+z), (3.63b)
we arrive at the relation

[1+ie+ 3ivg, — $(1 +ic,) (g + 4kda?)| F2 —ia[v +i(1 +ic,)q, | FO,F

—(1—ic;)IGP — 4k3(1 +ic,)(2 + ia)(1 + ia)
+2xk0a,{[v +i(1 +ic) g, ] (1 —2z) + 2ko(1 +ic,)(1 +ia)(1 +2)}F/G = 0. (3.64)

Letting £ — + o we equate the coefficients of e *2<0¢ to zero to find the fixed point conditions,

1+iw+ivg,— (1 +ic,)g? — (1 —ic;)a2=0, (3.65a)

1+iw+ivg, — (1+ic,)q?— (1 —ic;)a3lz|* =0, (3.65b)
where

a,=3(9.-9.), a,=%(q.+q_), (3.66)

are the fixed-point wavevectors, and

g_= —2k,a. (3.67)
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We are then left with an expression of the form
C,+C,F/G=0, (3.68)

where C, , are complex constants, independent of £. The only solution of eq. (3.68) is C, =C, =0, i.e.
ad(1+1z+z+2*) —a~2(q, — ¢,)*(1 +ic,)(2 +ie)(1 +ia) /(1 —ic;) =0, (3.69)
[v+i(1+ic))(g +a5)](1-2) —a Y a,—q)(1 +ic))(1 +ia)(l - ic3)—l(1 +2)=0. (3.70)

We thus have again 4 complex equations (3.65a,b), (3.69) and (3.70) in 8 real unknowns, i.e. in general a
discrete solution. However, the imaginary part of eq. (3.69) yields

a=d,= —d,+ (2+d2)"?, (3.71)
dy=3(eres =1 /(er+ea), (3.72)

and from eq. (3.65) we have the general fixed-point relations

ai=lzl"a3=1-q}, a3=1-4g}, (3.73a)
w=c,—0v(1+q,4,)/(q, +q,), (3.73b)
v={(c; +c3)(q +42). (3.73¢)

Using eq. (3.73¢) we solve eq. (3.70) for z to find

. q; +a,—n(4q, —q,)
4, +a,+n(4q, —4,)

n=—-1-ia")(1+ic,)/(1—icy) =n,+in,, (3.75)

=|z|e®®, (3.74)

and note that the imaginary part of eq. (3.69) together with eq. (3.75) yield the relation Re (2 + ia) = 0,
which implies

a=2n./7m. | (3.76)

Equation (3.74) can be transformed to

(a1 +a) di+(a,—a;)'d} =1, (3.77)
2n. 2 __ 42
tan § = T'z'(qz qu) 5 (3.78)
(a2 +4q,) —Inl"(a.—q,)
di=(1+m.)/4n,, (3.79)
di = (Inl> +n,)/4m,, (3.80)

where the sign in eq. (3.71) may always be chosen such that 7, > 0, thus assuring that (3.79) and (3.80)
are positive. We are now left with the real part of eq. (3.69), which turns out to be satisfied identically,
when egs. (3.73)-(3.80) hold, thus completing the analytic solution of Bekki and Nozaki [26], which
corresponds to a one-parameter family of solutions. (It turns out that their version of eq. (3.78) is
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incorrect. The numerical values provided in their fig. 1b agree with eq. (3.78) above). To summarize, the
solution (3.62) is found for any |v| < v, =Kc, + ¢3)/d,| by calculating a from eq. (3.71), n from eq.
(3.75), q, and q, from egs. (3.73c), (3.77), (3.79) and (3.80), w and a, from egs. (3.73), k, from eq. (3.67),
and @ from eq. (3.78).

We may now verify that the family (3.64), parametrized by v, represents sources. Indeed, assuming
ko> 0 we have for £ - +®, gy = g,, and we note that n, > 0 implies the condition a(c, + ¢;) <0. Then
egs. (2.65) and (3.67) lead to

sgn iy, = sgnf(c, + ¢3)(q, —a,)] = —sen[axy(c; +c;)] =sgnky >0, (3.81a)
which is the condition for a source. For x, <0 and ¢ - + we have gy =g, and
sgn i, = sgn[(c, + ¢3)(g; — a2)] =sgnaky(c; +¢;)] = —sgnxy >0, (3.81b)

once again the condition for a source.

- The existence of a family of sources for general values of the parameters ¢, and c; of the cubic
equation violates the counting arguments presented in section 2.3.2.3, and in our view presents a serious
challenge to our understanding of phase space methods as applied to coherent structures. We believe
that it is the special symmetries of the ansatz (3.60) that allow an escape from the counting arguments,
which assume ‘““‘generic” intersections of manifolds in phase space.

In fact, the existence of a family of solutions of the form (3.60) would be equally surprising if they
turned out to be sinks: the counting argument of section 2.3.2.3 for the existence of a family of sinks is
based on the extra degree of freedom provided by the wo unstable directions of the outgoing fixed point
N, (+ + — ). However, since the solution (3.60) can be expanded in powers of e * 20, the corresponding
trajectory approaches each fixed point along a fixed eigendirection. From naive counting, one expects
such solutions to form a discrete set irrespective of whether they are sources or sinks.

Let us discuss the symmetry of eq. (3.60) in more detail. Besides the usual parity symmetry (2.40) of the
dynamical system (2.5), which translates to

P: v>—-v, q,— -4, g, —q,, K= —Kg, (3.82)
the ansatz (3.60) has a “relabelling” symmetry,
R: g,-4q,, al—a}, k= —kg, z—2z7\ (3.83)

Moreover, from the form of eq. (3.60) it follows that the unstable eigenvalue at the N, (— — +) fixed
point A"’ =2k, is equal and opposite to the stable eigenvalue A’ = — 2k, at the N_(+ + —) fixed
point*!3, Surprisingly, the relation A= —A{” turns out to be sufficient to determine the orbit
completely. Indeed, for a given v and w, the dynamical system (2.5) for the cubic equation has two N
fixed points. Now consider v fixed with vl < v, =|(c; + ¢3)/d,|. For arbitrary w, the eigenvalues at the
two fixed points are different; now adjust w so as to satisfy the symmetry A" = —A{). The flow out of
and into the two fixed points along the two corresponding eigendirections is thereby determined, but we
see no a priori reason why these two one-dimensional manifolds should intersect. Nevertheless, the
existence of the family of solution (3.60) shows that they do intersect for arbitrary ¢, and ¢, and for

#1331t follows from the discussion of section 2.2.3 that the N_ fixed point has a (+ + — ) structure for small v. For larger v, in

particular close to the maximum v of the family (3.60), the N_ fixed point is often found to have a (— — — ) structure. In these
cases, the naive counting allows for the existence of a two-parameter family of source solutions.
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arbitrary |vl<wv,,,. Apparently imposing a symmetry at the fixed points guarantees that it will be
maintained all along the trajectory in this case!

While we have noted these symmetries, and we believe that they are related to the existence of a
family of sources, we have been unable to find an argument showing directly how the symmetry leads to a
breakdown of genericity in phase space. Presumably this breakdown is limited to the cubic equation, but
it could also lead to a family of moving pulses generalizing the solution of Hocking and Stewartson [24].

4. Marginal stability conjectures and selection criteria

Having described a large class of exact solutions of our basic system (2.10), and having provided
explicit expressions for some of these, we wish to investigate their dynamical properties, i.e. their stability
and the likelihood that they will be reached from typical initial conditions. Our major hypothesis is that
in certain cases to be specified the exact front solution v', o', eq. (3.40), controls the dynamics of the
PDE (2.10) for a large class of initial conditions. Since this hypothesis is related to earlier marginal
stability conjectures we first summarize these.

4.1. Linear marginal stability

The linear marginal stability hypothesis has been applied quite generally to fronts advancing into
unstable states (¢ > 0) about which the dynamical equation can be linearized. Let us introduce the
complex dispersion relation, analogous to eq. (2.25) for the dynamical equation linearized about the
unstable state

2(Q)=0N,+i0,, Q=q —ik.. (4.1

Then the linear marginal stability hypothesis [9-14] states that the selected velocity v* has the property
that in a frame moving with that velocity a disturbance will neither grow nor decay. As shown in ref. [11]
its value can be obtained from the function £2(Q) = £2(q, , k, ) by first using the relation

9, |,

=0, (4.2)

to define the functions g,(« ), 2,(x) = 2,(q,(x,), ), and a family of “stable” fronts with velocities

v(kL) = —82(ky) /K. (4.3)

Then the chosen front v™*, «§, g is obtained from the marginal stability condition
dv
T, =0, (4.4)

as the minimum of the curve v(«).
For the complex Ginzburg-Landau equation the linear dispersion relation is given by eq. (2.25) with

R=w+Qu=w-+ (g, —ixk ). (4.5)
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The g, obtained from eq. (4.2) is given by
4= —c k. /by, (4.6)
and the branch of solutions (4.3) is
v(Kk) = —xy /b, —exg!, £>0. (4.7)
Thus the marginal stability values obtained from eq. (4.4) are

1,2

v*=2(e/b;) ", (4.8a)
Kt=—(be)”, (4.80)
w* = —ce/b,, (4.8¢)

and a solution only exists for € > 0, i.e. when the A4 = 0 state is unstable.

It is well known [9-14] that the linear marginal stability mechanism also applies to models which do
not admit uniformly translating front profiles, such as the Swift-Hohenberg equation (1.7). The new
feature of the complex Ginzburg-Landau equation is, however, that this property of the linear front (i.e.
whether it is uniformly translating or not) depends on parameters. To see this, note that with v* and »*
given by egs. (4.8), egs. (2.19) become

e =b,g52+bsa’? +bsal’, (4.92)
- \1/2
-ce/b, + 2(e/b1) / q% =c,q% - c;a%? — csall. (4.9b)

A necessary condition for the existence of a uniformly translating solution is that these two equations for
ay and g¥ should have a solution. It should be stressed that these conditions are different from the
“conservation of nodes” argument [11] first used by Dee and Langer [9], to relate the parameters in the
leading edge of the front to the wavelength Ay of the nonlinear state behind the front, which yields
2wAN! = Re w*/v* — g}. The latter relation only holds for nonuniformly translating fronts; for profiles
of the uniformly translating type (2.4), conservation of nodes is trivially satisfied in the frame moving with
the front. From eq. (2.43) we find

v =2¢,(e/b))" " <v*, (4.10)

so that if eq. (4.9) has a solution, the results of section 2.3.2 imply the existence of a two-parameter
family of uniformly translating fronts containing the linear front v* as a member. For the cubic equation,
(2.10) with b, =b; =1 and c¢5 = bs =0, the solution of eq. (4.9) is

L (1+c)-(+ch)”

o et , : (4.11a)
cics—1) + (1+¢2)1+¢2)?

(aty? =2l D * (1 ) (e’ (4.11b)
(c1+c¢3) '

Since a solution of eqs. (4.11) exists for any value of ¢, and c,, we generally expect that there will exist a
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corresponding uniformly translating solution of the cubic Ginzburg-Landau equation. Whether this
solution will actually be observed depends also on the Benjamin-Feir stability of the nonlinear state
(4.11) (see e.g. ref. [25a)).

To analyze the implications of eq. (4.9) in the case of a subcritical bifurcation, let us choose the scaling
b, = —b;=bs=1 and first consider the behavior in the two limits £ - 0 and ¢ = ». For ¢ —» © we can
solve for a¥ as a function of g% on the upper branch (2.22), provided —ye — § <g¥ <ye— 1. By
investigating the left-hand and right-hand sides of eq. (4.9b) as a function of g7 in this interval, it is easy
to see that eq. (4.9) always has a solution in this limit. This is analogous to what was found in the cubic
case. For £ = 0, on the other hand, we find by eliminating g% that the equations only have roots with
1 <a¥? <1 in the parameter ranges

—2c3tc¢,<c5< —cy,
—c3<c5< —2¢5+ ¢y (4.12)

It follows that there are large sectors of parameter space where fronts propagating with the linear
marginal stability speed v* are not uniformly translating for & — 0 (the size of these sectors shrinks with
increasing ). We shall return to this question in section 4.2 below and in section 6 where we show some
numerical examples of nonuniformly translating fronts. In the examples that we discuss phase slips occur
in the front region, and we have found no way to express the wavenumber g, of the nonlinear state
behind the front in terms of v*, «} and g}.

As noted by previous authors [9-11], the linear marginal stability criterion only applies for fronts with
localized initial conditions, e.g. A(x,0) =0, x > x,. For a front decaying sufficiently slowly as x — +x,
e.g. for

A(x,0) ~e M, k] < x*l, (4.13a)
the selected front velocity will be
v(K) = —K/b, — /K > v*. (4.13b)

This is an example of a violation of the linear marginal stability criterion caused by a particular initial
condition, and also an illustration of the stability of the fronts on the branch v(k, ). On the other hand,
this branch is only accessible from a restricted (and somewhat artificial) set of initial conditions, and it
has been termed “irrelevant” by Powell et al. [43]. These authors point out that in a number of cases (e.g.
the real Ginzburg-Landau equation, ¢; =0, with oscillatory initial conditions) the approach of the
velocity to the selected value v* is via a set of unstable fronts with v < v*, rather than along the stable
set v{x ). Moreover, it has been shown by one of us [11, 14] that for the real Ginzburg-Landau equation
with Im 4 = 0, nonnegative initial conditions also lead to fronts whose velocity approaches v* from
below.

4.2. Nonlinear selection

Another violation of the linear marginal stability criterion which we term “nonlinear selection” occurs
when there exists a discrete front, with a velocity v' and a spatial decay rate |«}| satisfying

vt >v* and |kl| > |« (4.19)
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It was noticed earlier for a number of models [9, 11], and proved rigorously [27] for the nonlinear
diffusion equation (2.66), that when the conditions (4.14) are satisfied it is indeed the front v%, x| that is
selected over the linear front v*, kF. Moreover, this is consistent with an extended (nonlinear) marginal
stability hypothesis [11] since in that case the front v',«] is still the stable one with the minimum
velocity, i.e. fronts with v > v are linearly stable, while those with v < v" are unstable. Our conjecture [8]
is that this result applies quite generally, and moreover, that for the complex Ginzburg~Landau equation
(2.10) the relevant discrete front is the one obtained from the ansatz (3.38), which we termed the
“nonlinear front”#!2,

In particular, recalling the L fixed-point structure (2.44) we see that if for ¢ >0 and v >v* > v, we
choose the orbit going to L_, rather than L _,, i.e. the discrete orbit rather than a member of the family,
we may satisfy eq. (4.14) since |« ,| > [k ,|. Furthermore, as will be discussed in section 6, for large ¢
the nonlinear front (3.40) satisfies v > v* but not |k'| > |«™*|, so it is not selected. When this occurs the
nonlinear front flows into L_,, and is therefore a member of a two-parameter family.

For £ <0, on the other hand, there is no family of fronts emanating from N _, i.e. no linear front v*,
and our conjecture is that v™ will be selected whenever such a front has v* > 0. When vt <0, or when
the ansatz (3.38) does not lead to a solution with real v and , we conjecture that pulse solutions will in
general exist, at least for large enough & < 0, though their stability depends on initial conditions. When ¢
becomes sufficiently negative, i.e. ¢ <e, for some £, <0, the pulses no longer exist or are always
unstable, and an initial condition with 4 # 0 decays to A = 0.

Let us briefly discuss fronts emanating from an N fixed point. Since these are constructed from N
states with the group velocity &, (in the frame moving with velocity v) positive (see eq. (2.52) and
footnote 9), we argue that a small disturbance will overtake the front and will therefore destabilize it. We
thus conjecture that fronts emanating from N, are never stable. This is why we did not study their
multiplicity in great detail in section 3.3.1.

In summary, our conjectures on the evolution of a localized initial condition can be stated as follows
(see fig. 7):

* For & > 0, we calculate the linear front v*, «} from eq. (4.8) and the nonlinear front v%, x{ from eq.
(3.40). The linear front will be selected unless there exists a nonlinear front with

vt>v* and k]| > |x}l, . (4.15)

in which case the nonlinear front will be selected. In general we expect linear marginal stability at large ¢
and we define &' such that v* is chosen for £ > &' and v' is chosen for ¢ < &'. If no solution of egs. (3.38)
is found satisfying (4.14) we have ¢" = 0.

* For ¢ <0, if there is a solution of egs. (3.38) with v* > 0 near £ = 0, and if €4 is the value of £ where
v" =0, then the front v* will be selected for &; < & <0. When v <0 (i.e., in view of (3.45), for £ <&,) or
if egs. (3.38) yield no solution with real v, then the situation is more complicated. The solutions depend
more sensitively on initial conditions, but in general we expect to find stable pulses over some range
£, <& < g5, while for € <e¢, an initial disturbance A(x,0)# 0 will decay to zero. Note that in general
pulses only exist as a discrete set, and this set is expected to contain stationary pulses (v = 0). Since we
can calculate v" analytically from our ansatz via eq. (3.40) we can predict the value of ¢, for given {b,, c;},
but we have no such general prediction for ¢,.

A useful way to illustrate the implications of these rules and conjectures is to plot the regions where
v’ (e = 0)> 0 in the {c,, c5, c5} parameter space. This is shown in fig. 8 for the three cases ¢, =0, ¢, = 2
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Fig. 7. Illustration of front and pulse selection on a schematic bifurcation diagram and plot of front velocity vs. & for (a) the
supercritical and (b) the subcritical case. The uniform amplitude nonlinear state has amplitude ay, and wavevector gy = 0. In the
supercritical case (a), linear marginal stability is expected to hold in general, with a velocity v* which vanishes at £ =0. As
explained in the text, the nonlinear state created behind this front has amplitude a% and wavevector g. In the subcritical case (b)
the nonlinear front, when it exists, has velocity vt and leaves behind a state with amplitude aL, while the linear marginal stability
front has velocity v* and in simple cases an amplitude a¥. In each region of ¢ the selected front is indicated by a solid line, while
the other one is drawn as a dashed line. Stable pulse solutions are found in the range &, <& <&, indicated by crosses, where €3 is
defined by v%(e;)=0. For £ <¢, a disturbance typically decays back to the a = 0 state.

and c, = 10, where these regions are contained between the solid lines in the (c;,cs) plane. Since
according to eq. (3.45) d,v" > 0, the upper range of stability of pulses in these areas is g5 <0. Outside
these regions, there are no nonlinear fronts with positive speed vt for any £ <0, and hence stable pulses
may exist up to &5 =0, and for &> 0 fronts will propagate with speed v*. According to eq. (4.12),
however, linear marginal stability fronts can only by uniformly translating for € 10, in the area between
the dashed lines of fig. 8. For ¢, =0, fig. 8a shows that this area falls inside the range where
vt (¢ = 0) > 0. Thus, depending on c; and cs, either uniformly translating nonlinear fronts or nonuni-
formly translating linear fronts can arise for € 0. As fig. 8 illustrates, for increasing values of ¢, the
regions of parameter space where one may observe uniformly translating linear fronts, will expand. Note
also that as mentioned earlier, for increasing & the parameter ranges where vt(e) > v*(e), will shrink.

According to fig. 8, uniformly transiating fronts typically only exist in a band near the diagonal
cs = —c5. Apparently, in the subcritical case smooth front propagation for £ =0 is only possible if the
nonlinear dispersive terms roughly cancel each other. Furthermore, according to the rules formulated
above, pulses will remain stable up to &; = 0 outside the solid lines. Hence a strong effective nonlinear
dispersion promotes the stability of pulses.
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4.3. Effect of Benjamin~Feir instability

We have already excluded from consideration fronts emanating from N, fixed points, because we
argued in section 4.2 that they would be unstable. It is still possible, however, even with N_— L _ fronts,
to have the wavevector gy of the N state be outside the band of Benjamin~Feir stability determined by
(2.32). In contrast to the “nonlinear instability” associated with the positive group velocity ¥, of fronts
emanating from N states, the Benjamin-Feir instability is “linear”, and so does not eliminate the
corresponding N_— L_ front completely. Indeed, since we have found U, to be always negative (see
after eq. (3.46)), the instability in the region behind the front is only convective in the frame moving with
the front. As in the case of spiral waves in two dimensions, where the range of stability extends into the
Eckhaus unstable regime because the instability is only convective [45], the emergence of a convectively
unstable state behind the front need not necessarily destroy the propagating front. Nevertheless, we are
no longer dealing with a uniformly translating solution, so we must add to our selection criteria the
proviso that the N _ state be in the stable band. It will turn out that if gy is outside the stable band, but
not too far outside, then the calculated v" is often still a good approximation for the average velocity of
the chaotic front produced. Since we have an analytic expression for the Benjamin—Feir stability band,
eq. (2.32), we can make precise predictions concerning this aspect of front stability, and verify these
predictions numerically.

Another difference between the linear Benjamin—Feir instability and the nonlinear instability associ-
ated with front-pulse competition, is that the former does not show the approximate symmetry along the
diagonal ¢; = —c, displayed in fig. 8. In particular, since effects of the nonlinear dispersion terms are
additive in linear stability considerations, we find (cf. eq. (2.35)) that for ¢, > 0 nonlinear amplitude
states ay in the first quadrant of the (c;, ¢5) plane tend to be unstable, while those in the third quadrant
tend to be stable. As discussed in section 6 below, the resulting dynamical behavior is indeed quite
different in these two quadrants.

4.4. Implications of the terms f, and f; in eq. (2.1)

In the analysis of the multiplicity of solutions in section 2.3.2 on the basis of counting arguments, we
took f2(|A|2)= f3(|A|2)=0 in eq. (2.1). Although it is straightforward to include these terms, the
analysis becomes quite cumbersome, and we confine ourselves here to a qualitative discussion of the
resulting change.

Since constant terms in f, and f; can be eliminated by a Galilean transformation, we will assume
£>(0) = £(0) = 0 in the present discussion, so that the L fixed points are unaffected by these terms. The
counting argument will therefore once again lead to a discrete set of pulse solutions. However, the
symmetry (2.54) which in the case v =0, f, = f, = 0 gives rise to the stationary pulses, is absent if f, # 0
or f, # 0. Thus, as emphasized by Brand and Deissler {44], for f, + 0, f, # 0, pulse solutions will typically
have a nonzero velocity; we show in section 5 that its value can be calculated perturbatively starting from
the quintic derivative Schrédinger limit (2.15).

The N fixed points are of course affected by f, and f;: although only f, enters the relation between
ay and gy, both terms alter the stability of the N fixed points in the dynamical system (2.5).
Nevertheless, for large v terms proportional to v still dominate the expression for ay, By and yy in eq.
(2.45), and in analogy with the results in section 2.2.2, we expect a discrete set of fronts for large v. For
small v, however, the stability of the fixed points may be very different. In particular, since the symmetry
(2.40) is now absent, and since the sign of ay is no longer the same as the sign of v, it may be possible
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for the N fixed point to have a (+ + +) structure for small v. This would imply the existence of a
two-parameter family of fronts in the subcritical case for € < 0.

In spite of these complications, it is easy to see that the nonlinear front ansatz (3.38) still solves the
dynamical system (2.6) if f, and f; are of the form

fo=(s,+1ir,)a?, f3=1(s;3+1iry)a?, (4.16)

since upon substitution into eq. (2.6), these terms only generate terms of a form already present in eq.
(2.6). Thus, the nonlinear front velocity v' will be given by expressions similar to eq. (3.40). We have not
analyzed these equations, but they are worth investigating further since, as will be discussed in section 7,
the more general model is useful for understanding convection experiments.

5. Perturbation expansions

Perturbation expansions of pulse and front solutions about soluble cases have been carried out by
many authors, either starting from the real equation ((2.10) with f|;=f, =f, = 0) for which there is a
Lyapunov function [29-31] or starting from various Hamiltonian limits [15-19]. There is a large literature
on perturbations of the integrable nonlinear Schrodinger equation, exploiting the inverse scattering
method [15], or using more elementary techniques [17-19]. We wish to start from the cases considered in
section 3.2 which are not integrable as PDE’s but for which the dynamical system (2.5), (2.6) can be
integrated. Specifically, we choose the generalized derivative Schrodinger equation, for which eq. (3.22)
holds. As shown above, the system possesses a double family of pulses indexed by v and w, and in some
cases also a one-parameter family of fronts indexed by v. It also has two conserved quantities .#° , €q.
(3.1), and %, eq. (3.4). The perturbations we consider break the conservation laws and pick out discrete
members of the above families. A general way to calculate the effect of such perturbations is to consider
the slow modes of the dynamical evolution operator, and to obtain solvability conditions from the
equations of motion. As shown for example by Elphick and Meron [17] these conditions lead to nonlinear
equations for the parameters v and w (the constants of the unperturbed system) whose stable fixed
points are the values selected by the perturbation. In our case we extend the approach of Fauve and
Thual [18] who use a simpler method based on the conserved quantities .#" and £, and arrive at
equations for v and w similar to those of Elphick and Meron [17]. Note that unlike the case considered
by the latter authors, for our system the effect of the perturbation is not to break dilatation and Galilean
symmetries, but to destroy the Hamiltonian nature of eq. (3.15) and to violate the conservation laws (3.3)
and (3.5). As mentioned in the introduction, our example shows that breaking the symmetries is
insufficient to pick out discrete v and w. (Although the example of eq. (3.15) with f5 =0 but f; #0
shows that violating the conservation laws does not necessarily destroy the double family of pulses, in the
case treated below it does.)

5.1. Perturbation about the quintic derivative Schrédinger limit

Let us begin by considering the equation

oA =124 +if(141°)A+3,[ f,,(141*) 4] +bB, (5.1a)
B=8A4+f,(41*)A=B.+iB,, : (5.1b)



348 W. van Saarloos, P.C. Hohenberg / Fronts, pulses, sources and sinks in CGL equations
i.e. we take
c,=1, b =b<1, (5.2)

and for simplicity we have set f,, = f; = 0 in the perturbation B (5.1b), which is considered to be #(1)
[i.e. flr =b"'f,, =#(1)]. The unperturbed system has two conserved quantities, .#° and 2, egs. (3.3),
(3.5), but no nontrivial symmetries such as Galilean or dilatation invariance. We calculate the effects of
the perturbation bB on normalizable solutions by calculating the time derivatives 8,.#" and 3,4 which
are of #(b). Indeed, using the equation of motion (5.1) and the definitions (3.1), (3.4), we find

8,4 =b [(BA* +B*4)dx, (5.3a)
8,5 = 2b [[iB*(3, 4) — iB(3,4*) + fo,( AB* + BA*)] dx. (5.3b)

We therefore introduce a slow time variable
T=bt, (5-4)

and make the ansatz

A(x,t) =e D (£,0(T),w(T)) +bA,, (5.5)
where
Ay(£) =a(£) e¢® (5.6)

is the double family of pulse solutions, e.g. (3.25)-(3.28) indexed by v and w, that exist for b = 0. The
only dependence of the first term in eq. (5.5) on the perturbation b is via a slow time dependence
v(T), w(T). Inserting the ansatz (5.5) into eqs. (5.3) and neglecting the term b4, we find in lowest order
in b,

84 =2[B.adg, (5.7a)
82 = ~4[[(a+f.)aB, ~aB]d¢, (5.7)
Br=a”_q2a +f1ra’ (5.7C)
B,=2ga' +q'a. (5.7d)

We now make the particular choices

fi.=&—bsa*—bsa*, (5.8a)
f2r=s0+s2a2$ (58b)

fii=c3a® +csat, (5.8¢)
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with

E=g/b, by=by/b, bs=bs/b, (5.9)
which, as mentioned earlier, are considered to be of order unity. Note that the Hamiltonian limit of the
complex Ginzburg-Landau equation (2.10) corresponds to the case f, =0, but we keep f,, # 0 in the
following analysis. The zeroth-order solution (5.6) has a(¢) given by (3.25a) and

q=1(so+v)+ 3s,a° =g, +q,a’. (5.10)
Inserting these solutions into egs. (5.7) we obtain

3N = —2Ng + 2(8 —a2) Ny — 2(b3 + 2040, ) Nio — 2(bs + a3 ) Neo,» (5-11a)

rP = —2(qy+50)r# — %‘12[("S —q3) Ny~ (53 + zqoqz)Neo - (55 +‘122)N80]
+ 84y Ny, + 440, Ny, (5.11b)

where we have introduced the notation

N = [[a()]'[@(£)]" d¢. (5.12)

On the other hand from the definitions (3.1) and (3.4) we find, for A(x,t) given by (5.5) and (5.6) the
expressions” !4

N =Ny, (5.13a)

P=2(qy— V)N, — 3g,N,,. (5.13b)

Since the integrals N,,, are known functions of v(T") and «(T), we obtain from eq. (5.11) a system of
coupled nonlinear first-order ODE’s for v(T) and (7). At the fixed point 3,0 = 3;@ = 0 we have

3, P =0;4 =0, (5.14)
from which we obtain two relations determining v and w.
For the quintic-cubic Schrédinger equation (s, =s, =0, g, = 1v, g, = 0) we find from egs. (5.13) and
(5.11) '
30 = —4uNy,/Ny. (5.15)
Now by Galilean invariance (3.9) of the unperturbed system we have
Np(w,0) = Ny, (@ + 302,0). (5.16a)

#14We use the notation .#" and & to denote functionals of A(x,¢) and 4*(x, t), and N,,, for their values when the particular

ansatz (5.6) is used.
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Moreover, it is easy to see that
Nypoam(®,0) >0 for 0<|o| <wgy, (5.16b)

so the only fixed point solution of eq. (5.14) with nonzero amplitude is v =0, in accordance with the
result of Elphick and Meron [17] for perturbations of the nonlinear Schrédinger equation. Our derivation
generalizes their conclusion to the case of the quintic-cubic Schrédinger equation, and allows for general
perturbations of the form (5.1b). The amplitude of the pulse will then be given by the fixed point of eq.
(5.11a), which by (5.13a) may be written in the form

drw = 2(3, Ny) _l[éNzo - B3N40 - I;SNGO - Noz] . (5.17)

We shall investigate this equation in more detail in the next subsection.
Turning to the quintic derivative Schrddinger equation in the simple case s, = 0, i.e. taking only s, + 0
in eq. (5.11), we find
Nogdrv — 4sg07r Nyy = —4(sy + ) Ny, (5.18a)
87Ny = ~ 2Ny + 2[ = 1(59 + 0)’| Ny — 253Ny — 25 Neg. (5.18b)

The fixed point values of v and w are given by

V= —5g, (5.19a)
w=w,, (5.19b)

where w, is the fixed point of eq. (5.17) valid for v = s, =0, since the dependence of the N, on w, s,
and v is, according to egs. (5.10) and (5.16a), via the variable w + 3(s, + v)? for the Galilean invariant

case 5, = 0.
For the case s, # 0, s, # 0, egs. (5.11) are coupled first-order nonlinear ODE’s for v(T') and (7T) of

the form

G970 + G0 = Gy, (5.20a)

G970 + Gy = Gy, (5.20b)
with

Gy =9, Ny, G, =29,Ny, (5.21a)

Gi= 2[(§ —q3)Ny — (53 +2404, )Ny — (55 +a3 ) Neo = Noz] ) (5.21b)

Gy =2(qp~ )8, Ny — 3623, Ny — Nog, (5.21¢c)

Gy =2(dp — )3, Ny — 3028, Ny, (5.21d)

Gyp=—4(3qy—v)(é —qf) Ny + [4(340 - U)(Bs + 2‘1042) — 2q,(8 - qﬁ)]Nw
+ [4(3‘10 - U)(l;s +4q3)+ %‘12(53 + 2‘10‘12)] Ngo

+ %qz(és +q3 ) Ngy + 4(5q, — v) Nop + 449, Ny, (5.21e)
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where according to eq. (5.10) g, = 3(s, + v) and g, = 3s,, and the N, are known functions of v and w.
This system will in general reach either a fixed point or a limit cycle, with a pulse velocity of order unity,
which depends in general on all the parameters of the unperturbed starting equation (2.14). We have not
analyzed eq. (5.20) in detail but we expect nontrivial results to emerge, analogous to those observed in
reaction-diffusion systems [46].

5.2. Pulses and fronts in the perturbed quintic-cubic Schrédinger equation

Let us return to the analysis of eq. (5.17) appropriate to the quintic-cubic case where s, =s, =0, and
v=_0,

dre =2[8wN20]_'[€N20—53N40—55Nw—N02]. (5.22)

From the general formulas

(o) = (7)) () &) e, (5:239)

lw] ) ( 2 |\ d gi—1 d?
N, =\l |11+t |5
(@) (201 : s+1)dg + (L1 +1)(3 +2) dg? Nu+ 205 (5.23b)

for ! even, where

g=(sgnc3)[l + (sgnes)@] ™', (5.24a)
= 16lcsw| /3¢5 = lw| /@,y (5.24b)
o(g) =2(1—gz)—]/zarctan[(l—g2)1/2(1+g)_1], cs>0, (5-24c)

s(2)=(e2-1)""m[(1+g+Ve?=1)/(1+2- Ve~ 1), e<0, (5.24d)

we obtain the limiting formulas

Nl ~|w|(l—1)/2, N,2~|w|(l+3)/2, ‘5<<1, cs>01 (5-255)

No~lol™'%, Ny~lwl? &<1, ¢;<0, c5>0, (5.25b)
and

Ny~ 1w]"27%, Ny~ 1ol 631, ¢>0, (5.26a)

Ny~ 2/¢5(3¢3/3¢5)" " In(@pae — l0l) ™2,

Nj, ~constant, |w| > wq,,, ¢5s<0, c;>0. (5.26b)
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Fig. 9. Summary of possible scenarios for the existence and stability of pulses as determined by perturbing around the
quintic-cubic Schridinger equation (2.12). In each quadrant where pulses exist, a cross on the |w| axis denotes a fixed point and an
arrow the direction of the flow according to eq. (5.22).

Although it is straightforward to calculate the various terms in eq. (5.22) and obtain the dynamics of
w(T) in detail, this is not necessary to gain a qualitative understanding of the existence and stability of
pulses in the various quadrants of the (c;, ¢5) plane discussed in section 3.3.3. Our aim is to describe the
fixed-point structure of eq. (5.22) qualitatively as & = £ /b, varies, with b, =b,/b, <0, bs=bs/b, > 0.

In quadrant I (c;> 0, ¢; > 0) we have 9,,,N,,> 0, so sgn 3;|w|=sgné for |w| — 0 and sgn 3;|lw| <0
for large lw| when Ny, dominates. This means that there is at least one fixed point for £ > 0. For £ <0
there are either no fixed points (this is the case for large |£|) or a pair of fixed points*!>, one stable and
one unstable, at £, <& < 0. The unstable fixed point goes to w = 0 at £ = 0 and there is only the “stable”
fixed point for £ > 0. The two different scenarios are illustrated by a flow diagram in |w| in fig. 9, and by a
schematic bifurcation diagram for the pulse amplitude in fig. 10, where stable and unstable solutions are
represented by solid and dashed lines, respectively. A similar analysis leads to the bifurcation diagrams
shown in figs. 9 and 10 for quadrants II (c; <0, ¢5 > 0) and IV (¢; > 0, ¢5 < 0). (As shown in section 3.3.3
there are no unperturbed pulses in quadrant III.)

It should be clear from the above discussion that the stability we are establishing only refers to the
particular class of perturbations compatible with the ansatz (5.5). Thus pulses are “stable” from this
point of view for £ > 0, even though it is clear that arbitrary perturbations about the A =0 state will
grow for £ > 0 since this state is linearly unstable.

Let us ask whether we can draw any conclusions about front selection from the perturbation theory.
We note first that since front solutions are not normalizable, a rigorous treatment must use the more
general formalism mentioned above which involves solvability conditions. Furthermore, the analysis is
complicated by the existence of at least two characteristic times in the evolution of v(T), the relaxation
time at the edge of the front and the diffusive time with which a perturbation changes the amplitude of
the N state created by the front (see ref. [29]). We shall circumvent these difficulties by modifying the

#lsAlthough we consider this unlikely, we have not been able to rule out the existence of more than one pair of fixed points.
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Fig. 10. Summary of the bifurcation structure of pulses as implied by the results of fig. 9. Dashed lines indicate unstable pulses
within the dynamics of eq. (5.22), and solid lines stable pulses.

pulse perturbation theory to obtain a nonrigorous estimate of the front velocity in quadrant IV where a
family of fronts (3.36) was found in the unperturbed system.

Let us take as our initial condition a pulse state made up of a positive and negative front (3.36) with
velocities +u; (to be determined), the edges being placed at x = + 1L, respectively (see fig. 11). This
state is an approximate pulse solution with velocity v, = 0, but with wavevectors +gy = + 30 for x 20,
and a discontinuity in phase at x = 0. We now let this solution evolve according to egs. (5.18), taking
g5 <& <0 in scenario (a) of the fourth quadrant of figs. 9 and 10, with ¢ | ;. For £ > ¢,, the stable fixed
point which exists for & < £, and for which |w| = w,,,, in the limit & 1 &5, has just disappeared. Since for
€ T £ the shape of this pulse approaches that of two separate stationary fronts [see eq. (3.36)], for £ > ¢,
the pulse will develop into two fronts moving apart at a velocity which may be calculated as follows: We
assume that the discontinuity at x = 0 remains localized, so for long times the frequency reaches w,,,,,
the amplitude reaches a% = 3¢;/4|cs| given in eq. (3.35), and the two fronts drift apart as the size L(T)
of the pulse grows. The evolution of this state can be estimated by calculating d,.#" as in eq. (5.18b):

3874 = 38;Nyg = =N, + (8- ‘Ifz)Nzo - B3N40 - Bsto’ (5.27)

S\
vt vt

-L/2 L2 Fig. 11. Schematic sketch of the profile used to obtain the
X nonlinear front velocity v within the perturbation analysis.
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where (for ¢; = —¢5=1)
Ny =ayL(T) + (L"), (5.282)
Np=0(L%, (5.28b)
g=1tv,  ai=2. (5.28¢)

For self-consistency we require a uniform growth of the pulse at the velocity 2v, i.e.

3 L(T) =2vuy, (5.29)
so eq. (5.27) yields

ve=[(8 - $0) - byak — bsal | L(T) +&(L). (5.30)

In order to cancel the term proportional to L(T) we therefore determine the front velocity v; to be given
by

IS

vi=4£—-3bs—

o

bs. (5.31)

Let us now consider the nonlinear front (3.38) in this case (¢, =c;= —c5=1) expanded to lowest
order in b,. According to eq. (3.50) we find precisely

(UT)2=45"3[’3‘ %55=Uf2' (5.32)
Thus for
E>e,= %b3+ %bs, (5.33)

the perturbation theory leads to selection of a front with velocity v; precisely equal to the velocity vt of
the nonlinear front given by the ansatz (3.38). In this way we have derived the nonlinear front selection
of section 4.2 to lowest order in perturbation theory. A similar front selection phenomenon was found
some years ago in the perturbed Sine~Gordon equation by McLaughlin and Scott [47].

Finally, let us comment briefly on the nearly real limit |c,| < 1, where perturbation theory is also
possible [29-31]. In particular, Malomed and Nepomnyashchy [30] have found a perturbative front
solution (their “kink™) near £ =¢, = —3b2%/16bs, the point where the a =0 and ayy=ayn(gy=0)
solutions have the same “free energies” in the real case, and where v' =0. For 0 < |c,| < 1, their
velocity ¢ (in their eq. (2.13)) agrees with 0", eq. (3.40b), (and with Klyachkin’s [42] result) to #(c}) and
to lowest order in & — &,. This calculation then gives &5 (where v7 = 0) to #(c?). For 0 <&; —¢ < 1 they
were able to construct a stable pulse solution whose width L diverges near 5. Specifically for the case
b,= —b;=16bs/3 =1, ¢, =c5; = 0 they find

L~4ci(e;—e) .

These results are consistent with our conjectures and are qualitatively similar to those found in the
Hamiltonian limit in scenario IV.a of fig. 10.
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6. Numerical results

The rules formulated in section 4.2 as well as the results of the perturbation expansion in section 5
show that there is an intimate connection between the existence and stability of pulse solutions and the
dynamics of fronts. A representative example for the complex equation (2.10) was already given in ref.
(8], where with b, = —by;=bs=1, ¢; = —0.1, ¢c; =0.2, c5=0.15 the nonlinear front o' exists, and its
velocity v' goes through zero at g5 = —0.11. Since, as discussed in section 3.3.1, dv’/de > 0, the front
velocity vt is positive for all & > £4. In agreement with the rules formulated in section 4.2, it was found
that localized or pulse-like initial conditions develop into two fronts that propagate out in opposite
directions. For &, <e <&', the asymptotic front speed approached v' given by eq. (3.40) with the
predicted g}, while for & > ¢’ the front velocity approached the linear marginal stability velocity v*.
Moreover, stable pulse solutions were found in the finite interval e, <e¢ < ¢,

Equations (3.44) for the nonlinear front v' show that the latter does not exist in all regions of
parameter space. However, since ¢ only enters the expression for e, it is clear that if a nonlinear front
exists for some ¢ = ¢’, the equations can be solved for all £ > ¢'. As a result, the existence of a nonlinear
front in a certain region of parameter space is determined mainly by the ¢;’s and b;’s*'®, not so much by
€. We therefore plot in fig. 12 the behavior of v' as a function of ¢4 for two fixed values of ¢. In both
cases, the nonlinear front only exists over a finite range of ¢, values. Moreover, as illustrated in the
figure, near the left edge of the range of existence, the nonlinear state al,, ql, is Benjamin-Feir unstable.
This feature of the solution occurs frequently and it can be understood as follows: upon varying one of
the ¢, the edge of the interval of existence is associated either with a point where two solutions of €q.
(3.39) bifurcate [cf. eq. (3.44)] or where the solution on the upper branch ceases to exist. An example of
the first mechanism occurs in fig. 12a and 12b on the right edge for ¢, = 1.3, and in this case the state
gl,al at the bifurcation point need not be Benjamin—Feir unstable. In the other case, however, it is
clear from eq. (3.39b) that at the point where the solution disappears ¢ — b,q% goes through zero, i.c. e
coincides with the outer edge of the band of allowed wavenumbers, and hence is unstable. This happens
at the left edge of the ¢; interval in fig. 12.

As the data points in fig. 12a illustrate, in the case ¢ = —0.03 localized initial conditions indeed evolve
into fronts propagating with the nonlinear velocity v¥, in the c;-parameter range where v’ > 0 and where
the state aL,qL is linearly stable. Moreover, outside the range of existence of nonlinear fronts, we
observe stable v = 0 pulse solutions, as indicated by the crosses. As fig. 12b illustrates, for ¢ = 0.03 > 0
there are of course no stable pulse solutions, and one obtains fronts propagating with v' or v*,
whichever is greatest, in agreement with our conjectures.

The open symbols in fig. 12 show that slightly beyond the point c¢{P where the state al, g}, becomes
Benjamin-Feir unstable, fronts still propagate with an average velocity close to v'. The behavior of the
front velocity as a function of time for & = 0.03, (with ¢3=0.1 and c; = 0.05) is shown in fig. 13. In these
examples, the velocity is measured at the point where the amplitude a = 0.02, and the velocity in these
two cases is seen to be remarkably periodic; this was somewhat unexpected, since the Benjamin-Feir
unstable state generated by the front eventually does lead to an irregular pattern. Presumably, the
(nearly) periodic behavior of the front velocity is associated with the fact that at these parameter values
the nonlinear state is only weakly unstable. By contrast, in fig. 14 we show a snapshot of a front for

*1Note that even if the equations can be solved for all £ > ¢’, this does not imply |«| > |«*|, so the range over which the

nonlinear front is selected will depend on «.
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Fig. 12. Front velocity vs. parameter c; of the complex Ginzburg-Landau equation (2.10), for fixed ¢, =1, ¢s= —0.8, and
(@) e = —0.03, (b) £ = +0.03. The velocity vt obtained from the ansatz (3.38) is shown by the solid line, and the linear marginal
stability velocity v* is given by the dot-dashed line. For c; < chF’ the nonlinear state a},,, ql; produced by eq. (3.38) is
Benjamin-Feir unstable. The symbols represent numerical solutions of eq. (2.10). Solid circles and triangles correspond to fronts
with constant velocity, open circles are the average velocity of fronts with time-dependent velocity, and crosses indicate that pulses
were formed. These results confirm the conjectures made in section 4.

different parameter values, leading to a strongly unstable state, and in this case the measured front
velocity shown in fig. 14b is much more irregular.

The velocity as a function of time near the point where the front velocity crosses over from vt to v* in
the case £ = 0.03 is shown in fig. 15 for the parameter values of fig. 12b and ¢, = 1.3 and 1.4. In these two
cases, v* > vt. Remarkably, however, we find that the front velocity initially oscillates around v’ (these
oscillations are not associated with an instability behind the front, since the gf, al, state at these
parameter values is still linearly stable), but finally does approach v*. The transient behavior is longer for
the run in which c; is closer to the crossover value. In passing, we note that the long-time front velocity
appears to approach v* from above in fig. 15, in disagreement with the asymptotic behavior predicted by
van Saarloos [11] and by Powell et al. [43], and observed in the nonlinear diffusion equation.

We now illustrate the fact that in regions of parameter space where there is no nonlinear front with
vt > 0, the long-time dynamics depends sensitively on the initial conditions. Figure 16 shows a calculation
for parameter values corresponding to the first quadrant of the (cs, cs) plane of fig. 8, which are far from
those where a nonlinear front exists, and for which all uniform amplitude states are Benjamin-Feir
unstable. As fig. 16a illustrates, a rather extended initial condition leads to a transient behavior
reminiscent of a two-pulse solution. Eventually, however, it approaches a stable single pulse solution. In

VELOCITY

Fig. 13. Front velocity measured at the point where a = 0.02
for eq. (2.10) with e = —0.03, by =1, b3= -1, bs5=1,¢, =1,
cs=—08 and c;=0.1 (solid line) and c;=0.05 (dashed
line). As shown in fig. 12a, at these values of c;, vt >0, but
the state generated by the front is Benjamin-Feir unstable.
0 * 160 200 ’ 300 The figure shows that the front velocity becomes time

. . +

TIME dependent, but the average velocity is relatively close to v'.
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= Fig. 15. Plot of the front velocity as a function of time for eq.
8 3 (2.10) with € =0.03, by = —b3;=bs=1,¢; =1, cs= —0.8 and
E ¢3 = 1.3 (solid line), c¢; = 1.4 (dashed line). As fig. 12b shows,
0.5~ at these parameter values, v* > vt. It is seen that the front
L velocity does indeed approach v* =0.55, but only after a
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Fig. 14. Example of a chaotically propagating front for eq.
(2.10) with £=0, b;= —by=bs=1, ¢, =125, c;=10.375,
cs=—125 (a) The profile a(x) for ¢=152; (b) the front
velocity measured at a = 0.02 as a function of time.

fig. 16b, however, we show that starting with an even wider initial condition, the system does approach a
stable bound state of two pulses at long times.

Deissler [48] has presented examples where smooth localized initial condition lead to chaotic dynamics
in a localized region (“slugs™). Figure 17 shows that this behavior can coexist with stable pulse behavior
for parameter values close to those of Deissler, at which all uniform amplitude states are strongly
chaotic. (The pulse-like solution shown in fig. 17b at time 200 still- has not fully relaxed, but we have
checked that a stable pulse solution is approached eventually.)

We would expect that for arbitrary parameter values, chaotic “slugs” either shrink or spread. If they
shrink, it means that these chaotic states are only transients, as they will evolve into either an 4 = 0 state
or into (multiple) regular pulse solutions. If on the other hand they spread, they will eventually fill the
whole system. We have performed a few exploratory runs that confirm this picture. In fig. 18 we show
one example of a slug that dies away completely, as well as one obtained from a different initial
condition, that settles into a stable pulse, for the same parameters as in fig. 17, except that ¢ was
decreased to € = —0.02. In these plots, we have used the quantity ./ = [dx |A4 |2 introduced in (3.1) to
measure the size of the “slugs”. In fig. 19, we show the same quantity at the larger value £ = —0.005 for
the same initial conditions but with two different system sizes, L =300 and L = 600. We used periodic
boundary conditions and a pseudospectral code with 1024 and 2048 modes, respectively. It is seen that in
each case, the chaotic regions spread till they fill the whole system, consistent with the fact that the
long-time average value roughly doubles when the system size is doubled.

The above numerical results show evidence that stable pulses can coexist with spreading chaotic fronts.
Although these findings do not contradict our rules and conjectures regarding the competition between
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Fig. 16. Illustration of the dependence on initial conditions
for eq. (2.10) with ¢ = —0.03, b, = —by;=bs=1, ¢, =14,
c3=0.33, ¢c5=0.36. For these parameter values, all uniform
amplitude states are Benjamin-Feir unstable, and there is no
nonlinear front (keeping all other parameters fixed, there is a
nonlinear front for —1.57 <c; < 0.15). (a) The initial condi-
tion

A= Lexp(igr) [1+tanh($(x —x;))}[1 - tanh(4(x - x,))]

with g=0.15, x; =60, x,=90, goes through a transient
solution reminiscent of a two-pulse state, but eventually
evolves into a single pulse solution. (b) An initial condition of
the same form with x, = 60, x, = 120 evolves into a two-pulse
state. Similar behavior has been observed for ¢; = 0.5, ¢; = 0.5,
cs=0.5.
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Fig. 17. Illustration of the dependence of the final state on
initial conditions. For these runs b;= —by=bs=1, ¢=
-0.01, ¢; = —2.2, c;=—0.5, ¢s= —2 in eq. (2.10). These
values are close to those of Deissler (fig. 8, ref. [48a)]),
corresponding to ¢ = —0.0125, ¢, = —2.5 and all other pa-
rameters the same. (a) The initial condition cosh™'{4(x —
150)lexpligx) with g =0.15 converges to a single pulse. (b)
The initial condition expligr — ((x — 150) /A x)*] with g = 0.15
and Ax = 30 leads to chaotic behavior similar to that seen by
Deissler.

pulses and fronts, the spreading of the chaotic fronts cannot be studied with the methods developed in

this paper.

In section 4.2, we showed that for £ > 0 but small, there are large regions of parameter space where
the linear marginal stability fronts cannot be uniformly translating in the quintic equation (2.10). The
runs shown in figs. 17-19 were carried out in regions of parameter space where all nonlinear amplitude
states ay are strongly Benjamin—Feir unstable, and they therefore lead to chaotic behavior. For ¢, > 0,
¢; <0, ¢5 <0, however, (i.e. in the third quadrant of the (c,, ¢5) plane of fig. 8) most nonlinear states are
Benjamin-Feir stable. To explore the behavior of nonuniformly translating linear fronts in this regime
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Fig. 18. Examples of chaotic transients that (a) die away Fig. 19. Instantaneous values of .#" = | deAI2 as a function

(A =0 for all x) or (b) evolve into a stable pulse solution. In
these plots, instantaneous values of .#" = fdx |41? are shown
for times ¢t = 5,10,..., and the runs were made with the same
parameter values as in fig. 17, except that ¢ = —0.02. The
initial conditions were in both cases a Gaussian, as in fig. 17a,
corresponding to #(t=0)=(}w)"2Ax. (a) g=0.15, Ax=
20and #(r=0)=25.07;(b) =015, Ax=15and #(t=0)
= 18.8. Note that the initial condition with the smaller value
of # leads to a stable pulse of size # = 2.8.

of time for € = —0.005 but otherwise the same parameters as
in fig. 18. We used a pseudospectral code with 1024 modes
and system size L =300 in (a), and 2048 modes and L = 600
in (b). The initial conditions were a Gaussian as in fig. 17 with
g =0.15 and Ax =20. This corresponds to .#(t =0) = 25.07.
In part (a) the slug fills the whole system around a time of
order 800. For ¢ > 800, .#" fluctuates around an average value
of about 50. For part (b) with a system that is twice as long,
the slug continues to spread. We have checked that in this

case, the average of .# saturates at a value of about 100 for
t > 1600.

we have carried out some runs for b, = —=b; =bs=c, = —c;= —cs=1 and e = 0.25. It is easy to check
that for these parameter values eqgs. (4.9) have no solution. In fig. 20, we show snapshots of the resulting
front at times ¢ = 100, 150 and 200. It is seen that the front profiles consist of six regions: (i) a leading
edge whose velocity approaches.the marginal stability value v* = V2 from below, roughly in agreement
with the predictions of ref. [11]; (ii) a strongly nonlinear region where “space-time defects” (i.e.
instantaneous zeroes of a) are created, at a rate of about 0.7 per unit of time; (iii) a region where both a
and g are slowly varying functions of x, and where defects occur; (iv) a front propagating to the right
into the slowly modulated state with speed v = 0.53; (v) a well-defined nonlinear state a,; and finally
(vi) a region associated with our boundary condition at x = 0. Note that since the front (iv) propagates
with a speed less than v*, both regions (iii) and (v) are expanding. Because the generation of defects
creates phase jumps we see no way of predicting the properties of region (v) from the linear marginal
stability values that characterize region (i). Nevertheless, runs carried out with a number of different
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Fig. 20. Snapshots of a propagating front for ¢ =0.25 and
by=—by=bs=c,=—c3= —cs=1 at times (a) t = 100, (b)

=150 and (c) ¢ = 200. The steep local minima in the profile
result from space—time defects that have just been generated
or that are about to occur. For ¢t =200 the local wavevector
g(x) is also shown in (d). The profile contains a front
propagating with the predicted linear marginal stability veloc-
ity v* = 1.4 in the leading edge (x > 300), as well as a front
propagating with velocity v =0.53 in the nonlinear regime.
We have no way of predicting this latter velocity theoretically.

initial conditions (Gaussians with different widths) all lead to the same state in region (v). Hence it
appears that the state in this region is uniquely selected.

We may point out that Powell et al. [43] attribute special dynamical significance to front profiles with
zeroes that persist in time. In all our simulations, however, we observe front profiles that either have no
zeroes, or that have zeroes associated with space-time defects, i.e. only at isolated points in time.

The stability of the source solutions (3.58) and (3.60) has very recently been investigated by Sakaguchi
{49]. An isolated v = 0’ source solution given by eq. (3.58) can be unstable in at least two ways: (i) The
wave number gy given by eq. (3.58d) can be Benjamin-Feir unstable. However, since these solutions are
sources, small perturbations that grow due to the Benjamin-Feir instability propagate away from the
core where a — 0, and thus do not necessarily destroy the solution in this region. (ii) The core region
itself can be unstable. One way in which this can happen, observed by Sakaguchi [49], is that the
stationary source moves away, i.e. it becomes a propagating source solution (3.60). Another mechanism
that we have found numerically, is that the minimum value a_;, (@, = 0 for the solution (3.58)) remains
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essentially stationary, but grows exponentially in time (see ref. [50]). In fig. 21, we illustrate this for the
supercritical case b, =b; =1, ¢, = 0.4, c; = —0.3, bs; = ¢5 = 0. We see that a_;, grows exponentially till it
reaches a value of order unity, after which the solution relaxes to a uniform amplitude state a = ay,
q =qn, « =0. (Note that since the Nozaki—-Bekki source (3.58) has a wavevector gy for x - » and a
wavevector —gy for x & —o, an additional structure has to be included in the initial conditions in order
that the solution satisfies periodic boundary conditions. In our runs this was done by an additional sink
structure a distance x = %L = 80 away from the source. This sink connects the gy and —g, states and
gives rise to a corresponding phase shift. We have checked that the presence of the sink does not perturb
the source during the length of the simulations.) According to Sakaguchi [49a] there is actually a small
region of parameter space for c,c; < 0 [near the line ¢; = 3(c; — 1)] where the v = 0 sources are stable.
Clearly, the phase diagram of both the stationary and the moving source solutions is extremely rich, and
much further work is needed*!’.

Moreover, since the solution (3.58) is the extension of the fundamental dark soliton to the case
g,b,,b;> 0, it would be interesting to explore*!” the stability of stationary as well as moving sources

perturbatively for ¢,b,,b; < 1. .
We now wish to test the assertion, made in section 4, that the nonlinear front is selected only if

v" > v* and |k?| > |k*|. As a first example we consider the front solution (3.47) of Nozaki and Bekki [25b],
which exists for € > 0 in the case of a supercritical bifurcation. This front always turns out to have
lkT| <|«*], but v’ is sometimes greater and sometimes less than v*. According to our simulations,
however, in all cases the asymptotic front velocity was ¢v*, in agreement with condition (4.14). Another
example concerns the behavior of v* for £ > &'. It turns out that although for £ > ¢ we have v’ <v*
(see fig. 7a), at very large values of ¢ there can be another crossing when v’ > v*, in which case one
always has |«f| < |k*| (a similar behavior occurs in the real case for all £ > &'; see ref. [11]). We have
carried out a simulation of eq. (2.10) in the subcritical case with b, = —b;=b;=1, ¢, = —0.1, ¢; =0.2,
¢s = 0.15, ¢ = 100, for which [k} |=9.95, |«] | = 5.98, v* = 20.40 and v" = 22.61, and found once again it is
v* and not vt that is selected, in agreement with the criterion (4.14).

7. Conclusion

In this paper we have attempted a comprehensive analysis of coherent structure solutions of the
one-dimensional complex Ginzburg—Landau equation, and a partial analysis for generalizations of that
equation. There is an enormous literature covering such solutions, which we have tried to summarize,
clarify and extend. Our primary result concerns the selection problem posed by the multiplicity of
available solutions; we have formulated it as a set of conjectures regarding front/pulse competition,
which reduce to previously known results in special cases. We have tested and verified the conjectures by
numerical calculations and analytical perturbation theory for the complex Ginzburg-Landau equation.

Our primary focus has been on the behavior near subcritical bifurcations in order to elucidate the
relation between front propagation and the existence of pulse solutions. In ref, [11], one of us
conjectured that if the bifurcation is subcritical, front propagation into unstable states for 0 <& << 1 will
be governed by nonlinear fronts, while near a supercritical bifurcation, front propagation is governed by
linear marginal stability. This conclusion was based on the analysis of real equations of the form (2.66).
Our present work on the complex Ginzburg-Landau equation requires us to rephrase these conjectures
in the following way: In the case b, > 0, corresponding to a supercritical bifurcation, we have found no

#*1"The stability of source and sink solutions has recently been studied in the subcritical case [51].
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nonlinear fronts (3.38) that satisfy (4.14). Thus, according to our rules and the result (4.11), the selected
front above a supercritical bifurcation will indeed be a uniformly translating solution propagating with
the linear marginal stability velocity v*, as envisaged in ref. [11]. Now consider the case of a subcritical
bifurcation, b, < 0. If a nonlinear front exists with v'(¢ =0)> 0, our conjectures imply that front
propagation near ¢ = 0 will indeed be governed by this nonlinear front, and we will have £; < 0. The new
features not anticipated in ref. [11] are: (a) the nonlinear front does not necessarily exist. In this case the
front dynamics (if fronts are created!) is still an open question. (b) Even if the nonlinear front exists but
if it has vT(¢ =0) <0, then &, =0 and we do not obtain fronts propagating into the 4 =0 state. For
¢ > 0, fronts do propagate, though not with the velocity v* < 0; instead they have the linear marginal
stability velocity v*. Note that even though these fronts give rise to a finite amplitude state ay; (see fig.
7), they are extremely wide for small & since according to eq. (4.8b) |k |~ Ve . Whether the linear fronts
are uniformly translating or not depends on the parameters {¢, ¢;} in a known way, as illustrated in fig. 8.

The distinction between subcritical and supercritical bifurcations is made on the basis of the
bifurcation behavior of the uniform amplitude solution ay, = an(gy = 0). Whether or not stable pulses
exist depends directly on whether this bifurcation is subcritical or supercritical. For front propagation, on
the other hand, our results show that in the parameter ranges where there is no nonlinear front or where
v'(e = 0) <0, the dynamical distinction between supercritical and subcritical bifurcations becomes less
sharp. We will return to this question in section 7.2.

7.1. Comparison with experiment

Coherent structures have been observed experimentally in a number of systems with oscillatory
dynamics, e.g. binary-fluid convection, [2] Taylor—Couette flow [4, 5], parametric waves in fluids [3], plane
Poiscuille flow [20], optical waveguides [6] and oscillatory chemical reactions [7]. Amplitude equations in
the form of Ginzburg-Landau models can be derived for most of these systems by expanding the basic
equations near the threshold for the oscillatory instability. It is well known, however, that in many cases
of experimental interest the states of the system lie outside the domain of applicability of the amplitude
expansion, either because the bifurcation is subcritical with stabilization far from the linear instability, or
because of the existence of “parasitic” small parameters that invalidate the expansion. Examples of the
latter are the ratio of the mass diffusion and thermal diffusion coefficients called the Lewis number % in
binary-fluid convection [52] (for that case both of the above mechanisms are operative!), or the ratio
,/7, of the characteristic time scales of activator and inhibitor in oscillatory chemical reactions [7}. Even
in cases where one might hope to have a controlled amplitude expansion, precise and controlled
experiments on complicated time-dependent states are difficult to carry out, so there is not at present a
body of relevant experimental data which one could hope to explain quantitatively by our theoretical
model.

Under these circumstances we may ask whether we can understand the gualitative or semiquantitative
aspects of the experiments. Apart from the very existence of pulse-like states in many of these systems,
the most detailed and varied observations have been made in binary-fluid convection where pulses,
fronts, sources and sinks have been reported [2]. An important aspect of this system, of course, is that it
has a basic pattern with nonzero wavevector g, (type I, in the classification of Cross and Hohenberg 1y,
so that the simplest amplitude equation has the coupled form [53]

3, Ag — 5S¢0, Ag =eAg + (1 +1ic,)32Ag — (b3 — ic3)|AR|2AR +(by+ icz)lALIZAR, (7.1a)

0,A; +5gd, Ay =£A, + (1+ic))32A, — (by—icy)|ALIPAL + (by +icy) | Agl*Ay, (7.1b)
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for right- and left-traveling waves. If one assumes that in the absence of wall reflection it is sufficient to
consider a single direction of propagation (i.e. 4, =0), one is still left with an equation with the
convective term s,9, 4. If this term is alone, as in eq. (7.1a) with 4, =0, we can eliminate it by a
Galilean transformation, but if A4, # 0, or if the nonlinear term s,3,(]4|*4) is added to eq. (7.1) (as it
should in general), then we can expect the convective nature of the linear instability [53, 54] to have
important physical consequences. Moreover, even in the absence of the nonlinear s, term the 5,3, A4 term
cannot be transformed away in a finite nonperiodic system.

With these caveats, let us ask how much of the behavior of pulses and fronts in one-dimensional
binary-fluid convection experiments we can account for qualitatively by our model. The experimental
detection of stationary pulses is an apparent confirmation of the theory, but of course it contradicts the
predictions of eq. (2.10), since that equation refers to the frame moving with velocity sy rather than the
lab frame. Thus according to eq. (2.10) pulses should move with velocity —5p in the lab frame. To
account for the observations we invoke first geometrical imperfections which, as demonstrated by
Kolodner [55], lead to trapping of the pulses near regions where the local velocity vanishes. This
interpretation implies a nonzero pulse velocny v,(g) in an ideal system, which one might try to explain
[44] by appeal to the nonlinear term s,3,(|.4]°4) added to eq. (7.1), using the arguments of section 5.2.
From a qualitative point of view what needs explanation is the fact that for all experiments v (e) < |5,
whereas the arguments of section 5.2 only say that in general v (s) #* -

The observation of stable pulses for £ > 0 is more problematlcal [2]. According to our hypotheses these
should be destabilized by two different mechanisms. First of all by a positive front (either v* or v*)
which leads to the spreading of the pulse. As the discussion of section 4.2 shows, unless the nonlinear
dispersion terms nearly balance, we expect stable pulses to exist up to e3=0. For £ > 0, v* will then be
selected. A possible way in which the spreading might be inhibited if indeed v* is selected, arises
through finite-size effects, since the width of the linear front is large for small ¢ [Ic¥] ~ 17?2 according
to eq. (4.8b)]. The second mechanism for destabilizing pulses is the linear instability of the 4 = 0 state
for £ > 0. Here again in a finite system, the convective nature of that instability might suppress its effects
since disturbances do not grow large enough in an annulus before they are reabsorbed by the pulse [55],
This latter explanation, of course, hinges on the fact that pulses move with a velocity different from the
group velocity s, of linear disturbances, so in order to substantiate it the nonlinear term s,(3, |.4%4) must
be taken into account. As noted in section 4.4 this term can be included in the analysis of the nonlinear
fronts, but its effect on pulses can so far only be studied with the perturbative methods of section 5. In
any event, the observation by Niemela et al. [2] that the exact pulse solution (3.51) fits their data, cannot
at present be regarded as a quantitative confirmation of the theory.

The observation of stationary front pairs (Kolodner et al., Bensimon et al. [2D has similar problems. If
we assume that they are trapped by imperfections (contrary to the original interpretation given by the
experimenters), we still need to understand how a front pair with equal and opposite g, can be selected
at the same value of ¢ (no source or sink was observed between the fronts). Here again, it seems to us
likely that a qualitative understanding of the observations will have to take into account the nonlinear
convective term [44] more explicitly.

7.2. Open theoretical problems

The most straightforward question we have not answered concerns the detailed behavior of the
perturbation equations (5.20) for pulses near the generalized derivative Schrédinger limit. Since we have
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not explicitly evaluated the nonlinear front solution (3.38) for that model, the detailed behavior for € > &,
remains open, as does the bifurcation diagram for pulses as a function of &, analogous to fig. 10. In
particular, it would be interesting to find a case where the perturbation equations (5.20) lead to a limit
cycle, and to simulate the full PDE near that limit. Would the system show oscillatory pulses, or is this an
indication of some other behavior? An analogous situation was found for reaction-diffusion systems in
ref. [46].

We also note that in the quintic-cubic Schrédinger equation (2.12) there are no pulse solutions in the
third quadrant c; <0, ¢; < 0 (with ¢; > 0) of figs. 4 and 9. Moreover, as fig. 8 illustrates, in the subcritical
case b; < 0 nonlinear front solutions can only be found in the second and fourth quadrants of the (c;, ¢5)
plane. Since there are no exact pulse solutions of the form (3.51) either [cf. fig. 5], we have at present no
analytical information on the dynamics in this parameter range. Furthermore, we have found that even
for b, = —b, = b, =1 the range of existence of a nonlinear front with v* > 0 is concentrated near the
plane c;= —c¢5 in the {c,,c;,cs} parameter space. As discussed above, a partial cancellation of the
nonlinear dispersion terms tends to favor nonlinear front propagation.

As we have pointed out in section 6, the behavior of both the stationary and the moving source
solutions of Bekki and Nozaki [26] appears to be extremely rich. These solutions will have to be studied
in more detail, both analytically, e.g. by perturbing around the dark soliton solutions, and numerically.
Also, the very existence of a family of source solutions and its relation to symmetry properties deserve
further study.

Another open problem concerns the asymptotic approach to the front velocity v* in the linear
marginal stability regime. According to the predictions of van Saarloos [11, 14] and Powell et al. [43), the
front velocity should approach v* from below. Numerical simulations for real equations of the form
(2.66) are consistent with these results. Our simulations of the complex Ginzburg-Landau equation
shown in fig. 15, however, indicate that here v* is approached from above. A more detailed investigation
of the asymptotics is clearly necessary, but we stress that all results on this and other models known to us
are consistent with the conjecture that the asymptotic front speed is always larger than or equal to v*.
Such a result is also suggested by the intuitive arguments of ref. [11], though a more rigorous derivation is
certainly desirable.

Since the selection problem for the complex Ginzburg-Landau model (2.10) is still only partially
elucidated in parameter regions where there is no selected front, we have no general guidelines to help
us understand whether a given initial condition will lead to a localized or extended state, and whether
the solution will be regular or chaotic in those parameter regions. Generalizations to higher-order
equations such as the Swift—-Hohenberg model or more complicated models without a Lyapunov function
would also be desirable, but from the work of Collet and Eckmann [56], Eckmann and Procaccia [57], and
Aranson et al. [33] we know that the behavior can be quite rich indeed, and it is not clear whether the
concepts we have developed will be useful in pursuing these questions. Finally, the corresponding
problems in two and higher spatial dimensions [58] pose even greater challenges for the years ahead.
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Appendix. Signs of the real parts of the roots of a cubic equation

In the study of stability properties, one often needs to know the signs of the real parts of the roots of a
cubic equation. If the cubic equation is written as

P+ar+Br+vy=0, (A.1)

the signs of the real parts of the roots are given by

{if a>0 and af-y>0: ———, (A.2a)
For y>0
otherwise: ++ . (A.2b)
{if a<0 and aB-y<0: +++, (A.2c)
For y<0 ‘
otherwise: +-—. (A.2d)

These formulas can, of course, be obtained from the well-known explicit expressions for the roots of a
cubic equation [59]. More direct proofs of (A.2a) (and hence also (A.2c)) are, e.g. given by Pontrjagin [60]
and Suter [61], and the other two results (A.2b) and (A.2d) then follow immediately from the fact that
the product of the three roots of (A.1) is equal to —v.

The above formulas can also be obtained directly by noting that (A.1) is equivalent to

(A+a)(A*+bAr+c)=0, (A3)
with
a=a+b, B=ab+c, Yy =ac. (A4)

Consider e.g. the case y >0, so that we can either have a <0, c <0 or a >0, ¢ > 0. For ¢ <0, the
quadratic form in (A.3) always has one root with a positive real part and one with a negative real part.
Thus the structure of the case a <0, ¢ <0 is always (+ + —). When a >0, ¢> 0, we sec that for
B =ab +c <0 we necessarily have b <0, and hence a (+ + —) structure, while for 8 >0 we have
sgn(aB — y) =sgn[b(a®>+ B)l=sgnb, and so a (— — —) structure for af—y>0 and a (++ —)
structure for aB — vy <0. Thus, for y > 0, the structure is always + + — except when both 8> 0 and
af3 —y > 0. This is equivalent to the condition (A.2a,b).
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