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We show that drifting pulse solutions of a 1D complex Ginzburg-Landau equation can persist for
positive growth rate & in a finite system. When ¢ is increased, two different destabilization scenarios

are observed.

In sufficiently large systems, fluctuations grow out to form multiple pulses.

In small

systems, an increase in & eventually leads to a competition between fronts and pulses that results in

a sharp transition to a state where the drifting pulse leaps forward in an incoherent fashion.

behavior is observed in a more realistic model.

PACS numbers: 47.20.Hw, 03.40.Gc, 05.40.4j, 47.54.+r

A few years ago, localized or confined traveling wave
states were discovered in convection experiments in bi-
nary liquids [1-7]. These are states of which the region
where the convection occurs does not fill the total ex-
perimental cell, but instead attains a well-defined width.
The discovery of these states has inspired a considerable
amount of theoretical work on pulse solutions of ampli-
tude equations [8§—12]. It is by now well established that
in experiments in annular geometries a localized traveling
wave state drifts slowly when the inhomogeneities of the
convection cell are sufficiently small [3]. This drift ve-
locity v, is quite different from the group velocity vy,
and this can be contributed to a slow concentration field
[9,10] that “traps” the pulse in its own concentration gra-
dient. The existence of localized states and much of their
behavior can be understood in terms of pulse-shaped solu-
tions of a complex Ginzburg-Landau amplitude equation
[8,11]. The fact that the pulse velocity v, differs so much
from v, can, however, only be obtained from a more de-
tailed analysis of the coupling of the convection to the
slow concentration field [9,10].

In the experiments in an annular geometry [2,5,6], the
localized traveling wave states surprisingly persist in a
regime where the conducting state (A = 0) is completely
unstable (¢ > 0). This persistence of pulses in an unstable
background is usually explained as follows. Since an
annular cell is periodic and since the pulse drifts with a
velocity v, different from the velocity vg, with which the
fluctuations propagate, the maximum time interval during
which a fluctuation can grow before interacting with the
pulse is finite and of order L/|vg — v,l, where L is
the circumference of the cell. Glazier and Kolodner [4]
observed that small wave packets that collide with a pulse
are annihilated, so it is conceivable [5] that when the
growth rate ¢ is sufficiently small, fluctuations in a finite
cell do not grow strong enough to destroy the pulse state:
it is as if the moving pulse sweeps the system clean.

This scenario has never been verified theoretically, as
most theoretical work is based on perturbation expansions
around integrable limits of Ginzburg-Landau amplitude
equations and assumes an infinite domain [8,11]. Such an
analysis is insensitive to the instability of the background
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state that occurs when & > 0; this instability is usually
implemented ad hoc by simply assuming that a pulse
cannot persist for positive .

In this paper, we investigate the dynamics of pulses
when € > 0 for a model amplitude equation that cap-
tures the two main experimental ingredients, i.e., periodic
boundary conditions and the difference between v, and
Ugr. Our findings can be summarized in the phase dia-
gram of Fig. 1, which labels the various types of asymp-
totic states that arise as a function of the system size L
and &, when the initial state is a single pulse. The main
subject of this paper is the sharp transition from single co-
herent pulse motion in regime I to incoherent pulse motion
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FIG. 1. Tentative phase diagram showing the various states

that arise as a function of & and L. In regimes I and III
there are single pulses that either propagate coherently (I)
or incoherently (III). Multiple-pulse states are observed in
regimes II (coherent) and IV (incoherent). The thin full line
marks the transition between these two regimes, and is given
by &(L — 50) = const; the open dots indicate some of the
numerical measurements of this transition. The CI transition
between the single coherent and incoherent pulses is denoted
by a fat line; it occurs at a value ec; given by Eq. (2). The
exact location of the transitions between regimes III and IV and
between regimes II and 1V, indicated by dashed lines, has not
been determined.
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in regime III, which we show to be the result of a compe-
tition between pulse and front propagation.

The model equation that we study is the so-called quintic
derivative Ginzburg-Landau equation [11,12]:

A =¢eA+ (1 +ic)d’A + (1 + ic3)A|Al?
— (1 = ic5)AlA]* + s(a.A) |AP%. (1)

Although recent work [6,10] demonstrates that a single
amplitude equation cannot account for all phenomena
observed in the experiments, the essential difference in vy,
and v, and the periodic boundary conditions are captured
in this model. Equation (1) is written in the frame of the
group velocity of linear waves; the nonlinear gradient term
5(9,A) |A|? breaks left-right symmetry and causes pulses to
drift. Nonlinear gradient terms of this type arise when a
systematic expansion up to fifth order is made. We fix the
parameters ¢c; = 1.4, c3 = —1,and ¢s = —1 since pulses
are stable then (see Sec. 4.2 of [11]), and fix s = —1. For
these parameters, a pulse drifts to the right with velocity
v, = 1.5& + 0.373 for small .

We use a pseudospectral method to numerically solve
the amplitude equation (1) with periodic boundary con-
ditions, with a time step of 0.05 and 256 Fourier modes.
The main role of fluctuations is to excite the modes that
grow from the linearly unstable state A = 0. We will not
systematically study the effect of an additive noise term,
which would amount to getting an extra parameter in the
phase diagram, since the discretization noise alone is suf-
ficient to excite the unstable modes [13], but we have
checked that the inclusion of a stochastic noise term in
the amplitude equation (1) or a change in the number of
modes qualitatively alters our conclusions. We will pro-
ceed by describing the various states that are listed in the
phase diagram.

Regime 1 corresponds to the scenario sketched earlier:
the drifting pulse annihilates the fluctuations, and the
system behaves the same as for £ < 0; this state is the
analog of the pulses that persist in the experiments for
£ > 0. The norm N = fdeAI converges to a value
close to the norm of a single pulse in the £ < O regime.

In regime II the fluctuations grow out to form new
pulses before they can be absorbed by the initial pulse. If
L and & are not too deep into regime II, the system ends
up in a state with two pulses. The maximum time interval
during which fluctuations can grow without meeting a
pulse is then reduced, and therefore the double-pulse state
can be stable. The norm converges then to a constant
that is approximately twice as big as it is for a single-
pulse state. When L and & are further increased, states
consisting of more pulses are formed that were observed
to persist in some cases. Similar behavior was observed
by Kolodner [5]. Since the fluctuations grow as e®’, their
maximum strength is roughly determined by the growth
rate and the maximum time for which they can grow;
in a single-pulse state this time is roughly (L — W)/v,,
where W is a measure for the width of the pulse that is of
order 50 for our choice of parameters. The transition to

multiple pulses seems to occur when the fluctuations grow
above a certain critical strength, and since v, depends
only weakly on &, the transition curve is expected to be
given approximately by L — W ~ 1/ [5], which is the
dashed line in Fig. 1. This is in reasonable agreement
with our numerics. The inclusion of an additive noise
source shifts the transition curve to lower values of L and
g, as one would expect, but there remains a region where
the single coherent pulse persists.

The surprise occurs when we cross the border between
coherent and incoherent behavior (CI) and enter region III;
the motion of the pulse then becomes an irregular mixture
of coherent drift and forward leaps. Peaks of the norm as
shown in Fig. 3(a) (which we will refer to as “spikes”) cor-
respond to a forward leap of the pulse like the one shown
in Fig. 2(a). The average time interval {(Af) between sub-
sequent spikes strongly depends on the distance from the
CI transition. This transition can be understood when a
connection with the theory of front propagation is made,
of which the main ingredients are summarized below.

A perturbation from the unstable state A = 0 not only
grows but also spreads out, due to the diffusive term of the
amplitude equation. A single, sufficiently localized per-
turbation can evolve to a so-called linear marginal stabil-
ity (LMS) front that connects the unstable equilibrium state
with a nonlinear state [14,15]. This front propagates [16]
with the LMS velocity v*, and its motion is determined
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FIG. 2. (a) Space-time plot of |A| of a forward leap event that

occurred for € = 0.018 in a system of size 150. Time increases
upwards, and every curve in this hidden line plot is separated
by a time interval of 5; the whole picture occurs over a time
interval of 500. The fat curve marks the position in the leading
edge of the LMS front where |A| = 0.01, and propagates with
v*. (b) A plot of the local wave vector g of A for the initial
state of the hidden line plot.
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FIG. 3. (a) Typical plot in regime III of the norm N as a

function of time for € = 0.018 and L = 150. (b) Histogram
showing the distribution of the time intervals between two
spikes, At, for € = 0.014, 0.015, and 0.016. The system size
is 160, and the total duration of each run 10°. We have defined
the spike to occur when the norm passes through a value of 20
from below, and used a bin of 20 on the time axis.

by its leading edge, which has a well-defined local wave
number g*, where the local wave number ¢ is defined as
d, arg(A). For the amplitude equation (1) the LMS ve-
locity is given by v* = 2y/e(1 + ¢?), and ¢* is given by
ci/e/(1 + czl) [11,14,15].

For our choice of the ¢’s and large values of &,
localized initial conditions lead to fronts propagating with
velocity v™; the nonlinear state behind such a front is
disordered for our parameters (similar to Fig. 20 of [11]).
However, when v* is comparable to the pulse velocity,
pulse and front propagation strongly compete, and indeed
within our numerical error we find that the CI transition
occurs exactly at an L-independent value ¢ where the
front and pulse velocity coincide,

vy(ect) = vi(ecr). 2)

For our parameters, this gives ecy = 0.0130.

We will now describe our understanding of this result
and our evidence supporting our view that this marks
the exact CI transition. Consider again Fig. 2, where we
show a space-time plot of |A] to illustrate the dynamics of
the single pulse in the incoherent regime 111, together with
a plot of the local wave number ¢ in the initial state of the
space-time plot. After a transient time the fluctuations
organize themselves into the structure labeled “leading
edge” that propagates ahead of the pulse [17]. The local
wave number of this structure is seen from Fig. 2(b) to be
close to the theoretical prediction for g*, which for ¢ =
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0.018 yields ¢g* = 0.11. This fact, together with the fact
that this structure only builds up when v* > v, shows
that this structure is the leading edge of an LMS front.
The evolution of this front is illustrated in Fig. 2(a) by
the fat line, which marks the point where |A| = 0.01; this
point propagates with velocity v, and as close inspection
of the plot shows, it outruns the pulse: v* > v,. After
a certain time interval the rear of the LMS front grows
out to a nonlinear structure that merges with the pulse.
Effectively, the pulse temporarily broadens (leading to a
spike in the norm JN') and then leaps forward to absorb
the rear of the LMS structure, while leaving most of
the leading edge intact (as evidenced by the absence of
appreciable perturbations of the fat line). Then this whole
process repeats itself, so that viewed on a long time scale
the motion of the pulse can be characterized as a mixture
of coherent drift and incoherent forward leaps.

The oscillations that are visible where the right side of
the pulse matches onto the LMS front are caused by phase
slips that occur because there is a mismatch between the
frequency and wave number of the pulse profile and the
LMS front. At the initial time shown in the lower panel,
such a phase slip event had just occurred. By monitoring
singularities in the local wave number, such phase slips
can also be observed in the region where the back side of
the pulse connects to the leading edge of the LMS front.

A forward leap of the pulse does not seem to affect the
leading edge of the LMS front, and so when we are not
too deep into the incoherent regime III, the leaps serve to
keep the average pulse velocity (v) in pace with the front:
(v) = v* for & > ec;—see Fig. 4(a). When we denote
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FIG. 4. (a) The LMS velocity v* (full line), the coherent

pulse velocity v, (dashed line), and the measured average
pulse velocity (v) (circles). (b) The average time between two
subsequent spikes is seen to diverge as € approaches ecj.
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the distance of a forward leap by Ax, then v* = (v) =
v, + (Ax/At). If we assume that Ax is a constant, we
then obtain

1/{At)y = (v* — v,)/Ax. 3)

When we use the aforementioned expressions for v, and
v* and fit our data points for 1/{Az) by Eq. (3) with Ax as
a fit parameter, we find a good fit for Ax = 14.8 as shown
in Fig. 4(b); the consistency of the divergence At as &
approaches &, provides further evidence of the correctness
of our scenario for the CI transition.

The distribution of At close to the CI transition consists
of multiple peaks, whereas far from the CI transition only
one peak can be observed—see Fig. 3(b); moreover, the
location of the first peak of this distribution is not very
sensitive to €. We have at present no explanation for
these observations.

It should be noted that the leaps also occur as transient
behavior when v* < v p- For instance, the evolution from
a single to a multipulse state that can be observed when
an initial single-pulse state is followed in parameter range
I often starts out by the single pulse leaping forward.
In this process new pulses are generated that also may
perform some leaps, but finally the behavior relaxes to
coherent drift in this regime.

Since the two ingredients of our scenario, i.e., the ex-
istence of pulses and the linear marginal stability mecha-
nism, are robust, we expect the CI transition to be rather
general. In order to verify this, we have briefly studied
the model proposed by Riecke [10] to describe pulses in
binary fluid mixtures

3,A =eA + (1 +ic)a?A + (1 + ic3)|AIPA
—(1 — ics)|AI*A + fCA, (4a)
0;C — v9,C = a.C + d.9>°C + hd,|A]>. (4b)

C is the real valued concentration field. We have taken
the ¢’s as before and take f = —0.3, a, = —0.02, d, =
0.1, and A, = —0.2. Regimes I, II, and IV can easily
be verified to exist. We have found that for v = 0 and
v = 0.1 the CI transition occurs at values of & given
by Eq. (2), and that the average speed adjusts to v™.
However, for increasing v, Ax decreases so that regime
I shrinks; when v = 0.3, gc1 becomes so large that
the pulse destabilizes via a different mechanism. This
illustrates that the CI transition is not restricted to Eq. (1),
although the detailed dynamics in the incoherent regime
may depend on the model. The fact that the amplitude and
wave number structure observed numerically (see Fig. 2)
are very reminiscent of that seen experimentally is another
indication of the robustness of our scenario.

We would like to thank P. C. Hohenberg and P. Kolod-
ner for stimulating comments.

Note added.— After submission of this paper we be-
came aware of the recent work of Chang, Demekhin,
and Kopelevich [18], where similar ideas for an extended
Kuramoto-Sivashinsky equation play a role.
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