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Universality Class of Fluctuating Pulled Fronts
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It has recently been proposed that fluctuating “pulled” fronts propagating into an unstable state should
not be in the standard Kardar-Parisi-Zhang (KPZ) universality class for rough interface growth. We
introduce an effective field equation for this class of problems, and show on the basis of it that noisy
pulled fronts in d 1 1 bulk dimensions should be in the universality class of the ����d 1 1� 1 1���D KPZ
equation rather than of the �d 1 1�D KPZ equation. Our scenario ties together a number of heretofore
unexplained observations in the literature, and is supported by previous numerical results.
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Consider spatiotemporal systems in which the important
dynamics is governed by the propagation of fronts or in-
terfacial zones separating two domains whose bulk dynam-
ics is relatively trivial or uninteresting. In the presence of
fluctuations, the theory of the stochastic behavior of such
fronts or interfaces is well developed [1,2]. In particu-
lar, it is known that many such fluctuating d-dimensional
interfaces in d 1 1 bulk dimensions are described by the
Kardar-Parisi-Zhang (KPZ) equation [3] for their height h,

≠h
≠t

� n=2h 1 l�=h�2 1 h , (1)

with h a random Gaussian noise with correlations

�h�r�, t�� � 0 , (2)

�h�r�, t�h�r0�, t0�� � 2edd�r� 2 r0��d�t 2 t0� . (3)

We will follow common practice to refer to this equation as
the d 1 1 dimensional [�d 1 1�D] KPZ equation, where
the d refers to the dimension of the interface and the 11
to the time dimension; r� denotes the coordinates perpen-
dicular to the direction of propagation of the interface.

The scaling behavior of so many stochastic interfaces
falls in the �d 1 1�D KPZ universality class due to the
fact that (1) this equation contains all the terms in a gra-
dient expansion which are relevant in a RG sense, and (2)
the long wavelength deterministic dynamics of many in-
terfaces is local in space and time, i.e., of the form yn �
yn�=h, =2h, . . .�, expressing that the normal velocity yn

becomes essentially a function of the instantaneous slope
(angle) and curvature of the interface only. Upon expand-
ing in the gradients, adding noise, and retaining only rele-
vant terms, one then arrives at (1).

The starting point of such an argument, the fact that
one can integrate out the internal structure of the inter-
face and on long length and time scales think of it as a
mathematically sharp boundary with effective dynamics
expressed by a boundary condition yn � yn�=h, =2h, . . .�
which is local in space and time, is appealing and usu-
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ally correct. Intuitively, one associates it with the in-
terfacial zone being sufficiently sharp on a spatial scale.
Nevertheless, there have been scattered observations in
the literature which indicate that there is more to it: (a)
Some continuum reaction-diffusion equations have propa-
gating planar interfaces of finite width which are stable,
but which become weakly unstable for discrete particle
model equivalents [4], contrary to what the above coarse-
graining picture would suggest. (b) The empirical re-
lation observed for the distribution of diffusion limited
aggregation (DLA) fingers in a channel and the interface
shape of a viscous finger could not be understood from
the standard continuum model until the innocuous looking
reaction term was regularized [5]; on hindsight, this was
because the standard mean-field DLA equations do not give
the appropriate “local” boundary conditions of the type
yn � 2m=np. (c) In a simple stochastic particle model
with fluctuating fronts, non-KPZ scaling was observed [6]
contrary to what one would naively have expected.

It turns out that these observations all have one common
denominator [7,8], in that they are related to the existence
of two classes of fronts, “pushed” and “pulled” fronts.
Pushed fronts are the usual ones: their dynamics is de-
termined by the behavior in the interfacial zone, a region
of finite thickness, and their response to the bulk fields is
local in space and time [9,10]. Pulled fronts, on the other
hand, propagate into a linearly unstable state. Although
they do not differ noticeably from pushed fronts in their
appearance, their dynamics is driven by the growth and
spreading of perturbations about the unstable state in the
semi-infinite region ahead of the front [9]; hence they are
particularly sensitive to slight changes in the dynamics
there [4,11]. These important differences led two of us
[8] to propose recently that fluctuating variants of d-
dimensional pulled fronts in d 1 1 bulk dimensions
would, indeed, not be in the �d 1 1�D KPZ universality
class, even though pushed fronts do effectively give local
boundary conditions on long length and time scales,
and hence do give rise to �d 1 1�D KPZ scaling in the
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absence of coupling to a diffusion or Laplace field in the
bulk [12]. Simulations of a simple stochastic lattice model
were consistent with these arguments, and with the earlier
observations of [6].

In this paper, we will argue that fluctuating pulled fronts
are, indeed, in a different universality class from the usual
pushed ones which show the standard KPZ behavior. In-
deed, we will show that the semi-infinite region ahead of
the front cannot be integrated out, and effectively enhances
the dimension by 1: we introduce a field equation for fluc-
tuating pulled fronts and argue that d-dimensional fronts
in d 1 1 bulk dimension are in the universality class of
the ����d 1 1� 1 1���D KPZ rather than the �d 1 1�D KPZ
equation. This surprising scenario, which also builds on
the insight of [13] for the stochastic behavior of pulled
fronts in one bulk dimension, is fully consistent with our
earlier 2D simulations [8] and also with the heretofore un-
explained results of [6] in higher dimensions. In addition,
as we shall discuss, our scenario leads to a number of in-
teresting new questions and challenges.

A stochastic equation for pulled fronts should obey two
requirements: in the usual stochastic lattice models with
fronts, no particles are spontaneously generated when there
are none already. Second, the average front speed and the
local fluctuations ahead of the front remain always finite
in such lattice models [14]. The field equation should be
consistent with these basic facts. So when we consider a
stochastic field equation for f�x, r�, t� in d 1 1 dimen-
sions �x, r�� of the type

≠f

≠t
� D=2f 1 f�f� 1 g�f�h , (4)

these requirements put constraints on the function f and
the noise term g�f�h. The stochastic noise h�x, r�, t�
has delta correlations as in (3), and is interpreted in the
Stratonovich sense, but our arguments will not rely on the
distinction between Ito and Stratonovich calculus. Sto-
chastic field equations of this type have, e.g., already been
used for studying the scaling behavior of homogeneous
bulk phases like directed percolation [15]; investigations
of noisy fronts in such equations are more recent —see,
e.g., [16] for an analysis of stochastic pulled fronts and a
discussion of the applicability to various systems. Here we
focus on the proper form for an effective stochastic field
equation for pulled fronts. For f�f�, which determines the
dynamics of deterministic fronts in the absence of noise,
we choose the standard form for pulled front propagation
f�f� � f 2 f3, which gives saturation of the field f be-
hind the front where f ! 1. How should the noise term
g�f�h look [17]? The requirement that if there are no
particles (f � 0) none are created spontaneously implies
that there should be no additive noise term, and hence that
g�f � 0� � 0. For f nonzero but small, it is natural to
assume a power law behavior g�f� � fa ; in the studies
of the homogeneous bulk properties of directed percolation
the choice a � 1�2 was made [15], motivated by the idea
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that typical bulk fluctuations are of the order of the square
root of the particle density. For pulled fronts, however, the
dynamically important region is ahead of the front, where
f ! 0. Our second requirement that the relative fluctua-
tions g�f�h�f remain finite here shows that the natural
choice is a � 1, i.e., g�f� � f for f ø 1 [18]. The
linearity of g for small f is sufficient for our subsequent
analysis. In our numerical studies, we have actually taken
g�f� � f�1 2 f2�, a form taken to suppress fluctuations
behind the front. This makes it numerically easier to focus
on the fluctuations of the front position itself, without af-
fecting the essential results. Specifically, we thus propose
as the generic stochastic field equation for pulled fronts

≠f

≠t
� D=2f 1 �1 1 h�f�1 2 f2� . (5)

Let us now turn to the analysis of the stochastic behav-
ior of fronts which propagate along the x direction into
the linearly unstable state f � 0. The crucial feature of
pulled fronts is that even though the full dynamics of the
fronts is nonlinear, it is essentially determined in the “lead-
ing edge,” the region ahead of the front where f remains
small enough that the nonlinear saturation term 2f3 which
limits the growth plays no role: the linear spreading and
growth of perturbations about the state f � 0 almost lit-
erally “pull the front along.” An important recent devel-
opment has been the realization that this simple intuitive
picture can be turned into a systematic scheme to calculate
even the convergence of the front speed to its asymptotic
value y�. Remarkably, this relaxation is governed by uni-
versal power laws which can be calculated exactly even
for general equations [9]. The fact that the stochastic fluc-
tuation effects that we want to investigate are dominant
relative to the deterministic velocity relaxation terms sug-
gests that we calculate these along similar lines. For the
deterministic case (h � 0), fronts in (5) propagate with an
asymptotic speed y� � 2

p
D. In a frame j � x 2 y�t

moving with this speed, the asymptotic front solution has
an exponential fall-off �e2l�j with l� � 1�

p
D for large

positive j. The asymptotic relaxation analysis of determin-
istic fronts is based on the so-called leading edge transfor-
mation f � e2l�jc , which transforms (5) into

≠c

≠t
� D=2c 1 hc 2 �1 1 h�c3e22l�j . (6)

Here c has been written in the frame moving with velocity
y� in the x direction: c � c�j, r�, t�.

In the analysis of deterministic fronts [9], the nonlinear
term on the right-hand side (which is exponentially small
for j ¿ 1) essentially plays the role of a boundary con-
dition for the semi-infinite leading edge region where f

is small — it allows the nonlinear region to match properly
to the leading edge which “pulls” the front. As explained
above, this holds a fortiori for fluctuating pulled fronts:
their stochastic fluctuations are essentially determined by
the region where the linearized equation can be used. Now,
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as is well known, upon making a Cole-Hopf transforma-
tion c � eh, the linearized equation transforms to

≠h
≠t

� D=2h 1 D�=h�2 1 h , (7)

which is nothing but the ����d 1 1� 1 1���D KPZ equation
(1) for the (d 1 1)-dimensional field h�j, r�, t�.

As illustrated for two bulk dimensions in Fig. 1, the 1D
fluctuations in the front position in the propagation direc-
tion are defined by tracing a line where f � const, e.g.,
f � 1�2. Since f � e2l�j1h, the front fluctuations in
the j direction are given by j�r�, t� � h�j, r�, t��l� 1

j0 � h�j0, r�, t��l� 1 j0, where the constant j0 is
determined by the level curve of f which we trace to
determine the front position. Thus, indeed, the position
fluctuations of a d-dimensional pulled front in d 1 1 bulk
dimensions map onto the height fluctuations along a line
of a KPZ surface in d 1 1 dimensions —see Fig. 1. The
growth and roughness exponents are therefore those of the
����d 1 1� 1 1���D KPZ universality class.

The above scenario unifies a number of different results.
It can immediately be compared with the simulation re-
sults of the stochastic lattice model of [8]. In that paper
a 2D lattice model was introduced in which by changing
a simple birth and death rule of particles 1D fronts could
be tuned from pushed to pulled. The scaling exponents of
the pushed model were found to be the standard �1 1 1�D
KPZ ones, as it should, while those of the pulled vari-
ants were close to those of the �2 1 1�D KPZ universality
class. More importantly, without any adjustable parame-
ters, the distribution functions for the long-time saturated
width of the fronts in this model for finite transverse width
L� [19] are completely in accord with our scenario [8].

ξ y

φ
h

ξ y

FIG. 1. Left panel: Snapshot of the field f at time t � 20
in a 2D simulation of (5) with D � 1 and e � 10. The thick
line is the position of the front, defined by tracking the line
where f�j, r�, t� � 1�2. Right panel: the same data as in
the left figure, plotted in terms of the height variable h. Note
that h has the appearance of a (slanted) fluctuating surface.
The flat portion on the left is the region behind the front and
where h � l�j since f ! 1. The thick line indicates the height
fluctuations along a line of constant j. This illustrates that
the one-dimensional position fluctuations along the pulled front
illustrated by the thick line in the left panel are related to the
height fluctuations of the two-dimensional fluctuating surface of
the leading edge variable h. The scaling behavior of these is
that of the �2 1 1�D KPZ universality class.
Moreover, although fronts in 1D do not have transverse
fluctuations, the wandering of the position of pulled fronts
in one dimension is also consistent with �1 1 1�D KPZ
scaling [13]. Finally, the observations of Riordan et al.
[6] that in 3 and 4 bulk dimensions their fronts widths
did not appear to show a power law growth suggests the
following interpretation. According to [8] their fronts are
pulled and so they should be governed by the �3 1 1�D
KPZ equation. The free l � 0 fixed point in this equation
is stable and has no divergent interface width. Apparently
above two dimensions the model of [6,8] renormalizes to
the weak-coupling fixed point. Probably, by tuning some
parameter it can be made to renormalize to the strong-
coupling fixed point.

In hindsight, our arguments also justify the regular-
ization of [5] of the mean-field equations for DLA in
a channel: the full problem involves pushed fronts, but
the mean-field equations have pulled front solutions. The
regularization effectively cures this by making the fronts
into pushed ones.

The validity of the crucial step of our derivation, the as-
sertion that the nonlinearities in (5) or (6) can be neglected
because the leading edge where f ø 1 is the essential
region, can be tested independently. In Fig. 2 we show
simulation data of the wandering of the lines where f �
0.5 in Eq. (5) in 2D, both with and without the nonlinear-
ity. Following [21], where the linearized version of (6) was
already employed to study the �2 1 1�D KPZ exponents
numerically, we have taken parameters so as to make the

100
t

1

W

With Nonlinearity
Without Nonlinearity

t
0.24

FIG. 2. The increase of the root mean square front width W �
�� �h�r�, t� 2 h�r�, t�	 2 �	1�2 with time (with the overbar denot-
ing an average over r�). Data are for simulations of Eq. (6) both
with nonlinearity (full line) and without nonlinearity (dashed
line), for e � 5 and an effective diffusion constant D � 0.4,
which corresponds to dimensionless KPZ coupling constant l̃ �
25 [20]. The front position h in the x direction is defined as the
level line where f � 0.5. The fact that the growth exponent
is essentially the same with and without f-nonlinearity justifies
our assertion that these terms do not affect the dominant scaling
behavior of pulled fronts.
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dimensionless coupling l̃ � 2l2e�n3 � 25. This value
appears to be close to the strong coupling fixed point value
and so slow transients are minimized [21]. We find, indeed,
that the two data sets with and without the nonlinear term
in (5) show the same growth exponent, with a value close
to the one b � 0.24 of the �2 1 1�D KPZ equation. This
gives confidence in the validity of our assertion that the
nonlinear terms in the front equation are not important for
the scaling behavior of pulled fronts.

The main steps of our line of argument are elegantly
direct and build on various previously established ideas; at
the same time our scenario also raises a number of new
questions and challenges for further research.

(i) There is no systematic theory for the transition from
the pushed to the pulled regime in stochastic lattice mod-
els, so it is difficult to determine a priori which models
lead to the standard pushed fronts and which ones lead to
pulled ones. For example, fronts in the directed percolation
problem are pushed and obey KPZ scaling in one special
case [22], but it is not known whether this is generally so.

(ii) Finite size scaling of the KPZ equation is normally
done for interfaces of size L� in all directions. Our sce-
nario, on the other hand, leads one to consider anisotropic
scaling, since there is effectively a time-dependent cutoff
in the j direction [13]. The crossover scaling is completely
unexplored, but is most likely quite tricky: for fixed L�

the results of [13] for fronts in one dimension suggest that
one should see subdiffusive wandering of the average front
position, �� h �2� �

p
t (rather than �t) because the cutoff

in the j direction grows as Lj �
p

t, but our simulations
seem to suggest that the crossover to this regime happens
at such extremely long times that it cannot convincingly
be seen in practice. Moreover, the crossover is likely to
depend significantly on the initial conditions [13].

(iii) According to the results of [4,7,11], pulled fronts
are very sensitive to finite particle effects, so that the con-
vergence to a continuum limit is extremely slow. The re-
sults also indicate that any finite particle model has actually
weakly pushed fronts, and hence that the true asymptotic
regime should be consistent with normal KPZ scaling after
all. The anomalous scaling we discussed here then strictly
holds only in a field theory without cutoff.

In conclusion, we have put forward an effective field
equation for pulled fronts and argued on the basis of it that
pulled fronts in d 1 1 bulk dimensions are in the ����d 1

1� 1 1���D KPZ universality class rather than the �d 1 1�D
KPZ universality class. The scenario ties together various
results in the literature and brings up various new issues
for future research.
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