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Abstract
Recently, detailed experiments on visco-elastic channel flow have provided convincing evi-
dence for a nonlinear instability scenario which we had argued for based on calculations for
visco-elastic Couette flow. Motivated by these experiments we extend the previous calcula-
tions to the case of visco-elastic Poiseuille flow, using the Oldroyd-B constitutive model. Our
results confirm that the subcritical instability scenario is similar for both types of flow, and
that the nonlinear transition occurs for Weissenberg numbers somewhat larger than one. We
provide detailed results for the convergence of our expansion and for the spatial structure of
the mode that drives the instability. This also gives insight into possible similarities with the
mechanism of the transition to turbulence in Newtonian pipe flow.

Keywords Subcritical instability · Viscoelastic Poiseuille flow · Transition to turbulence

1 Introduction

Pierre Hohenberg played an important role in the scientific life and career of one of us, Wim
van Saarloos, who was a junior colleague of Pierre at Bell Labs from 1982–1990. During
these years Pierre worked steadily on his magnum opus on Pattern Formation, the review
Pattern formation outside of equilibrium with Mike Cross, published in 1993 [1]. Although
the two actually only started to work together during the last two of these years, indirectly
and through informal discussions and by Pierre acting as a soundboard, Wim profited a
lot from Pierre’s wisdom and insight in pattern formation. Moreover, Pierre’s attention for
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understanding real experiments, for translating one’s theoretical analysis into experimentally
testable predictions, and his emphasis on the importance ofwriting longer papers and reviews,
has had a lasting influence on him. It is therefore a privilege to contribute to this special issue
honoring Pierre Hohenberg, with a topic that has many elements of Pierre’s interests and
ways of doing physics.

In his personal reflections which will appear in a memorial book for Pierre Hohenberg
[2], Wim has extensively described Pierre’s influence on him. Moreover, it is explained there
in detail how the topic which the two of us, authors of this paper, explored together some ten
to fifteen years ago, exhibits traces of the earlier collaborations of Wim and Pierre. We refer
to these personal reminiscences [2] for this background. Connections relevant to the present
paper are: the relation with their unpublished explorations of the transition to turbulence
in Newtonian pipe flow, how this culminated in their long paper on the quintic Complex
Ginzburg-Landau equation [3], how this in the end relates to the topic of interest here, and
how much Pierre enjoyed it when we presented this whole storyline at the Rutgers meeting
celebrating his 80th birthday in December 2014.

The issue at stake is the question whether viscoelastic channel flow exhibits a nonlinear
flow-instability in the small Reynolds number limit.

It is well known that Newtonian fluids flowing through a pipe, so-called Poiseuille flow,
exhibit a nonlinear instability to turbulence [4,5]. The transition must be nonlinear, since the
laminar Poiseuille flow state is linearly stable. The same holds for Couette flow, flow induced
by having two plates moving in opposite direction.1

Adding polymers to a fluid can have drastic effects.With polymers in it, the fluid behaves as
a so-called viscoelastic fluid. Because shear causes stretching of the polymers, a viscoelastic
polymer fluid exhibits elasticity, relaxation and anisotropy: each stretched polymer acts like
a little elastic rubber band which is oriented by the shear direction and which takes time to
respond (relax) when the local shear rate varies. These effects are stronger, of course, the
longer the polymer molecules are, and the higher their concentration. A well-know dramatic
manifestation of practical interest of these viscoelastic effects is ’turbulent drag reduction’ [6]:
when sufficiently long polymers are added in small amounts to a fluid, the drag experienced
by turbulent flow through the pipe is reduced. The precise origin of this effect is still a matter
of active research.

We are here interested in another limit, the limit in which both the polymer concentration
and their length are large enough that the effective fluid viscosity is large, so much so that
the flow can be considered as small Reynolds number flow. The convective nonlinearity in
the Navier-Stokes equation can then be neglected, and the only nonlinearities come from the
so-called constitutive equation that relates the polymer stress tensor and the flow field. In this
limit, the only dimensionless quantity for simple shear flows is the so-called Weissenberg
number Wi , which is a measure of the normal stress effects in the fluid, resulting from the
orientation and stretching of the polymers.

It has been known since 1977 [7] that viscoelastic Poiseuille flow, as modeled by the
so-called Oldroyd-B constitutive equation, is linearly stable in the small Reynolds number
limit. Motivated by experimental work by Bonn and co-workers [8,9], and by the similarity
of the questions concerning the nonlinear transition to turbulence of Newtonian fluids, we
therefore explored theoretically in a series of papers [10–13] the question whether parallel
viscoelastic shear flows would show a nonlinear flow instability as well.

1 Planar Poiseuille flow actually does become linearly unstable at sufficiently high Reynolds numbers, but this
linear instability is actually irrelevant for the transition to turbulence, which happens at much lower Reynolds
numbers.
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A combination of analytical arguments, based on insights into the Newtonian case and
the theory of dynamical systems and pattern formation [13], and explicit but approximate
nonlinear stability calculations for the case of Couette flow, led us to propose [8,12,13] that
viscoelastic shear flows should indeed show this putative nonlinear transition forWeissenberg
numbers somewhat larger than one. We speculated that the transition would lead to turbulent
flow.

Several initial attempts to test our proposed scenario experimentally gave negative results.
Some numerical investigations did show behavior reminiscent of the proposed scenario, but
it is well known to experts that simulations of these bilinear type of constitutive equations are
very prone to numerical instabilities, resulting from flow regions which lead to exponential
divergence of stress components.Thus, also numerical investigations were considered to give
inconclusive results.

The issue therefore remained unsettled till Arratia and co-workers [14,15] convincingly
showed in 2013, using microfluidics experiments, that indeed small Reynolds number vis-
coelastic channel flow does indeed exhibit a nonlinear transition to turbulence. Qualitatively,
their finding is very much in line with what we had proposed: by perturbing the viscoelastic
flow in very long micro-channels behind the inlet in a controlled way, by putting a variable
number of cylindrical obstacles in the channel, they found that sufficiently strong perturba-
tions lead to a well-developed asymptotic turbulent state far down the channel. Moreover,
the experiments showed that the transition occurs for Weissenberg numbers somewhat larger
than one, very much like what our own approximate analysis had suggested.

Theunequivocal experimental evidence for the nonlinear viscoelastic instability of channel
flow leads us to revisit and extend, in this paper, our earlier theoretical analysis. The earlier
calculations [12] were focussed on Couette flow (two plates moving in opposite directions);
we here extend the results to the experimentally relevant case of Poiseuille flow. We also
take the opportunity to present in more detail the nature of our analysis, which is based
on an asymptotic Amplitude-equation-like expansion taken to unusually large order (which,
incidentally, was an aspect that Pierre liked very much when we presented this at the Rutgers
meeting celebrating his 80th birthday). This also allows us to put our results into perspective
and to substantiate our previous claim that our results converge to well-defined values and
flow profiles. Indeed, we also show for the first time the spatial structure of the nonlinear
modulated waves which according to our analysis determine the instability threshold.

In the next section, we simply summarise the main result of our analysis, which shows
within the context of the same approximate analysis that viscoelastic Poiseuille flow between
plates exhibits a nonlinear instability which is very similar to the one for plane Couette flow
published previously [12]. Also the transition amplitude and the values of the Weissenberg
number where the instability is found, is similar. In Sect. 3 we then present the technical
details of the expansion underlying our results, which we then apply to the case of plane
Poiseuille flow in Sect. 5. In our concluding Sect. 6 we put our results into perspective, and
speculate on the transition to turbulence mechanism of viscoelastic flow.

2 Main Result of Perturbative Expansion for Viscoelastic Plane Couette
and Plane Poiseuille Flow

Figure 1 summarises our earlier result [12] for plane Couette flow as a function of increasing
Weissenberg number Wi which, as stated above, is the only dimensionless number for these
flow configurations in the zero Reynolds number limit. What do these results mean?
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Fig. 1 Steady-state amplitude of the travelling-wave solution in plane Couette flow of UCM fluids found in
[16] for kx = kz = 1; the ratio Re/Wi = 10−3 was kept constant. Re-plotted from Ref. [16]. For definitions
see Sect. 4

As detailed in later sections, these calculations are based on perturbing the laminar vis-
coelastic flow with a finite-wavelength mode of amplitude Φ. For flow between plates, one
does this by picking a wavenumber kx associated with the wavenumber of the modulation
along the flow direction, and a wavenumber kz in the transverse direction. We imagine these
to be fixed, and then ask ourselves whether, if we think of the flow to be perturbed by a mod-
ulation of this type and of a given initial amplitudeΦ, this amplitude would decay—meaning
stability—or increase in time (meaning instability). The linear stability calculation, already
done long ago [7], is based on assuming that the mode amplitude Φ (for a given kx and
kz) is infinitesimally small, and the finding from these calculations is that when the initial
amplitude Φ is infinitesimally small, it will indeed decay in time: the flow is linearly stable.

Our calculations are based on probingwhetherΦ will grow or decay in time perturbatively,
by performing an expansion in powers ofΦ, for fixed wavenumbers. In other words, we only
probe growth or decay of the amplitude, without allowing for spatial instabilities of themodes
themselves.

In Fig. 1, we plot along the vertical axis the critical dimensionless value Ψ = |Φc| of the
amplitude—which we can think of the maximum relative change in shear rate at the walls—
separating decay (for smaller amplitudes) from growth (for larger amplitudes) for particular
values of the wavenumbers indicated.

Clearly, these results indicate that within the limitations of our perturbative calculations,
we expect that nonlinear instability to be very similar for plane Couette and Poiseuille flow.
This is of course what one would expect physically as the instability is driven by the self-
amplifying nature of viscoelastic flow along curved streamlines. This should depend little on
the details of the way the flow is driven.

Of course, as explained above our analysis is based on an amplitude expansion, which
itself is an asymptotic expansion. It is legitimate to ask why we were confident to draw
conclusions from such an expansion. To illustrate why we did dare to do so, we show in
Fig. 1 the results up to 5th (red, label Ψ2), 7th (orange, label Ψ3) , 9th (light blue, label
Ψ4) and even 11th order (dark blue, label Ψ5) in our expansion for Φc for the case of plane
Couette flow. Quite surprisingly—we had no reason to expect this a priori—the results for the
critical value Φc are quite robust. Moreover, even the ’nose’ of the curves on the left seems
to converge: whenever the expansion is extended by including another order, the curve shifts
by about half the amount that it did in the previous step.

3 Derivation of the Amplitude Equation

In this Section we present a method of approximating non-linear solutions for a class of
non-linear partial differential equations in the following form
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L̂V + Â
∂V

∂t
= N (V , V ) , (1)

where V is a d-dimensional vector of fields, L̂ and Â are linear operators, and N is a quadratic
non-linear operator.Ourmethod is primarily designed for problems of hydrodynamic stability
in parallel shear flows, and, from the onset, we incorporate some of the main features of the
corresponding equations of motion directly into Eq. (1). First, we introduce a Cartesian
coordinate system (x, y, z), where x and z denote the unbounded directions, while y is the
direction between two confining plates. The vector V is thought of to contain the velocity,
stress components, and pressure in the fluid.We further assume that L̂, Â, and N only contain
spatial derivatives, and that N ( f (t)V1, V2) = N (V1, f (t)V2) = f (t)N (V1, V2), where V1
and V2 are arbitrary functions of space, while f (t) is an arbitrary function of time.

Our goal is to demonstrate that Eq. (1) can have finite-amplitude solutions besides the
trivial (laminar) one. In the absence of a linear instability, there is no systematic way of
finding such a solution and we attempt to construct it perturbatively, in a way motivated by
amplitude expansion methods developed for studying near-threshold behaviour of pattern-
forming instabilities (see [1,17], for example). Our expansion is based on the eigenfunctions,
ei(kx x+kz z)V (n)

0 (y), of the linear operator:

L̂ei(kx x+kz z)V (n)
0 (y) = −λn Âe

i(kx x+kz z)V (n)
0 (y), (2)

whereλn is an eigenvalue. The index n enumerates the eigenfunctions; their number and form
depends on the problem at hand. The desired finite-amplitude solution for the real-valued
fields is then assumed to be represented by

V (x, y, z, t) = Φ(t)eiξV0(y) + Φ∗(t)e−iξV ∗
0 (y)

+U0(y, t) +
∞∑

n=2

[
Un(y, t)e

inξ +U∗
n (y, t)e−inξ

]
, (3)

where eiξV0 is one of the eigenfunctions corresponding to an eigenvalue λ, and we have
introduced ξ = kx x + kzz; ”∗” denotes complex conjugation; the choice of a particular
eigenfunction will be discussed below, but we note here that for plane Couette flow these
are the Gorodtsov–Leonov modes [18] that we used in our previous work [12]. One can
view Eq. (3) as a Fourier expansion in x and z with an extra assumption about the form and
interrelation between the coefficients; Φ(t) is the basic amplitude of the mode whose non-
linear behaviourwe aim to study perturbatively. In the spirit of amplitude-equation techniques
[1,17], the time-dependent amplitude Φ(t) follows the linear dynamics governed by Eq. (2)
at short times, which is replaced by nonlinear dynamics at large t . In the following, we derive
the evolution equation for the amplitude Φ(t) assuming that it is small in some sense. This
assumption will be checked for self-consistency, once the solution is obtained.

To proceed, we assume that the dominant dynamics in Eq. (3) are given by the time-
evolution ofΦ(t), and that the higher harmonicsUn’s follow it adiabatically (they are ’slaved’
toΦ(t)). This implies that the Fourier componentsUn’s can only arise as a result of nonlinear
interactions of the eigenmode with itself and other Un’s. For instance, if we denote Vl =
Φ(t)eiξV0(y), then U0(y) has contributions from the interactions of a) Vl with V ∗

l , b) Vl ,
V ∗
l , Vl , and V

∗
l , etc. Applying this power-counting argument to all Fourier modes, we obtain

U0(y, t) = |Φ(t)|2u(2)
0 (y) + |Φ(t)|4u(4)

0 (y) + · · · ,

U2(y, t) = Φ2(t)u(2)
2 (y) + Φ2(t)|Φ(t)|2u(4)

2 (y) + · · · ,
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U3(y, t) = Φ3(t)u(3)
3 (y) + · · · ,

· · · , (4)

where u(m)
n (y) are unknown functions, which will be determined below; the subscript n and

superscript m correspond to the Fourier harmonic and the order in Φ, respectively.
To derive the time-evolution equation for Φ(t), we substitute Eq. (3) into Eq. (1) and

separate the terms proportional to eiξ . This yields

L̂
(
Φ(t)eiξV0(y)

)
+ dΦ(t)

dt
Â

(
eiξV0(y)

)
=

(
dΦ(t)

dt
− λΦ(t)

)
Â

(
eiξV0(y)

)

= N̄
(
Φ(t)eiξV0(y),U0(y, t)

)
+ N̄

(
Φ∗(t)e−iξV ∗

0 (y),U2(y, t)e
2iξ

)

+
∞∑

n=2

N̄
(
Un+1(y, t)e

i(n+1)ξ ,U∗
n (y, t)e−inξ

)
, (5)

where we used Eq. (2) and introduced N̄ (A, B) = N (A, B) + N (B, A). Although the
eigenmodes of the linear operators involved in flow stability problems often form full sets,
they are typically non-normal [19] and their eigenmodes are not orthogonal. Therefore, to
calculate the contribution of the r.h.s. of Eq. (5) to dΦ/dt , we employ the adjoint operator
L̂†, defined via

〈V1|L̂V2〉 = 〈L̂†V1|V2〉, (6)

where V1 and V2 are two arbitrary vectors satisfying proper boundary conditions. The scalar
product 〈· · · 〉 is given by

〈V1|V2〉 = lim
Lx ,Lz→∞

1

2Lx

∫ Lx

−Lx

dx
1

2d

∫ d

−d
dy

1

2Lz

∫ Lz

−Lz

dz
(
V ∗
1 , V2

)
, (7)

where (A, B) = ∑
i Ai Bi is the Euclidean dot product, and 2d is the distance between the

confiningplates. The actual formof the adjoint operator is obtainedbyperforming integration-
by-parts in Eq. (6), as will be demonstrated later. The eigenmodes ei(kx x+kz z)W (m)

0 (y) and
the eigenvalues χm of the adjoint operator are given by

L̂†ei(kx x+kz z)W (m)
0 (y) = −χm Â†ei(kx x+kz z)W (m)

0 (y), (8)

with m = 1, 2, . . . , and Â† being the operator adjoint to Â; for the problem we consider
in Sect. 4, operator Â is self-adjoint. Since Eq. (2) is a generalised eigenvalue problem,
the orthogonality condition between the eigenmodes of the linear and adjoint operators is
somewhat unusual, and we state it here explicitly. We consider

〈eiξW (m)
0 (y)|L̂eiξV (n)

0 (y)〉 = −λn〈eiξW (m)
0 (y)| ÂeiξV (n)

0 (y)〉. (9)

At the same time,

〈eiξW (m)
0 (y)|L̂eiξV (n)

0 (y)〉 = 〈L̂†eiξW (m)
0 (y)|eiξV (n)

0 (y)〉
= −χ∗

m〈 Â†eiξW (m)
0 (y)|eiξV (n)

0 (y)〉 = −χ∗
m〈eiξW (m)

0 (y)| ÂeiξV (n)
0 (y)〉. (10)

Comparing Eqs. (9) and (10) we conclude that 〈eiξW (m)
0 (y)| ÂeiξV (n)

0 (y)〉 = 0, unless λn =
χ∗
m .
The evolution equation for the amplitudeΦ(t) is finally obtained by projecting Eq. (5) onto

the eigenmode of the adjoint operator eiξW0(y), selected such that its eigenvalue χ = λ∗.

123



560 A. Morozov, W. van Saarloos

According to Eq. (4), the r.h.s. of Eq. (5) is a polynomial in Φ(t) and its complex conjugate,
and one obtains

dΦ

dt
= λΦ + C3Φ|Φ|2 + C5Φ|Φ|4 + C7Φ|Φ|6 + C9Φ|Φ|8 + C11Φ|Φ|10 · · · . (11)

The coefficients C’s are calculated by collecting terms of the corresponding order in Φ on
the r.h.s. of Eq. (5) and projecting them on eiξW0(y). Once these coefficients are known, we
can then study whether there is a critical value Φc that separates decaying amplitudes, for
small |Φ|, from the growing ones.

To illustrate the method, we show here how to calculate the coefficient C3, while the
expressions for the higher-order coefficients are deferred to Appendix C. To O

(
Φ|Φ|2), we

obtain from Eq. (5) by projecting it on eiξW0(y)

C3 = 1

Δ

〈
eiξW0(y)

∣∣∣∣N̄
(
eiξV0(y), u

(2)
0 (y)

)
+ N̄

(
e−iξV ∗

0 (y), e2iξu(2)
2 (y)

)〉
, (12)

where

Δ = 〈eiξW0(y)|eiξ ÂV0(y)〉. (13)

Let us now determine the unknown functions u(2)
0 and u(2)

2 . Once again, we substitute Eq. (3)
into Eq. (1), and separate the terms proportional to e2iξ . To lowest order in Φ, it yields

L̂
(
|Φ(t)|2u(2)

0 (y)
)

+ d|Φ(t)|2
dt

Âu(2)
0 (y) = N̄

(
Φ(t)eiξV0(y),Φ

∗(t)e−iξV ∗
0 (y)

)
. (14)

The time-derivative can be evaluated self-consistently with the help of the amplitude equation
(11), and to O

(
Φ2

)
is equal to

d|Φ|2
dt

= dΦ

dt
Φ∗ + Φ

dΦ∗

dt
= (

λ + λ∗) |Φ|2. (15)

Therefore, u(2)
0 (y) satisfies the following inhomogeneous ODE

L̂u(2)
0 (y) + (

λ + λ∗) Âu(2)
0 (y) = N̄

(
eiξV0(y), e

−iξV ∗
0 (y)

)
. (16)

Similarly, u(2)
2 (y) is given by

L̂
(
e2iξu(2)

2

)
+ 2λ Âe2iξu(2)

2 = N
(
eiξV0, e

iξV0
)

. (17)

The equations for higher C’s and u’s are obtained by a straightforward, though lengthy,
generalisation to higher orders in Φ of the procedure outlined above. The corresponding
expressions can be found in Appendix C.

Equation (11), together with the procedure to systematically determine the coefficients
C’s, is the central result underlying our non-linear analysis of the flow stability. It allows one to
calculate the amplitude of a non-linear solution to Eq. (1) in the form given by Eq. (3). In what
follows, we will be particularly interested in simple solutions to this equation, either in the
form of stationary points or travelling waves. As wewill see below, for the problem discussed
in Sect. 4, the least stable eigenvalues λ are complex, and, therefore, the relevant solutions are
of the latter type, given by Φ(t) = Ψ ei Ω t , where Ψ and Ω are real numbers. Substituting
this ansatz into the amplitude equation (11), and separating the real and imaginary parts, we
obtain for a non-trivial solution with a stationary amplitude Ψ

0 = Re (λ) + Re (C3) Ψ 2 + Re (C5) Ψ 4 + · · · , (18)

123



Subcritical Instabilities in Plane Poiseuille… 561

Ω = Im (λ) + Im (C3) Ψ 2 + Im (C5) Ψ 4 + · · · . (19)

The asymptotic nature of Eqs. (18) and (19) imply that only converging series can represent a
physical solution. In turn, this translates into the requirement that the solution amplitudeΦ(t)
is sufficiently small, where the scale is given by the coefficients Cn . To study convergence of
series Eqs. (18) and (19), we employ a somewhat intuitive method based on the partial sums
Sm , defined through

Sm ≡ Re (λ) + Re (C3) Ψ 2 + · · · + Re (C2m+1) Ψ 2m . (20)

We then solve a series of algebraic equations S1 = 0, S2 = 0, . . . , and obtain a corresponding
series of solutionsΨ1,Ψ2, . . . , andΩ1,Ω2, . . . , usingEq. (19). If both series approach limiting
values, the latter are recognised as representing a physical solution; see Sect. 2 for discussion.

In the next Sections we adopt this method to parallel shear flows of model viscoelastic
fluids and calculate the coefficients in Eq. (11) up to C11.

4 Channel Flow of a Viscoelastic Fluid

Herewe adopt themethod presented in the previous Section to the study of non-linear stability
of parallel shear flows of model polymer fluids. We consider a flow between two parallel
plates forced by a constant pressure gradient denoted here for convenience by −ΔP (plane
Poiseuille flow). As in Sect. 3, we select a coordinate system with (x, y, z) being along the
streamwise, vertical (gradient) and spanwise directions, respectively; the distance between
the plates is 2d .

The velocity of the fluid v is governed by the Stokes equation

−∇ p + ηs∇2v + ∇ · τ = 0, (21)

and the incompressibility condition

∇ · v = 0, (22)

where p is the pressure, τ is the polymeric contribution to the total stress, and ηs is the
solvent viscosity. In Eq. (21), we neglected the inertial terms as typical experiments on
elastic instabilities and turbulence are usually performed either in microfluidic devices or
with high-viscosity fluids (see [14,20], for example). In both cases, the corresponding values
of the Reynolds number (defined as Re = U d/ν, where U is the typical flow velocity and
ν is the kinematic viscosity of the fluid) do not exceed 10−2 − 10−1, and the inertial effects
can be ignored.

To describe the dynamics of the polymer stress tensor τ , we employ the Oldroyd-B model
given by

τ + λM

[
∂τ

∂t
+ v · ∇τ − (∇v)T · τ − τ · (∇v)

]
= ηp

[
(∇v) + (∇v)T

]
, (23)

where λM is the Maxwell relaxation time of the fluid, ηp is the polymer viscosity, and T
denotes the matrix transpose. The Oldroyd-B model is the simplest equation incorporating
normal-stress effects that are the driving force for many viscoelastic flow instabilities [13,21,
22]; for a detailed discussion of various viscoelastic equations of motion and their predictions
see [23–25]. Finally, the velocity field is assumed to satisfy the no-slip boundary condition

vx (x, y = ±d, z) = vy(x, y = ±d, z) = vz(x, y = ±d, z) = 0. (24)
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Equations (21)–(24) have as laminar solution the well-known parabolic profile with v =
(U0(y), 0, 0), where

U0(y) = ΔPd2

2
(
ηs + ηp

)
[
1 −

( y

d

)2]
. (25)

The corresponding elastic stresses are given by

τ (0)
xx = 2ηpλMU ′2

0 (y),

τ (0)
xy = ηpU ′

0(y),

τ (0)
xz = τ (0)

yy = τ (0)
yz = τ (0)

zz = 0. (26)

In what follows we render Eqs. (21)–(24) dimensionless by re-scaling the variables by
appropriately chosen units, suggested by the laminar solution above. We use d as a unit
of length, U = ΔPd2/(2

(
ηs + ηp

)
) as a unit velocity, d/U as a unit of time, and ηp U/d

as a unit of stress. The material properties of the fluid are controlled by two dimensionless
parameters: the ratio of the solvent to total viscosities β = ηs/(ηs +ηp), and theWeissenberg
number Wi = λMU/d . The latter controls the strength of non-Newtonian effects in Eq. (23)
and plays in elastic instabilities and turbulence the same role as the Reynolds number does
in Newtonian fluid mechanics. In what follows, we set β = 0.05 unless otherwise stated.

Next, we split the dimensionless velocity and stress fields into the laminar part and a
deviation from the laminar solution,

τi j = 2Wi U ′2
0 (y)δi xδ j x + U ′

0(y)
(
δi xδ j y + δiyδ j x

) + τ
(1)
i j , (27)

v = (U0(y), 0, 0) + v(1), (28)

and introduce a perturbation vector V = (
v(1), τ (1), p(1)

)T
, where p(1) is the pressure

perturbation. The other terms in Eqs. (27) and (28) are the dimensionless forms of the laminar
profile, Eqs. (26) and (25), respectively. Substituting these expressions into the equations of
motion, we arrive at the compact form, Eq. (1), introduced in Sect. 3. The explicit expressions
for L̂, N and Â are given in Appendix A. In the next Section we present the finite-amplitude
solutions of Eqs. (21)–(24) found by the method presented in Sect. 3.

5 Results

As the eigenmodes of the linear operator in Eq. (2) are the starting point of our analysis, here
we briefly present the linear stability analysis of plane Poiseuille flow of an Oldroyd-B fluid;
for a detailed discussion see Wilson et al. [26]. To calculate the eigenspectrum, we discretise
Eq. (2) with L̂ and Â given in Appendix A using the fully spectral Chebyshev-tau method
[27], and solve numerically the resulting generalised eigenvalue problem using Scientific
Python [28].

In Fig. 2 we present an example of the eigenvalue spectrum, plotted as Im(λ) vs Re(λ).
The general structure of the spectrum for Wi = 1, β = 0.05, kx = 1, and kz = 2 is shown in
Fig. 2a, while Fig. 2b presents a zoom-in on the least stable part of the spectrum. As can be
seen, all eigenvalues have Re(λ) < 0, indicating linear stability. This is confirmed numeri-
cally for all values ofWi ,β, kx and kz ; see alsoWilson et al. [26]. Themost prominent features
in Fig. 2, the balloon-like shapes at Re(λ) = 1/Wi and Re(λ) = 1/(βWi), are numerical
approximations to the continuous spectrum of the linear operator, which corresponds to the
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Fig. 2 a Eigenvalue spectrum for Wi = 1, β = 0.05, kx = 1, and kz = 2. b Zoom-in on the most unstable
part of the spectrum. The least stable eigenmodes, used in the non-linear analysis below, are denoted as “1”,
“2”, and “3”. Numerical convergence is insured by performing the linear stability analysis with 100 (circles)
and 150 (dots) Chebyshev polynomials

singular points of the linear problem [26]. The least unstable eigenvalues, which are used
in the non-linear analysis below, are the right-most modes in Fig. 2b, which we denote by
λ1, λ2, and λ3. (There is another discreet eigenvalue which is very close to the continuous
spectrum, and we do not attempt to perform calculations for the associated eigenmode as it
would require a very high spectral resolution.) The corresponding eigenmodes are presented
in Fig. 3. As can be seen there, two of the eigenmodes are mostly pronounced close to the
walls, and are related to the Gorodtsov–Leonov modes [18] used in our previous work on
plane Couette flow [12], while the other one is mostly present in the middle of the geometry.

Next, we calculate the eigenmodes of the adjoint problem, Eq. (8), with L̂† defined in
Appendix B, by using the same numerical method, as above. As demonstrated in Sect. 3,
every eigenvalue of the linear problem λ has its adjoint counterpart χ , such that χ∗ = λ.
Therefore, for the same parameters as above, the adjoint spectrum looks like Fig. 2, with
Im(χ) = −Im(λ). The adjoint eigenmodes, corresponding to the least stable eigenvalues
λ1, λ2, and λ3 share the same spatial features as their linear counterparts and are either
confined to the walls or the bulk of the system; see Fig. 4, for example.

In what follows, we use the three least stable modes as the starting point of the non-linear
analysis presented in Sect. 3, and assess whether they result in converged non-linear states.
For each mode, we calculate the coefficients C’s as a function of the Weissenberg number
Wi , and use them to solve Eq. (18) for the amplitude Ψ of the travelling-wave state. As
explained in Sect. 3, we construct a series of solutions at progressively higher orders in the
amplitude, see Eq. (20), and study their convergence. We found that using the eigenmode
associated with λ2 does not lead to a converging series of amplitudes Ψ , while the other two
eigenmodes lead to converging non-linear solutions, which we refer to as ’State 1’ and ’State
3’, and below we focus on these two modes.

The results of this procedure are presented in Fig. 5, while the values of the coefficientsC’s
for selected values of Wi are given in Tables 1 and 2. For both states, the series of solutions
Ψm share the same features. Here, m denotes the order 2m + 1 to which the expansion in
powers of Φ in Eq. (11) is taken. For any m > 1, the equation Sm = 0 has no real solutions
at smallWi , two real solutions around the saddle-node bifurcation—the value ofWi at which
two solution branches appears for the first time, and one real solution for larger values ofWi .
The lower branches define the threshold amplitude required to destabilise the flow, while the
upper branches are supposed to set the saturated value of the amplitude at the instability. As
can be seen from Fig. 5, the upper branches of all solutions seem to diverge rapidly close to
the saddle-node value Wisn , and the implications of this behaviour are discussed below.
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Fig. 3 Spatial profiles of the eigenmodes corresponding to the three right-most eigenvalues in Fig. 2b. All
eigenmodes are arbitrarily normalised. a and b, c and d, and e and f show the velocity and selected stress
components corresponding to λ1, λ2, and λ3, respectively. For visualisation purposes, the velocities are scaled
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Fig. 5 Amplitudes Ψm of the travelling wave solutions corresponding to a) λ1 (State 1) and b) λ3 (State 3) as
functions of Wi for the case of plane Poiseuille flow; m denotes the order 2m + 1 to which the expansion in
powers of Φ in Eq. (11) is taken. Note the similarity with Fig. 1 for the case of plane Couette flow

Table 1 Values of the non-linear coefficients C’s corresponding to λ1 for β = 0.05, kx = 1, and kz = 2, as
functions of the Weissenberg number Wi

Wi Re(λ) Re(C3) Re(C5), ×102 Re(C7), ×103 Re(C9), ×105 Re(C11), ×107

2.0 −0.4060 9.5015 −1.3539 −18.4446 −12.2280 −6.9523

2.2 −0.3612 9.2059 −0.6473 −14.3000 −10.2052 −4.9994

2.4 −0.3242 8.8739 −0.0345 −10.1102 −8.1790 −4.0287

2.6 −0.2934 8.4988 0.4652 −6.1210 −5.9845 −3.1370

2.8 −0.2674 8.0893 0.8489 −2.5689 −3.7298 −2.0734

3.0 −0.2452 7.6600 1.1256 0.4023 −1.5917 −0.8751

3.2 −0.2260 7.2250 1.3110 2.7499 0.2883 0.3327

3.4 −0.2094 6.7961 1.4228 4.5075 1.8361 1.4356

3.6 −0.1949 6.3819 1.4780 5.7515 3.0389 2.3649

Table 2 Values of the non-linear coefficientsC’s corresponding to λ3. The values of β, kx and kz are the same
as in Table 1

Wi Re(λ) Re(C3) Re(C5), ×102 Re(C7), ×103 Re(C9), ×105 Re(C11), ×107

2.0 −0.4193 14.1783 −4.4338 −74.3059 −73.2408 −82.2225

2.2 −0.3723 12.9427 −2.5531 −52.2014 −49.8742 −40.1729

2.4 −0.3335 11.9032 −1.1161 −35.3082 −35.0532 −24.7110

2.6 −0.3010 10.9746 −0.0507 −22.1785 −24.0470 −16.8609

2.8 −0.2734 10.1186 0.7063 −12.1143 −15.3407 −11.2451

3.0 −0.2499 9.3208 1.2145 −4.6404 −8.4823 −6.5830

3.2 −0.2297 8.5774 1.5293 0.6780 −3.2760 −2.7327

3.4 −0.2121 7.8888 1.6995 4.2694 0.4783 0.2575

3.6 −0.1969 7.2561 1.7664 6.5377 3.0289 2.4086

For both states, we observe that the upper- and lower-branch values ofΨm converge rapidly
as m is increased from 1 to 5. In Fig. 6 we assess this convergence more quantitatively, by
plotting the saddle-node values Wisn for each Ψm as a function of m (circles in Fig. 6).
In the range m = 1 . . . 5, corresponding to the amplitude equation expansion up to the
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asymptotic values Wi (1)sn ≈ 3.16 and Wi (3)sn ≈ 3.39 for State 1 and 3, correspondingly
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Fig. 7 The phase velocity Ω of the travelling-wave solution, Eq. (19), calculated using Ψm from Fig. 5, as a
function of Wi . a State 1, b State 3

eleventh order, the convergence is well-described by an exponential fit (dashed lines in
Fig. 6), approachingWi (1)sn ≈ 3.16 andWi (3)sn ≈ 3.39 for States 1 and 3, correspondingly. The
phase speed of the travelling-wave solutions, Ω , calculated using the values of Ψm presented
above are shown in Fig. 7. Again, we observe that the position of the saddle-node and the
lower-branch values converge rapidly. Using the criterion presented in Sect. 3, we conclude
that our consecutive approximations to States 1 and 3 converge towards physical solutions
that we now examine in more detail.

To gain insight into the spatial structure of the travelling-wave solutions reported above,
we now plot the mean velocity profile v̄x for State 1, calculated by averaging vx over x
and z. In Fig. 8a we present the mean profile for Wi = 3.12, which is close enough to the
saddle-node point for m = 5 so that Ψ5 has two values, 0.15 and 0.22, corresponding to
the lower- and upper-branches, respectively. While the lower-branch mean velocity profile
is quite close to the laminar profile U0(y) = 1 − y2, the upper-branch profile looks very
different, with sharp velocity gradients close the walls and a shifted parabolic-like profile
in the bulk of the system. Surprisingly, the centre-line velocity appears to be larger than
its laminar counterpart implying drag reduction with respect to the laminar state, since it
corresponds to a higher volumetric flow rate at the same applied pressure difference. In
Fig. 8b we present the velocity profile at x = 0 in the yz-plane, which is perpendicular to
the streamwise direction: the in-plane components vy and vz are shown as arrows, while the
streamwise velocity vx − U0(y) is given by the colour. One can clearly see two arrays of
streamwise vortices next to each wall superimposed onto the corresponding arrays of high-
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Fig. 8 Spatial profiles corresponding to State 1 at Wi = 3.12 and Ψ = 0.22 (the upper-branch solution). a
The mean streamwise velocity profile (the lower-branch solution has Ψ = 0.15). b The velocity field in the
yz-plane at x = 0: streamlines show the vy and vz velocities, the colour shows the vx − U0(y) profile. c The
velocity field in the xy-plane at z = 0: streamlines show the vx − U0(y) and vy velocities, the colour shows
the vz profile. d Deviation from the laminar profile of the normal stress component τxx in the xy-plane at
z = 0

and low-velocity streamwise streaks. Fig. 8c shows a similar velocity profile at z = 0 in the
xy-plane, where arrows now trace the in-plane components vx − U0(y) and vy , while the
colour gives the spatial profile of the spanwise velocity vz . Finally, in Fig. 8d we plot the
largest component of the polymeric stress tensor, τxx , which is a deviation from the laminar
stress, in the xy-plane. Most of the stress is concentrated close to the boundaries consistent
with the presence of sharp velocity gradients there.

The profiles presented in Fig. 8b–d correspond to the upper branch of State 1. The lower
branch profiles have a very similar structure, albeit with a significantly smaller amplitude,
and are not presented here. In a similar fashion, the mean profiles and the spatial structure of
State 3 bear strong similarities with State 1, and are, therefore, also omitted here.

Finally, the two states presented here are shown for the somewhat randomly selected values
of the wavenumbers kx and kz . Preliminary studies show that for small values of β, converged
solutions similar to States 1 and 3 persist for a wide range of wavenumbers, provided both
kx and kz are not too big (typically, smaller than kx ∼ kz ∼ 3. For larger values of β, this
region shrinks, which is either related to the convergence properties of our technique, or is
connected to the actual shrinking of the region of existence of such travelling-wave solutions.
This point is deferred to future studies.

6 Discussion and Conclusion

Results presented in this work further corroborate our previous claim [8,10,12,13] that while
parallel shear flows of viscoelastic fluids are linear stable, they exhibit sub-critical instabilities
that lead directly to a chaotic state. Early experiments by Bonn et al. [9] and in particular
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the more recent detailed and systematic experiments by Arratia et al. [14,15] confirm the
existence of such sub-critical instabilities in channel flows of dilute polymer solutions and
demonstrates that the chaotic state observed there is related to the phenomenon of purely
elastic turbulence previously only reported in shear flowswith curved streamlines [20,29,30].

The emergent scenario of the transition in parallel shear flows of viscoelastic fluids
parallels that for their Newtonian counterparts. Recently, significant progress was made
in understanding the transition to turbulence in pipe, plane Couette and channel flows of
Newtonian fluids by studying it from the dynamical systems’ point of view [4,5]. The key
ingredients there are the so-called coherent structures, the exact solutions of the Navier-
Stokes equations, either travelling waves or periodic orbits, that are three-dimensional but
relatively simple. These solutions appear through a sub-critical bifurcation and correspond
to saddles in the phase space of the flow: while their upper and lower branches are linearly
unstable, their vicinity is attractive; also, their number increases with the Reynolds number.
When the phase space is sufficiently populated with such solutions, a turbulent trajectory
performing a random walk between a large number of saddle-like states gets trapped for a
very long time. Coupled to the phenomenon of splitting of localised exact coherent states, this
scenario firmly places the transition to Newtonian turbulence within the directed percolation
universality class.

Our results indicate that a similar scenario might also be at work in the viscoelastic case.
The solutions presented here and in our previous work [12] might form the phase space
scaffold of the purely elastic turbulence, and verifying their existence should be paramount
to understanding its mechanism. An analogous scenario was recently proposed for parallel
shear flows in the presence of small amounts of high-molecular weight polymers to explain
their drag-reducing properties [31–33]. It was argued that the exact coherent states implicated
in drag-reduction might have purely elastic origins [34,35]. It would be interesting to see
whether there is a connection between the states reported here and their inertial counterparts.

The amplitude-equation type technique employed here attempts to construct a non-linear
solution as an asymptotic series, and, as such, it has a limited radius of convergence. While
the lower branches of our solutions, indicative of the amplitude threshold required to trigger
the turbulent state, are well-converged, the upper branches disappear in a close vicinity of the
saddle-node bifurcation. This is either related to the radius of convergence of the asymptotic
series, Eq. (11), as mentioned above, or can be the direct consequence of the upper-branch
non-linear state being turbulent, and the failure of the technique to capture it.

The solutions that we found in this work appear at the values of the Weissenberg number,
Wisn ∼ 3, that are somewhat lower than the onset of turbulence values reported in experiments
in channel, Wionset ∼ 5 [14,15], and pipe flows, Wionset ∼ 4 [8,9]. This is not surprising
since the fluids used in those works had significantly higher values of β than 0.05 employed
here, which would result in higher values of Wisn . Moreover, those fluids exhibited various
degrees of shear thinning, which is not included in the present analysis. While weak shear
thinning is expected to postpone the transition to higher flow rates, due to effectively smaller
relaxation times of the fluid (see [36], for example), the effect of strong shear thinning might
be very different indeed. It has recently been demonstrated experimentally [37–39] and
theoretically [40–42] that strongly elastic and shear thinning fluids exhibit flow instabilities
that are absent in their non-shear-thinning counterparts. The interplay, if any, between those
instabilities and the instability discussed here should therefore be carefully studied. Also,
the dynamical systems scenario of the transition, if applicable in the viscoelastic case, would
imply thatWisn should be smaller than the value ofWionset at which sustained turbulence can
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be observed, providing yet another explanation for the difference.2 We do not argue in favour
of either of the explanations and, instead, draw a more conservative conclusion that our work
provides further evidence for a subcritical (nonlinear) instability scenario at moderate values
of the Weissenberg number, and that it demonstrates that exact coherent solutions do exist in
this type of viscoelastic flows and proper numerical investigation of such states is required.

While experiments provide very limited information about the spatial structure of purely
elastic turbulence in parallel shear flows [8,9,14,15], our work sheds light on what profiles
might be expected in such geometries. First, we observe that, according to our calculations,
the turbulent mean velocity profiles should exhibit a larger centre-line velocity than their
laminar counterparts, see Fig. 8a. This is in stark contrast with the Newtonian turbulent mean
profiles, which are plug-like due to the momentum re-distribution between the walls and
the bulk, and are always slower than the corresponding laminar velocity field in the middle
of the gap. Intriguingly, a similar profile was reported under certain conditions in recent
experiments on pipe and channel flows of rather concentrated polymer solutions [38], where
it was attributed to shear-thinning. The profiles reported here suggest that it might be a more
generic feature related to the elasticity of the fluid. Our second observation comprises the
existence of streamwise vortices and streaks in a plane perpendicular to the flow direction,
Fig. 8b. These structures are a hallmark of Newtonian coherent structures, and it appears that
they also play a role in viscoelastic non-linear solutions. This is, perhaps, not surprising since
they feature prominently in non-normal growth analysis by Kumar and Jovanović [43,44].
The associated stresses (not shown) are in line with the positions of large velocity gradients
in-between the streamwise vortices, although both structures are tilted due to the travelling-
wave nature of whole the state. Finally, the plane perpendicular to the spanwise z-direction
contains widely-spaced co-rotating vortices interlaid with expanding-contracting streamlines
and large, wall-localised stresses. Although such structures have not been reported in the
literature, they are consistent with the near-wall mixing patterns observed by Qin et al. [15].

Although we are confident that we obtained converged non-linear states, their existence
needs to be verified numerically, by searching for steady-state, travelling-waves, and periodic
orbits, using a Newton-Raphson-type algorithm. Until recently, such calculations were not
feasible as a Newton-Raphson step is akin to a time-iteration step for the same equations,
and viscoelastic constitutive models are notoriously difficult to time-step at sufficiently high
Weissenberg numbers (the so-called High-Weissenberg Number Problem [45]). In the past
years, there emerged a class of numerical techniques to ensure positive-definiteness of the
conformation tensor (absence thereof was implicated as a cause of the High- Weissenberg
Number Problem), led by the log-conformation algorithm [46,47], and a combination of
such techniques with a Newton-Raphson-type algorithm should be able to overcome this
problem. The states predicted in this work can then serve as a good initial guess for the
search algorithm. Once found, upper branches of these solutions should be studied for their
linear stability that will assess whether the transition mechanism in viscoelastic fluids bears
similarities with its Newtonian counterpart. This work will be a subject of our future studies.
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2 One should also keep in mind that we study a mode which is fully periodic in the streamwise direction,
whereas in the experiments the flow is perturbed by a small number of cylindrical obstacles in the flow channel.
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Appendix A: Explicit Form of theMatrix Equation

As discussed in the main text, the equations of motion Eqs. (21)–(24) can be written in the
matrix form

L̂V + Â
∂V

∂t
= N (V , V ) , (29)

where V = (
vx , vy, vz, τxx , τxy, τxz, τyy, τyz, τzz, p

)† is the dimensionless deviation of the
hydrodynamic fields from their laminar values (we have dropped the superscript ”1” in
Eqs. (27) and (28) to simplify notation). The operator Â is given by a constant diagonal
matrix

Wi diag
(
0, 0, 0, 0, 1, 1, 1, 1, 1, 1

)
, (30)

while the linear operator L̂ is define by it action on V

L̂V =⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−∂x p + β∇2vx + (1 − β)
[
∂xτxx + ∂yτxy + ∂zτxz

]

−∂y p + β∇2vy + (1 − β)
[
∂xτxy + ∂yτyy + ∂zτyz

]

−∂z p + β∇2vz + (1 − β)
[
∂xτxz + ∂yτyz + ∂zτzz

]

∂xvx + ∂yvy + ∂zvz

X̂1τxx − 2Wi U ′
0τxy − 2X̂2vx + 4Wi2 U ′

0 U ′′
0 vy

X̂1τxy − Wi U ′
0τyy − ∂yvx + (

Wi U ′′
0 − 2Wi2 U ′2

0 ∂x − ∂x
)
vy + Wi U ′

0∂zvz

X̂1τxz − Wi U ′
0τyz − ∂zvx − X̂2vz

X̂1τyy − 2
(
∂y + Wi U ′

0 ∂x
)
vy

X̂1τyz − ∂zvy − (
∂y + Wi U ′

0 ∂x
)
vz

X̂1τzz − 2∂zvz

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(31)

Here, X̂1 = 1 + Wi U0 ∂x and X̂2 = (
1 + 2Wi2 U ′2

0

)
∂x + Wi U ′

0 ∂y , and the dimensionless
laminar velocity profile is given by U0(y) = 1 − y2.

The r.h.s. of Eq. (29) represents the non-linear terms in the original equations Eqs. (21)–
(24), and is given by a bilinear form

N
(
V (A), V (B)

)
= −

(
v(A) · ∇

)
Â V (B)
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+Wi

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0

2
[
τ

(A)
xx ∂xv

(B)
x + τ

(A)
xy ∂yv

(B)
x + τ

(A)
xz ∂zv

(B)
x

]

τ
(A)
xx ∂xv

(B)
y − τ

(A)
xy ∂zv

(B)
z + τ

(A)
xz ∂zv

(B)
y + τ

(A)
yy ∂yv

(B)
x + τ

(A)
yz ∂zv

(B)
x

τ
(A)
xx ∂xv

(B)
z + τ

(A)
xy ∂yv

(B)
z − τ

(A)
xz ∂yv

(B)
y + τ

(A)
yz ∂yv

(B)
x + τ

(A)
zz ∂zv

(B)
x

2
[
τ

(A)
xy ∂xv

(B)
y + τ

(A)
yy ∂yv

(B)
y + τ

(A)
yz ∂zv

(B)
y

]

τ
(A)
xy ∂xv

(B)
z + τ

(A)
xz ∂xv

(B)
y + τ

(A)
yy ∂yv

(B)
z − τ

(A)
yz ∂xv

(B)
x + τ

(A)
zz ∂zv

(B)
y

2
[
τ

(A)
xz ∂xv

(B)
z + τ

(A)
yz ∂yv

(B)
z + τ

(A)
zz ∂zv

(B)
z

]

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Obviously, N (A, B) �= N (B, A).

Appendix B: Adjoint Operator

The actual form of the adjoint operator L̂† is obtained by using in Eq. (6) the expression for
the linear operator L̂, defined above, and performing integration-by-parts. Again, we define
L̂† by its action on a mode W = (

νx , νy, νz, sxx , sxy, sxz, syy, syz, szz, π
)†, which is given

by
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L̂†W

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−∂xπ + β∇2νx + 2
(
∂x + 2Wi2 U ′2

0 ∂x + Wi U ′′
0 + Wi U ′

0∂y
)
sxx

+∂ysxy + ∂zsxz

−∂yπ + β∇2νy + 4Wi2 U ′
0 U ′′

0 sxx + (
∂x + 2Wi2 U ′2

0 ∂x + Wi U ′′
0

)
sxy

+2
(
∂y + Wi U ′

0∂x
)
syy + ∂zsyz

−∂zπ + β∇2νz − Wi U ′
0∂zsxy + (

∂x + 2Wi2 U ′2
0 ∂x

)
sxz

+Wi
(U ′′

0 + U ′
0∂y

)
sxz + (

∂y + Wi U ′
0∂x

)
syz + 2∂zszz

∂xνx + ∂yνy + ∂zνz

Ŷ1sxx − (1 − β)∂xνx

Ŷ1sxy − 2Wi U ′
0sxx − (1 − β)

(
∂yνx + ∂xνy

)

Ŷ1sxz − (1 − β) (∂xνz + ∂zνx )

Ŷ1syy − Wi U ′
0sxy − (1 − β)∂yνy

Ŷ1syz − Wi U ′
0sxz − (1 − β)

(
∂yνz + ∂zνy

)

Ŷ1szz − (1 − β)∂zνz

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (32)

where Ŷ1 = 1 − Wi U0 ∂x . The adjoint velocities ν are subject to the boundary conditions

νx = νy = νz = 0 , y = ±1, (33)

which follow from the requirement that the boundary terms from the integration by parts in
Eq. (6) vanish for any V1 satisfying Eq. (24).

Appendix C: Higher-Order Coefficients for the Amplitude Equation

In Sect. 3 we demonstrated how the coefficient C3 can be determined from Eq. (5). Here,
we list the expressions for higher-order coefficients C’s and the associated functions u(m)

n (y)
from Eq. (4), obtained in the manner discussed in Sect. 3.

To O
(
Φ|Φ|4), we have

L̂
(
e3iξu(3)

3

)
+ 3λ Âe3iξu(3)

3 = N̄
(
eiξV0, e

2iξu(2)
2

)
, (34)

L̂
(
e2iξu(4)

2

)
+ (

3λ + λ∗) Âe2iξu(4)
2

= N̄
(
e−iξV ∗

0 , e3iξu(3)
3

)
+ N̄

(
u(2)
0 , e2iξu(2)

2

)
− 2C3e

2iξu(2)
2 , (35)

L̂u(4)
0 + 2

(
λ + λ∗) Âu(4)

0 = N
(
u(2)
0 , u(2)

0

)
+ N̄

(
e2iξu(2)

2 , e−2iξu(2)∗
2

)
− (

C3 + C∗
3

)
u(2)
0 ,

(36)
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which yields

C5 = 1

Δ

〈
eiξW0

∣∣∣∣N̄
(
eiξV0, u

(4)
0

)
+ N̄

(
e−iξV ∗

0 , e2iξu(4)
2

)
+ N̄

(
e−2iξu(2)∗

2 , e3iξu(3)
3

)〉
,

(37)

where, as in Sect. 3,

Δ = 〈eiξW0(y)|eiξ ÂV0(y)〉. (38)

To O
(
Φ|Φ|6), we have

L̂
(
e4iξu(4)

4

)
+ 4λ Âe4iξu(4)

4 = N̄
(
eiξV0, e

3iξu(3)
3

)
+ N

(
e2iξu(2)

2 , e2iξu(2)
2

)
, (39)

L̂
(
e3iξu(5)

3

)
+ (

4λ + λ∗) Âe3iξu(5)
3

= N̄
(
eiξV0, e

2iξu(4)
2

)
+ N̄

(
e−iξV ∗

0 , e4iξu(4)
4

)
+ N̄

(
u(2)
0 , e3iξu(3)

3

)

− 3C3e
3iξu(3)

3 , (40)

L̂
(
e2iξu(6)

2

)
+ (

4λ + 2λ∗) Âe2iξu(6)
2

= N̄
(
e−iξV ∗

0 , e3iξu(5)
3

)
+ N̄

(
u(2)
0 , e2iξu(4)

2

)
+ N̄

(
u(4)
0 , e2iξu(2)

2

)

+ N̄
(
e−2iξu(2)∗

2 , e4iξu(4)
4

)
− 2C5e

2iξu(2)
2 − (

3C3 + C∗
3

)
e2iξu(4)

2 , (41)

L̂u(6)
0 + 3

(
λ + λ∗) Âu(6)

0

= N̄
(
u(2)
0 , u(4)

0

)
+ N̄

(
e−2iξu(4)∗

2 , e2iξu(2)
2

)
+ N̄

(
e−2iξu(2)∗

2 , e2iξu(4)
2

)

+ N̄
(
e−3iξu(3)∗

3 , e3iξu(3)
3

)
− (

C5 + C∗
5

)
u(2)
0 − 2

(
C3 + C∗

3

)
u(4)
0 , (42)

which yields

C7 = 1

Δ

〈
eiξW0

∣∣∣∣N̄
(
eiξV0, u

(6)
0

)
+ N̄

(
e−iξV ∗

0 , e2iξu(6)
2

)
+ N̄

(
e−2iξu(2)∗

2 , e3iξu(5)
3

)

+ N̄
(
e−3iξu(3)∗

3 , e4iξu(4)
4

)
+ N̄

(
e−2iξu(4)∗

2 , e3iξu(3)
3

)〉
. (43)

To O
(
Φ|Φ|8), we have

L̂
(
e5iξu(5)

5

)
+ 5λ Âe5iξu(5)

5

= N̄
(
eiξV0, e

4iξu(4)
4

)

+ N̄
(
e2iξu(2)

2 , e3iξu(3)
3

)
, (44)

L̂
(
e4iξu(6)

4

)
+ (

5λ + λ∗) Âe4iξu(6)
4

= N̄
(
eiξV0, e

3iξu(5)
3

)
+ N̄

(
e−iξV ∗

0 , e5iξu(5)
5

)
+ N̄

(
u(2)
0 , e4iξu(4)

4

)

+ N̄
(
e2iξu(2)

2 , e2iξu(4)
2

)
− 4C3e

4iξu(4)
4 , (45)

L̂
(
e3iξu(7)

3

)
+ (

5λ + 2λ∗) Âe3iξu(7)
3
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= N̄
(
eiξV0, e

2iξu(6)
2

)
+ N̄

(
e−iξV ∗

0 , e4iξu(6)
4

)
+ N̄

(
u(2)
0 , e3iξu(5)

3

)

+ N̄
(
u(4)
0 , e3iξu(3)

3

)
+ N̄

(
e−2iξu(2)∗

2 , e5iξu(5)
5

)
− 3C5e

3iξu(3)
3

− (
4C3 + C∗

3

)
e3iξu(5)

3 , (46)

L̂
(
e2iξu(8)

2

)
+ (

5λ + 3λ∗) Âe2iξu(8)
2

= N̄
(
e−iξV ∗

0 , e3iξu(7)
3

)
+ N̄

(
u(2)
0 , e2iξu(6)

2

)
+ N̄

(
u(6)
0 , e2iξu(2)

2

)

+ N̄
(
e−2iξu(2)∗

2 , e4iξu(6)
4

)
+ N̄

(
e−3iξu(3)∗

3 , e5iξu(5)
5

)
+ N̄

(
u(4)
0 , e2iξu(4)

2

)

+ N̄
(
e−2iξu(4)∗

2 , e4iξu(4)
4

)
− 2C7e

2iξu(2)
2 − (

3C5 + C∗
5

)
e2iξu(4)

2

− 2
(
2C3 + C∗

3

)
e2iξu(6)

2 , (47)

L̂u(8)
0 + 4

(
λ + λ∗) Âu(8)

0

= N̄
(
u(2)
0 , u(6)

0

)
+ N̄

(
e−2iξu(6)∗

2 , e2iξu(2)
2

)
+ N̄

(
e−2iξu(2)∗

2 , e2iξu(6)
2

)

+ N̄
(
e−3iξu(5)∗

3 , e3iξu(3)
3

)
+ N̄

(
e−3iξu(3)∗

3 , e3iξu(5)
3

)
+ N̄

(
e−2iξu(4)∗

2 , e2iξu(4)
2

)

+ N̄
(
e−4iξu(4)∗

4 , e4iξu(4)
4

)
+ N

(
u(4)
0 , u(4)

0

)
− (

C7 + C∗
7

)
u(2)
0

− 2
(
C5 + C∗

5

)
u(4)
0 − 3

(
C3 + C∗

3

)
u(6)
0 , (48)

which yields

C9 = 1

Δ

〈
eiξW0

∣∣∣∣N̄
(
eiξV0, u

(8)
0

)
+ N̄

(
e−iξV ∗

0 , e2iξu(8)
2

)
+ N̄

(
e−2iξu(2)∗

2 , e3iξu(7)
3

)

+ N̄
(
e−3iξu(3)∗

3 , e4iξu(6)
4

)
+ N̄

(
e−2iξu(6)∗

2 , e3iξu(3)
3

)
+ N̄

(
e−2iξu(4)∗

2 , e3iξu(5)
3

)

+ N̄
(
e−3iξu(5)∗

3 , e4iξu(4)
4

)
+ N̄

(
e−4iξu(4)∗

4 , e5iξu(5)
5

)〉
. (49)

To O
(
Φ|Φ|10), we have

L̂
(
e6iξu(6)

6

)
+ 6λ Âe6iξu(6)

6 = N̄
(
eiξV0, e

5iξu(5)
5

)
+ N̄

(
e2iξu(2)

2 , e4iξu(4)
4

)

+ N
(
e3iξu(3)

3 , e3iξu(3)
3

)
, (50)

L̂
(
e5iξu(7)

5

)
+ (

6λ + λ∗) Âe5iξu(7)
5

= N̄
(
eiξV0, e

4iξu(6)
4

)
+ N̄

(
e−iξV ∗

0 , e6iξu(6)
6

)
+ N̄

(
u(2)
0 , e5iξu(5)

5

)

+ N̄
(
e2iξu(2)

2 , e3iξu(5)
3

)
+ N̄

(
e2iξu(4)

2 , e3iξu(3)
3

)
− 5C3e

5iξu(5)
5 , (51)

L̂
(
e4iξu(8)

4

)
+ (

6λ + 2λ∗) Âe4iξu(8)
4

= N̄
(
eiξV0, e

3iξu(7)
3

)
+ N̄

(
e−iξV ∗

0 , e5iξu(7)
5

)
+ N̄

(
u(2)
0 , e4iξu(6)

4

)

+ N̄
(
e2iξu(2)

2 , e2iξu(6)
2

)
+ N̄

(
e−2iξu(2)∗

2 , e6iξu(6)
6

)
+ N̄

(
u(4)
0 , e4iξu(4)

4

)

+ N
(
e2iξu(4)

2 , e2iξu(4)
2

)
− 4C5e

4iξu(4)
4 − (

5C3 + C∗
3

)
e4iξu(6)

4 , (52)
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L̂
(
e3iξu(9)

3

)
+ (

6λ + 3λ∗) Âe3iξu(9)
3

= N̄
(
eiξV0, e

2iξu(8)
2

)
+ N̄

(
e−iξV ∗

0 , e4iξu(8)
4

)
+ N̄

(
u(2)
0 , e3iξu(7)

3

)

+ N̄
(
u(6)
0 , e3iξu(3)

3

)
+ N̄

(
e−2iξu(2)∗

2 , e5iξu(7)
5

)
+ N̄

(
e−3iξu(3)∗

3 , e6iξu(6)
6

)

+ N̄
(
u(4)
0 , e3iξu(5)

3

)
+ N̄

(
e−2iξu(4)∗

2 , e5iξu(5)
5

)
− 3C7e

3iξu(3)
3

− (
4C5 + C∗

5

)
e3iξu(5)

3 − (
5C3 + 2C∗

3

)
e3iξu(7)

3 , (53)

L̂
(
e2iξu(10)

2

)
+ (

6λ + 4λ∗) Âe2iξu(10)
2

= N̄
(
e−iξV ∗

0 , e3iξu(9)
3

)
+ N̄

(
u(2)
0 , e2iξu(8)

2

)
+ N̄

(
u(8)
0 , e2iξu(2)

2

)

+ N̄
(
e−2iξu(2)∗

2 , e4iξu(8)
4

)
+ N̄

(
e−3iξu(3)∗

3 , e5iξu(7)
5

)
+ N̄

(
u(4)
0 , e2iξu(6)

2

)

+ N̄
(
e2iξu(4)

2 , u(6)
0

)
+ N̄

(
e−2iξu(4)∗

2 , e4iξu(6)
4

)
+ N̄

(
e−2iξu(6)∗

2 , e4iξu(4)
4

)

+ N̄
(
e−4iξu(4)∗

4 , e6iξu(6)
6

)
+ N̄

(
e−3iξu(5)∗

3 , e5iξu(7)
5

)
− 2C9e

2iξu(2)
2

− (
3C7 + C∗

7

)
e2iξu(4)

2 − 2
(
2C5 + C∗

5

)
e2iξu(6)

2 − (
5C3 + 3C∗

3

)
e2iξu(8)

2 , (54)

L̂u(10)
0 + 5

(
λ + λ∗) Âu(10)

0

= N̄
(
u(2)
0 , u(8)

0

)
+ N̄

(
e−2iξu(8)∗

2 , e2iξu(2)
2

)
+ N̄

(
e−2iξu(2)∗

2 , e2iξu(8)
2

)

+ N̄
(
e−3iξu(7)∗

3 , e3iξu(3)
3

)
+ N̄

(
e−3iξu(3)∗

3 , e3iξu(7)
3

)
+ N̄

(
e−2iξu(4)∗

2 , e2iξu(6)
2

)

+ N̄
(
e−2iξu(6)∗

2 , e2iξu(4)
2

)
+ N̄

(
e−4iξu(4)∗

4 , e4iξu(6)
4

)
+ N̄

(
e−4iξu(6)∗

4 , e4iξu(4)
4

)

+ N̄
(
e−3iξu(5)∗

3 , e3iξu(5)
3

)
+ N̄

(
e−5iξu(5)∗

5 , e5iξu(5)
5

)
+ N

(
u(4)
0 , u(6)

0

)

− (
C9 + C∗

9

)
u(2)
0 − 2

(
C7 + C∗

7

)
u(4)
0 − 3

(
C5 + C∗

5

)
u(6)
0 − 4

(
C3 + C∗

3

)
u(8)
0 , (55)

which, finally, yields

C11 = 1

Δ

〈
eiξW0

∣∣∣∣N̄
(
eiξV0, u

(10)
0

)
+ N̄

(
e−iξV ∗

0 , e2iξu(10)
2

)
+ N̄

(
e−2iξu(2)∗

2 , e3iξu(9)
3

)

+ N̄
(
e−3iξu(3)∗

3 , e4iξu(8)
4

)
+ N̄

(
e−2iξu(8)∗

2 , e3iξu(3)
3

)
+ N̄

(
e−2iξu(4)∗

2 , e3iξu(7)
3

)

+ N̄
(
e−3iξu(7)∗

3 , e4iξu(4)
4

)
+ N̄

(
e−4iξu(4)∗

4 , e5iξu(7)
5

)
+ N̄

(
e−2iξu(6)∗

2 , e3iξu(5)
3

)

+ N̄
(
e−3iξu(5)∗

3 , e4iξu(6)
4

)
+ N̄

(
e−4iξu(6)∗

4 , e5iξu(5)
5

)
+ N̄

(
e−5iξu(5)∗

5 , e6iξu(6)
6

)〉
.

(56)
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