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Abstract – We show that simulations of polymer rheology at a fluctuating mesoscopic scale and
at the macroscopic scale where flow instabilities occur can be achieved at the same time with
dissipative particle dynamics (DPD) technique. We model the viscoelasticity of polymer liquids
by introducing a finite fraction of dumbbells in the standard DPD fluid. The stretching and
tumbling statistics of these dumbbells is in agreement with what is known for isolated polymers in
shear flows. At the same time, the model exhibits behaviour reminiscent of drag reduction in the
turbulent state: as the polymer fraction increases, the onset of turbulence in plane Couette flow
is pushed to higher Reynolds numbers. The method opens up the possibility to model non-trivial
rheological conditions with ensuing coarse-grained polymer statistics.

Copyright c© EPLA, 2010

Introduction. – The plethora of intriguing phenom-
ena that can be observed in flows of complex fluids
is attracting increasing attention among physicists. The
study of polymer fluids and melts has since long occu-
pied a central position within this field [1,2]. Typically,
one is either interested in the response properties of
polymeric fluids or the way they flow. The former set of
problems concerns viscoelasticity of polymers and bioma-
terials, behaviour of single long flexible molecules in flows,
etcetera [2–4]. The latter usually focuses on the differences
between macroscopic flows of Newtonian and polymeric
fluids in the same geometry. One such striking example
is the recently discovered chaotic flows of dilute polymer
solutions at very small Reynolds numbers —the so-called
purely elastic turbulence [5,6]. Another is the phenom-
enon of drag reduction— the observation that even minute
amounts of polymer can significantly suppress Newtonian
turbulence and hence reduce turbulent drag [7]. In this
letter we develop a mesoscopic simulation method that is
capable of addressing both classes of problems.
Simulation methods of polymers essentially fall into

two classes. On the one hand there are many mesoscopic

(a)E-mail: sultan@fast.u-psud.fr

coarse-grained approaches that have mainly been devel-
oped to study the thermo- and hydrodynamic properties
of polymers in equilibrium and in weakly non-equilibrium
situations such as an imposed small shear. Such results
can, e.g., be compared with recent experimental results for
the orientation statistics of single DNA molecules in solu-
tion [3]. However, these models typically cannot be scaled
up to simulate flow at macroscopic rheological scales. On
the other hand, numerical studies of polymer rheology
at macroscopically relevant scales are based almost
exclusively on numerical implementations of continuum
constitutive equations like the Oldroyd-B or FENE-P
models [1,2]. By their very nature, these determin-
istic approaches only give the average behaviour, so they
cannot give insight into the coupling between the macro-
scopic flow behaviour and the molecular properties. In this
letter, we for the first time bridge the gap between these
two approaches and scales by introducing a coarse-grained
Dissipative Particle Dynamics (DPD) model [8–10] for
viscoelastic flows which is a solution of elastic springs
(dumbbells). Unlike the previous DPD simulations of poly-
meric fluids [11], we do not attempt to resolve internal
dynamics of long polymer molecules. Instead we view the
dumbbells as collective elastic degrees of freedom (normal
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modes) that render the solution viscoelastic. We show
that the model is powerful enough to exhibit both
stretching and tumbling of dumbbells at mesoscopic
scales, and proper flow behaviour at hydrodynamic scales
like the dramatic polymer drag reduction of turbulence.
Our approach holds an additional promise. Computa-

tional rheology still turns out to be a major challenge [12].
The main difficulty lies in the fact that the convective
non-linear term in the constitutive equation can lead to a
local exponential growth of the components of the poly-
mer stress tensor [13]. As a result, it is difficult to come
up with robust numerical schemes. Although progress can
be made by going to special variables [13], there is still
a great need for an easy-to-use and robust method for
simulating polymer rheology in complex geometries. As is
well known, mesoscale models like DPD and Lattice Boltz-
mann [14] are versatile methods to simulate laminar and
turbulent Newtonian flows in rheometric flows [15] and in
complicated geometries [16]; we expect our extension of
the DPD model to have the same advantage.

DPD model for a viscoelastic fluid. – DPD [8, 9] is
an off-lattice method in which one simulates the dynamics
of particles which we can intuitively think of as represent-
ing mesoscopic blobs of fluid. The interparticle interac-
tions consist of conserved, dissipative and random forces
tuned to reproduce hydrodynamic behaviour on the scale
of a few particles. Particles are assumed to have mass m
and velocity Vi = Ṙi at positions Ri so that their equa-
tions of motion are

V̇i =
1

m

∑
j �=i
F consij +F dissij +F

rand
ij +F elasticij . (1)

For the first three terms we follow [15] and take the
standard choices [8,9]: the force F cons is a soft repulsion,

F consij = a max(1−Rij/R0, 0) R̂ij . (2)

Here Rij = |Ri−Rj | is the distance between the particles,
R̂ij the interparticle unit vector, and the coefficient a
measures the strength of this interaction. The conserved
force F consij increases linearly when particles come within
the range R0. From here on we take m=R0 = 1, so that
distances are in units of the particle radius. The dissipative
force F diss acts to equalise velocities of neighbouring
particles, while the random force F rand represents a
coupling to a heat bath. We use the standard form [8,9]

F dissij =−Γ(R̂ij ·Vij) max(1−Rij , 0)1/2R̂ij , (3)

F randij = ξij
√
2ΓT/∆tmax(1−Rij , 0)1/4R̂ij , (4)

where Γ is a friction coefficient, T is the temperature,
Vij =Vi−Vj is the relative velocity vector, ∆t is the
integration timestep, and ξij are independent Gaussian
random variables with zero mean and unit variance. The
form of F rand is chosen to ensure that the fluctuation-
dissipation theorem holds in the absence of applied

flow [9, 17]. Note that the best convergence of the DPD
model to hydrodynamic behaviour is achieved when all
terms in eq. (1) are roughly of the same order.
The dumbbell force F elasticij is our extension of the

DPD model [18]. It is motivated by the observation that
the so-called Oldroyd-B constitutive equation is exact for
non-interacting dumbbells with linear elastic springs [1,2].
Linear Hookean springs, however, can lead to diverging
stresses since the two partners can separate infinitely far.
We therefore build our DPD model for polymer flows by
using non-linear dumbbells: we assign a unique partner
to a finite fraction of the particles and introduce, in the
spirit of the Finitely Extensible Non-linear Elastic (FENE)
spring constitutive equations [1,2], a FENE-force between
each particle and its partner,

F FENEij =− HFENERij

1− (Rij/Rmax)2 . (5)

The FENE spring behaves as a Hookean spring with
stiffness HFENE at small extensions and as a stiff rod when
the extension Rij is close to its maximum value Rmax.
While this force works well in smooth flows, large

local stresses in turbulent flows can, because of the
finite timestep, sporadically lead to a blow-up due to
configurations with Rij >Rmax. It is therefore numerically
advantageous to use instead in such situations a FENE-
inspired non-linear force that has no sharp maximum
extension,

F SOFTij =−HFENERij
[
3

4
+

(
1

4
+
1

2

R2ij

R2c

)
e2R

2
ij/R

2
c

]
. (6)

To the lowest order in the extension, this non-linear force
is the same as the FENE force (5) if we identify Rmax
with Rc, but unlike eq. (5) it remains finite for all Rij .
We will use this soft force in the last section of this letter.
Once again, we stress that the dumbbells with the force
law (5) or (6) do not represent individual polymers but
rather collective viscoelastic degrees of freedom.
The equations of motion are solved with a version of

the velocity-Verlet algorithm [19]. Unless noted other-
wise, we take a= 1, T = 0.1, Γ = 2, particle density ρ= 4
and timestep ∆t= 0.05. Simulations are performed in
the plane Couette flow geometry with periodic boundary
conditions in the x (streamwise) and y (spanwise) direc-
tion, and no-slip walls perpendicular to the z (gradient)
axis. The typical dimensions of our simulation box are
Lx×Ly ×Lz = 20× 20× 20 so that when all particles are
dumbbells we have 2 · (20)3 = 16000 dumbbells at density
ρ= 4. The walls are implemented as a soft repulsion poten-
tial in the normal direction —see [18] for details.

Rheological properties of the dumbbell DPD
model. – We now show that this dumbbell DPD fluid
exhibits the main characteristics of polymer rheology. In
a simple shear flow, the stress tensor for an incompress-
ible polymer solution σ has 3 independent components:
there is one independent off-diagonal component while the
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Fig. 1: (Colour on-line) (a) The normal stress difference N1 as a function of γ̇
2 for our DPD model (5) with HFENE = 0.5 and

Rmax = 4 and various dumbbell fractions fP . τ
rel is determined from the fit of N1 to γ̇

2. (b) Viscosity ratio ηP /ηS as a function
of polymer fraction fP for two sets of dumbbell parameters. (c) The normalized (dumbbells contribution to the) shear stress
autocorrelation function as a function of time. Lines are single exponential fits: 1.31 e−t/1.51 (red), 1.0 e−t/6.1 (blue).

diagonal components are linear combinations of the so-
called first and second normal stress differences N1 and
N2. While these both vanish for a Newtonian fluid, the
normal stress differences characterise the rheological prop-
erties of a viscoelastic fluid, in particular its relaxation
time τ rel. More precisely, for our plane Couette geometry
we have to lowest order in γ̇ = ∂vx/∂z,

σxz = σzx = ηγ̇, N1 ≡ |σxx−σzz|= 2ηP τ relγ̇2, (7)

where η= ηS + ηP , with ηS and ηP being the solvent
and the polymer contributions to the total viscosity. The
expression for the first normal stress difference defines the
effective polymer relaxation time τ rel. The second normal
stress difference N2 ≡ |σyy −σzz| �N1 for most polymer
solutions. For the Oldroyd-B constitutive equation, N2
vanishes identically [1,2].
To estimate the shear viscosity η and the relaxation time
τ rel for different dumbbell parameters, we have performed
simulations at various shear rates γ̇ and computed the
components of the total stress tensor from the pairwise
interactions by time-averaging the virial formula [18,20],

σ=− 1

LxLyLz

∑
i



∑
j �=i
Fij ⊗Rij + δV zi ⊗ δV zi


 , (8)

over a time interval of length 200, which was long enough
to ensure convergence; here δV zi =Vi−V

z

i and V
z

i is the
average velocity of particles at the vertical position zi.
We have verified that only one shear stress component
takes significant values (typically σxy/σxz � σyz/σxz �
0.01), and that σxx� σyy � σzz so that indeed N2�N1,
as desired. The accuracy of (8) has also been validated by
comparing its results to the total momentum transferred
through the walls [18]. The viscosity η and the relaxation
time τ rel are then obtained from linear and quadratic fits
of σxz and N1 to γ̇ as illustrated in fig. 1(a). By varying
the fraction fP of dumbbells from 0% to 100%, we can
separate the individual contributions of ηS and ηP ; as
shown in fig. 1(b), the total viscosity increases essentially
linearly with the concentration, so that for the chosen
DPD parameters ηS ≈ 0.68 and ηP ≈ 0.29fP .

Table 1: Zero-shear rate fluid viscosity and relaxation time
for various dumbbell parameters with fP = 100% and the
dumbbell FENE force (5).

Rmax = 3 Rmax = 4 Rmax = 5

HFENE ηP τ rel ηP τ rel ηP τ rel

0.1 0.77 4.18 0.91 5.29 1.04 5.63
0.125 0.67 3.07 0.76 3.55 0.82 4.22
0.2 0.49 2.01 0.55 2.25 0.58 2.72
0.5 0.27 1.2 0.29 1.23 0.32 1.23
1 0.15 0.64 0.16 0.66 0.16 0.65

At fixed polymer concentration, τ rel is approximately
inversely proportional to HFENE for large Rmax, as can be
inferred from table 1. This is as expected for the relaxation
of a dumbbell in a viscous medium [1]. (We have found
that we can increase τ rel while keepingHFENE � 1 by using
chains with more than two beads [20].) We have checked
that there is little shear-thinning in our model: η decreases
by at most 10% at high shear rates [18]; we have also
observed that the magnitude of shear-thinning increases
with τ rel. We have also estimated τ rel from the decay of
the shear stress autocorrelation function [11]. As shown in
fig. 1(c), it can be approximated by a single exponential
that yields τ rel = 1.51 and τ rel = 6.1 for Rmax = 4, and
HFENE = 0.5 and HFENE = 0.1, respectively. These results
are within 20% of the values quoted in table 1.
The above results show that the dumbbell DPD model

is a faithful mesoscopic representation of the Oldroyd-
B–type constitutive equation for polymer rheology.

Polymer stretching and orientation statistics. –
The statistics of single-polymer stretching and orientation
in shear flows has recently been studied both experimen-
tally [3] and theoretically [21]. We now demonstrate that
our DPD dumbbell model is also capable of qualitatively
reproducing the single-molecule results [3,21].
We first study the extension of the FENE dumbbells (5)

for various values of the Weissenberg number Wi = γ̇τ rel

that describes the balance between the shear flow and
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Fig. 2: (Colour on-line) (a) Extension PDF for Wi = 0.5, 2
and 5 and HFENE = 0.5 and Rmax = 5.0. For Wi� 1 the tail
of the PDF is no longer algebraic [21]; this is a way to
characterise the coil-stretch transition (Wi≈ 1). (b) PDF of
φ for a DPD polymer with HFENE = 1.0 and Rmax = 5.0 for
different Weissenberg numbers. Continuous lines are fits to (9).
From low to high Wi, yellow: γ̇/D= 2.9, red: γ̇/D= 41.6, blue:
γ̇/D= 97.6, orange: γ̇/D= 322.9.

elasticity. Figure 2(a) shows the Probability Distribution
Function (PDF) of the dumbbell extension for three values
of Wi. Upon the increase of the Weissenberg number,
the shape of P (R/Rmax) changes very much in line with
what has been found for single polymers in shear flows
by other methods [4,21,22]: a peak at small and a power-
law decay at large extensions for Wi< 1, and a rather flat
distribution across a large range of extensions above the
coil-stretch transition for a single polymer at Wi≈ 1. At
very high Wi the distribution becomes strongly peaked
close to Rmax but we have not explored this regime.
The average orientation of a polymer in a shear flow,

which in our dumbbell model translates into the average
orientation of the dumbbell, is characterised by the spheri-
cal angles θ and φ. The distribution of θ, the angle between
the dumbbell and the xz shear plane, is found to be well
approximated by a Lorentzian, in agreement with single-
dumbbell models [23,24]. We focus here on the PDF of
the angle φ that the projection of each dumbbell in the
shear plane makes with the flow direction; in view of the
symmetry of the system, we only need to consider angles
−π/2� φ� π/2.
The distribution P (φ) is shown in fig. 2(b) together with

the fits to the expression

P (φ)�C
∫ ∞
0

exp

[
− γ̇
2D
ϕ

(
1

3
ϕ2− sin 2φ

2
ϕ+sin2 φ

)]
dϕ,

(9)
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fit ∼ exp(−τ/τ tum)

Fig. 3: (Colour on-line) Distribution of tumbling times for 6
polymers in shear flow at Wi = 1 during 10000 simulation time
units (providing typically 2000 tumbling events). Dumbbell
parameters are HFENE = 1 and Rmax = 4. The distribution is
well fitted by an exponential. Inset: corresponding time trace
of the azimuthal angle of a dumbbell. We take the tumbling
time τ to be the time between two large values of φ (outside the
dashed lines |φ|= 1.2) such that φ takes at least one value close
to the average (inside the grey region) for some intermediate
time.

which can be derived from the Fokker-Planck equation
for P (φ, t) [23]. In this expression D plays the role of a
diffusion coefficient for the orientation angle φ. As can
be seen from the figure, the above expression fits our
data very well, and this allows us to study the shear rate
dependence of D; from the fitted values of γ̇/D listed in
the caption, one infers that D decreases with increasing
shear rate approximately as γ̇−1.3. Although for a FENE
model one does not expect a pure scaling form, we can
compare this to what is expected for a single dumbbell
with a linear spring, for which D∼ γ̇−2, as well as to what
is expected for inextensible rods, for which D= const [22].
This comparison indicates that over the range of shear
rates considered, the finite extensibility of the dumbbells
already reduces the shear rate dependence ofD noticeably.

Tumbling statistics. – As we noted before, the
orientation statistics of an isolated polymer can largely be
understood by studying a dumbbell in a shear flow [21].
This also holds for the tumbling statistics [3,25]: in a
shear flow, the polymer is most of the time almost aligned
with the mean flow, but due to the torque exerted on it
by shear, every now and then it rapidly tumbles before
coming back close to the average orientation; the tumbling
time τ tum is defined as the typical time between two such
events [3,25]. In our DPD model we have many dumbbells
which interact via F cons. Nevertheless, we shall now show
that our model still exhibits the same tumbling statistics
as a single dumbbell in shear flow.
To compare the tumbling time τ tum with the relaxation

time τ rel, we performed DPD simulations in a 18×18×18
box and other parameters as before and followed the
dynamics of 6 dumbbells for 10000 time units. We com-
puted their extension R(t) and azimuthal angle φ(t) every
3∆t. The intermittent nature of such time traces is imme-
diately clear from the example shown in the inset of fig. 3.
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Table 2: Single-dumbbell tumbling times at Wi = 1 for various
dumbbells stiffness and maximal extension. Essentially the
same values are found for all Weissenberg numbers up to
Wi≈ 5, except that we find a slight decrease with increasing
shear rate for the parameters corresponding to the rightmost
column.

Rmax = 4 Rmax = 5

HFENE 0.5 1 0.5 1
τ tum 29.80 20.36 29.20 23.01

In table 2 we list the average tumbling times τ tum for
different values of Rmax and HFENE. The values of τ

tum

were computed from the angular dynamics as explained
in the caption of fig. 3. We have also determined the
individual tumbling times from the time interval between
two stretched configurations with a contracted one in
between. Both methods yield comparable results, but
contrary to single polymer experiments for which angular
resolution is a limitation [26], analysing the angular time
traces works best numerically and is least dependent on
the thresholds used to define a tumbling event.
In our simulations, the distribution of tumbling times

shown in fig. 3 decays exponentially —this is known to be
a robust property of a single polymer in shear flow [22,24].
The fact that there is only one intrinsic relaxation time
in our model is another important illustration that its
viscoelastic behaviour is a good mesoscopic representation
of the single-relaxation time in Oldroyd-B–type constitu-
tive equations. Qualitatively, the collective tumbling of
DPD polymers is very much like what one expects from
Brownian dynamics of a single dumbbell: the tumbling
time increases with the fluid relaxation time (we almost
have proportionality for Rmax = 5). As expected [22], we
find that τ tum ∝ τ rel for not too large Wi.
We have also performed simulations with a very few

dumbbells —only 12 out of the 8 · (18)3 particles were
paired up with FENE springs. Except for small string
stiffness (HFENE � 0.1) (presumably because of the poor
statistics and the force singularity at large stretching),
calculation of the associated tumbling times gave values
very close to those with 100% dumbbells listed in table 2.
Together with the results of the previous section, this
shows that the elasticity of the surrounding dumbbells
does not significantly affect local dynamics. It implies that
by increasing the concentration of dumbbell polymers fP ,
we can increase the total normal stress without changing
the properties of the fluid on a mesoscopic scale.

Turbulent drag reduction. – To demonstrate that
our approach can also be employed to study non-trivial
macroscopic flows, we perform, for the first time to our
knowledge, DPD simulations of high Reynolds number
turbulent flows in the presence of polymers. This system is
known to exhibit drag reduction —the phenomenon that
the addition of minute amounts of polymer significantly
suppresses turbulence and hence the drag [7]. It has
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Fig. 4: (Colour on-line) (a, b) Plots of the turbulent amplitude
A(t) vs. time as a function of Reynolds number Re for 10% (a)
and 30% (b) polymer fractions. The Reynolds number Re
is given besides each curve. The dotted line corresponds to
the time at which we start switching off the driving force.
(c) Influence of polymers on the stability of turbulent state
in our dumbbell DPD simulations. As the fraction of polymers
is increased, the onset of turbulence is shifted to higher values
of Re and the turbulent amplitude is reduced.

recently been successfully captured by direct numerical
simulations [27,28] and by studying the exact coherent
states [29]. We have shown previously [15] that the
standard DPD model reproduces the main characteristics
of turbulent plane Couette flow (albeit the onset Reynolds
numbers are somewhat too high perhaps due to the
significant compressibility of the DPD fluid). We now
study the effect of polymers on the turbulent state as a
function of polymer fraction.
To do so, we now switch to the soft FENE dumbbell

interaction (6) for the reasons we explained before.
The parameters for these runs are a= 4, ρ= 4, T = 0.1,
Γ = 1, HFENE = 0.5 and Rc = 2 (the rheological properties
are ηS ≈ 0.69, ηP ≈ 0.25fP and τrel ≈ 0.9); the simulation
box has dimensions Lx×Ly ×Lz = 60× 40× 20 (see
footnote 1).
We first drive the flow as in [15] with a force field

that generates an array of streamwise vortices that are
known to dominate the turbulent state at least close to
the onset [30]. The driving field is turned on at time 200,
then slowly ramped up to time 440, kept at a steady value
till time 1160, and then slowly turned off till time 1400. By
following the maximum deviation A(t) from the linear flow
field, A(t) =max(V̄ (z)− γ̇z), where V̄ (z) is the spatially
averaged mean streamwise velocity profile, it is then tested
whether turbulence remains or whether it decays to the
laminar state. The behaviour of A(t) was studied as a

1In these runs, the walls are modelled by a layer of continuous
DPD matter (see [15]), rather than by a smooth potential.
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Fig. 5: (Colour on-line) Streamwise velocity and polymer
extension in the gradient-spanwise plane in a simulation with
fP = 10% and Re= 2520. Colours represent the streamwise
deviation (locally averaged) from (a) the laminar velocity
(vectors denote the in-plane motion) and (b) the average
dumbbell stretching. The colour code is such that red and
blue indicate a ±79% deviation from the average velocity, and
for stretching a variation of ±66% about the average stretch
(≈ 1.1).

function of polymer fraction fP and the Reynolds number
Re. We have varied the forcing amplitude over a factor
12 and found the final turbulent state (if it exists) to
be independent of the forcing amplitude. Typical data for
two polymer concentrations is shown in figs. 4(a,b). The
saturated values of A(t→∞) are plotted in fig. 4(c) as
a function of Re for various fP . This stability diagram
illustrates the occurrence of drag reduction within our
dumbbell DPD model: for increasing polymer fraction, the
onset of turbulence is pushed to higher Reynolds numbers
and the turbulent amplitude is reduced. A similar stability
diagram was reported for the exact coherent states in
plane Couette flow [29]. Finally, as fig. 5 illustrates, not
only do the dumbbells get preferentially stretched inside
the streaks (blue and red regions in the velocity plot), as
one might expect [28], but the fluctuations in the stretch-
ing appear to be much larger than those in the velocity.

Conclusion. – In this paper we have shown that the
dumbbell DPD model has all the main characteristics
of the Oldroyd-B class constitutive equations, while the
statistical properties of the dumbbells are similar to those
of single polymers. It can thus be used to study poly-
mer rheology simultaneously at the macroscopic and meso-
scopic scales. This makes the DPD dumbbell model an
attractive candidate for simulations of polymer rheology
in complex geometries and flows, in particular in situa-
tions where impact of the macroscopic flow on the meso-
scopic statistical properties is of interest. We expect the
model to be especially useful and easy to implement for
studies of cross-slot geometries, flows past objects, extru-
sion, etc. Detailed information about coarse-grained poly-
mer conformation readily available in our model may even
shed new light on the mechanism of drag reduction.
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