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Black-Scholes model

Good news: it is a nice, well-behaved model

simple, mathematically tractable

no arbitrage, completeness

explicit expressions for the basic options

explicit hedging strategies

can use PDE techniques for pricing

can use stochastic analysis tools

Bad news: it does not model what we actually see!...

volatility smile

statistical analysis
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Assumptions in the Black-Scholes model

Asset prices modeled by a geometric Brownian motion:

St = S0e
µt+σWt ,

where

µ : drift, σ : volatility, W : Brownian motion.

Recall:

W0 = 0,

Wt −Ws is independent of (Wu : u ≤ s) for all t ≥ s,

Wt −Ws ∼ N(0, t − s),

t 7→Wt continuous.
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Geometric Brownian motion
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Figure: Typical sample path of a geometric Brownian motion
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Returns in the Black-Scholes-Merton model

For t ≥ s, let

Rs,t =
St − Ss

Ss

be the return over the time interval [s, t].

In the BSM-model:

Rs,t = eµ(t−s)+σ(Wt−Ws) − 1 ≈ µ(t − s) + σ(Wt −Ws).

Hence:

returns over disjoint time intervals are independent,

returns are (approximately) normally distributed.
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Returns in the Black-Scholes-Merton model

Q: is this what we see in actual asset price data?

A: that depends...

It turns out that the time-scale at which you look plays a crucial
role!
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A look at some real asset price data

Data:

Daily AEX index data

Minute-by-minute Philips stockprice data
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AEX data
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AEX data analysis
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Philips data
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Philips data analysis
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Typical features of asset price data

heavy-tailed returns

squared returns are positively correlated

long-range dependence in returns

variable volatility

volatility clustering

...

Can we find sensible models that capture these features?
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Issues surrounding model building for asset prices

What do we want?

Model should reflect observed statistical properties

Model should make sense economically

Model should allow pricing/hedging

Would like to have a “microscopic”, “physical” justification

This turns out to be a lot to ask for...
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Some attempts to construct better models

Stochastic volatility models

Idea: replace the constant volatility σ by a stochastic process.

Non-Brownian motion models

Idea: replace the Brownian motion by a different process driving
the stock-price fluctuations.
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Stochastic volatility models
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Stochastic volatility

In the Black-Scholes-Merton model, the log-price process
Xt = log St satisfies

dXt = µ dt + σ dWt .

A stochastic volatility model postulates that

dXt = µt dt + σt dWt ,

for (σt : t ≥ 0) a stochastic process.
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Why stochastic volatility?

statistical properties: in general much better

economic properties: incompleteness!

pricing/hedging: involved/not always possible

“microscopic”, “physical” justification: perhaps reasonable?
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Examples of stochastic volatility models

Heston:

dσ2
t = α(θ − σ2

t ) dt + τ
√
σ2

t dBt .

GARCH-type:

dσ2
t = α(θ − σ2

t ) dt + τσ2
t dBt .

3/2 model:

dσ2
t = α(θ − σ2

t ) dt + τ(σ2
t )3/2 dBt .

...

Which one should we use?
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Nonparametric estimation of stochastic volatility models

Idea: use nonparametric estimator to choose the statistically most
reasonable parametric model.

hand picture in Figure 3. Based on computations of the mean and variance
of the estimate, with h = 0.7, we have also fitted a normal density by hand
and compared it to the kernel deconvolution estimator. The result is given
as the right hand picture in Figure 3. The resemblance is remarkable.
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Figure 1: AEX. Left: daily closing values. Right: log of the daily closing
values.fig:10
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Figure 2: AEX. Left: the values of Xt, i.e. the centered daily log returns.
Right: log(X2

t ) .fig:11

The kernel used to compute the estimates is a kernel from Wand (1998),
with α = 3 and A = 8,

w(x) =
48x(x2 − 15) cos x− 144(2x2 − 5) sin x

πx7
. (12) simkernel

It has characteristic function

φw(t) = (1− t2)3, |t| ≤ 1. (13) simchar

The bandwidths are chosen by hand. The estimates have been computed
by fast Fourier transforms using the Mathematica 4.2 package.

8
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Figure 3: AEX. Left: The estimate of the density of log(σ2
t ) with h = 0.7.

Right: The normal fit to the log(σ2
t ). The dashed line is the normal density

and the solid line the kernel estimate.fig:13

This is actually the same example as in our paper Van Es et al. (2005)
on volatility density estimation for discrete time models. The estimator (7)
presented here is, as a function of the sampled data, exactly the same as
the one for the discrete time models. The difference lies in the choice of
underlying model. In the present paper the model is a discretely sampled
continuous time process, while in Van Es et al. (2005) it is a discrete time
process. For the latter type of models the discretization step in the beginning
of this section is not necessary since these models satisfy an exact convolution
structure.

4 Wavelet deconvolution

Starting point is again the simplified model (5). Contrary to the previ-
ous section, we are now interested in estimating the accumulated squared
volatility over an interval of length ∆. We assume having observations of S
at times k∆ to our disposal, but now with ∆ fixed (low frequency observa-
tions). The transformed increments log(Si∆−S(i−1)∆)2 are then distributed
as Yi = Xi + εi, where

Xi = log
∫ i∆

(i−1)∆
σ2

u du, εi = log Z2
i ,

and Zi is an i.i.d. sequence of standard Gaussian random variables, indepen-
dent of σ. The sequence Xi is stationary and we assume that its marginal
density f exists, i.e. f is the density of

log
∫ ∆

0
σ2

u du.

Of course, estimating f is equivalent with estimating the density of the
aggregated squared volatility

∫ ∆
0 σ2

u du.

9

Figure: AEX data and estimator of the density of log σ2
t .
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“Physical” justification

Reasonable that volatility has its own dynamics, partly independent
of the dynamics of individual stocks (“temperature” of the
market).

Volatility clustering and switching between “calm” and “excited”
periods may be explained e.g. by a double well potential.

Figure: Potential V

SDE for volatility:

dσ2
t = V ′(σ2

t ) dt + τ(σ2(Xt)) dBt ,

where B is a second Brownian motion.
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Completeness of the Black-Scholes market

The Black-Scholes market is complete: every “reasonable”
contingent claim can be perfectly hedged by a self-financing
portfolio consisting of stocks and bonds.

Intuitive reason: there are as many independent risky assets as
sources of randomness. Or: by trading the stock the randomness
caused by the Brownian motion can be “neutralized”. In other
words: there are enough risky assets to “hedge away” the
randomness.

Technical reason: there is a unique martingale measure.
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Incompleteness of stochastic volatility models

In SV-models typically more sources of randomness than risky
assets.

As a result, not every derivative can be perfectly hedged in a SV
model: incompleteness.

Some consequences:

have to resort to e.g. super hedging or quantile hedging,

for non-attainable derivatives, there is a whole interval of
possible no-arbitrage prices,

need additional considerations to choose a specific price (e.g.
utility considerations).
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Statistical soundness vs. completeness

Roughly speaking:

Models having the desirable property of completeness are typically
not realistic from the statistical point of view.

Statistically sound models are typically incomplete and hence give
rise to more involved pricing procedures.

No widespread consensus...
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Where does the Brownian motion come from?

Donsker (’52):

Z1,Z2, . . . , i.i.d. EZi = 0, VarZi = 1.

X
(n)
t =

1√
n

[nt]∑

i=1

Zi , t ∈ [0, 1].

Theorem.

X (n) ⇒ Brownian motion

in D[0, 1].

Harry van Zanten (TU/e) Beyond the Black-Scholes-Merton model
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Donsker’s theorem visualized
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What if there is a memory in the system?

Davydov (’70), Taqqu (’75):

Z1,Z2, . . . , stationary, . . . , EZi = 0, Var(Z1 + · · ·+ Zn) ∼ n2H ,
H ∈ (0, 1), . . .

X
(n)
t =

1√
Var(Z1 + · · ·+ Zn)

[nt]∑

i=1

Zi , t ∈ [0, 1].

Theorem.

X (n) ⇒ fractional Brownian motion

in D[0, 1].
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Fractional Brownian motion

Fractional Brownian motion (fBm):

Gaussian process W H = (W H
t : t ≥ 0), centered,

EW H
s W H

t =
1

2
(t2H + s2H − |t − s|2H),

with H ∈ (0, 1) the Hurst index.

Kolmogorov (’40), Mandelbrot & Van Ness (’68)
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Fractional Brownian motion properties

Basic properties:

- H = 1/2: ordinary Brownian motion,
- stationary increments,
- H-self similar: for all a > 0, (a−HW H

at : t ≥ 0) has the same law
as W H ,
- sample paths are “H-smooth”,
- for H > 1/2, long range dependence:∑

E(W H
n −W H

n−1)W H
1 =∞,

- for H 6= 1/2: not Markov, not a (semi)martingale.
- E(W H

t −W H
s )2 = |t − s|2H : for H > 1/2 the process is

superdiffusive, for H < 1/2 it is subdiffusive.
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Fractional Brownian motion paths
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Figure: H = 0.3, H = 0.8
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Fractional Black-Scholes model

Model for asset prices:

St = S0e
µt+σW H

t ,

where

µ : drift, σ : volatility, W H : fractional Brownian motion.

Idea: Gaussianity plausible on appropriate time scales, fBm allows
for more realistic dependence structure.

Data analysis studies: typically H ≈ 0.6.

Harry van Zanten (TU/e) Beyond the Black-Scholes-Merton model



Limitations of the Black-Scholes model
Stochastic volatility models

Fractional Brownian motion models
Concluding remarks

Properties of the fBm model

Good news:

Statistical fit better than for BS model.

Microscopic explanation as scaling limit.

Bad news:

Can not use stochastic calculus or PDE tools.

The model allows for arbitrage!
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Making sense of fBm models

Arbitrage opportunities arise in the usual setup:

No transaction costs,

Large class of continuous-time trading strategies allowed.

Possible ways to remove arbitrage opportunities:

Reduce the set of allowed trading strategies (e.g. only finitely
many trading times).

Introduce transaction costs (e.g. proportional to volumes
traded).
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Models with transaction costs

Recent developments:

After introducing transaction costs, BM can be replaced by any
continuous process X with conditional full support:

P
(

sup
s∈[t,T ]

|Xs − Xt − f (s)| < ε |Xs : s ≤ t
)
> 0

for all 0 < t < T , continuous f : [t,T ]→ R with f (0) = 0, and
ε > 0.

This leads to an arbitrage-free model.
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Models with transaction costs

Let X be a Gaussian process with stationary increments and
spectral measure µ(dλ) = f (λ) dλ.

Theorem.

If ∫ ∞

1

log f (λ)

λ2
dλ > −∞,

then X has conditional full support.

Example: for the fBm with Hurst index H, f (λ) = cH |λ|1−2H .
Hence, the fBm has CFS.
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Models with transaction costs

For these models with general, non-semimartingale price processes:

How about hedging?

How about pricing?

Matters are currently unresolved. . .
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The Black-Scholes-Merton model does not properly describe
all aspects of real asset price data.

Stochastic volatility or fBm models typically do better.

Stochastic volatility: incompleteness, how to choose derivative
prices?

Fractional Brownian motion: arbitrage, how to deal with it?

The debate is ongoing. . .

THANKS FOR YOUR ATTENTION!
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