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Limitations of the Black-Scholes model

Black-Scholes model

Good news: it is a nice, well-behaved model
@ simple, mathematically tractable

no arbitrage, completeness

explicit expressions for the basic options

explicit hedging strategies

can use PDE techniques for pricing

can use stochastic analysis tools

Harry van Zanten (TUf) Beyond the Black-Scholes-Merton model



Limitations of the Black-Scholes model

Black-Scholes model

Good news: it is a nice, well-behaved model
@ simple, mathematically tractable

no arbitrage, completeness

explicit expressions for the basic options

explicit hedging strategies

can use PDE techniques for pricing

can use stochastic analysis tools

Bad news: it does not model what we actually seel!...
@ volatility smile

@ statistical analysis
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Limitations of the Black-Scholes model

Assumptions in the Black-Scholes model

Asset prices modeled by a geometric Brownian motion:
Sy = SpetttoWr,
where
po drift, o : volatility, W : Brownian motion.

Recall:
o Wy=0,
e W; — W is independent of (W, : u <) for all t > s,
o W, — W, ~N(0,t—s),

o t — W; continuous.
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Limitations of the Black-Scholes model

Geometric Brownian motion
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Figure: Typical sample path of a geometric Brownian motion
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Limitations of the Black-Scholes model

Returns in the Black-Scholes-Merton model

For t > s, let

be the return over the time interval [s, t].
In the BSM-model:
Rs:= ett=s)+o(We=Ws) _ 1 u(t = s) + o (W — Wi).

Hence:
@ returns over disjoint time intervals are independent,

@ returns are (approximately) normally distributed.
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Limitations of the Black-Scholes model

Returns in the Black-Scholes-Merton model

Q: is this what we see in actual asset price data?
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Limitations of the Black-Scholes model

Returns in the Black-Scholes-Merton model

Q: is this what we see in actual asset price data?

A: that depends...
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Limitations of the Black-Scholes model

Returns in the Black-Scholes-Merton model

Q: is this what we see in actual asset price data?
A: that depends...

It turns out that the time-scale at which you look plays a crucial
role!
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Limitations of the Black-Scholes model

A look at some real asset price data

Data:

@ Daily AEX index data
@ Minute-by-minute Philips stockprice data
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Limitations of the Black-Scholes model

AEX data

daily AEX index daily AEX returns
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Limitations of the Black-Scholes model

AEX data analysis

Normal Q-Q Plot Histogram of r
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Limitations of the Black-Scholes model

Philips data

minute by minute Philips stock minute by minute Philips returns
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Limitations of the Black-Scholes model

Philips data analysis

Normal Q-Q Plot Histogram of r
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Limitations of the Black-Scholes model

Typical features of asset price data
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heavy-tailed returns

squared returns are positively correlated
long-range dependence in returns
variable volatility

volatility clustering
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Limitations of the Black-Scholes model

Typical features of asset price data
(]
o
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o

Can we find sensible models that capture these features?

heavy-tailed returns

squared returns are positively correlated
long-range dependence in returns
variable volatility

volatility clustering
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Limitations of the Black-Scholes model

Issues surrounding model building for asset prices

What do we want?
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Issues surrounding model building for asset prices

What do we want?

@ Model should reflect observed statistical properties

Harry van Zanten (TUf) Beyond the Black-Scholes-Merton model



Limitations of the Black-Scholes model

Issues surrounding model building for asset prices

What do we want?

@ Model should reflect observed statistical properties

@ Model should make sense economically

Harry van Zanten (TUf) Beyond the Black-Scholes-Merton model



Limitations of the Black-Scholes model

Issues surrounding model building for asset prices

What do we want?

@ Model should reflect observed statistical properties
@ Model should make sense economically

e Model should allow pricing/hedging
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Limitations of the Black-Scholes model

Issues surrounding model building for asset prices

What do we want?

@ Model should reflect observed statistical properties
@ Model should make sense economically
e Model should allow pricing/hedging

@ Would like to have a “microscopic”, “physical”’ justification
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Limitations of the Black-Scholes model

Issues surrounding model building for asset prices

What do we want?

@ Model should reflect observed statistical properties
@ Model should make sense economically
e Model should allow pricing/hedging

@ Would like to have a “microscopic”, “physical”’ justification

This turns out to be a lot to ask for...
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Limitations of the Black-Scholes model

Some attempts to construct better models

Stochastic volatility models

Idea: replace the constant volatility o by a stochastic process.

Non-Brownian motion models

Idea: replace the Brownian motion by a different process driving
the stock-price fluctuations.
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Stochastic volatility models

Stochastic volatility models
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Stochastic volatility models

Stochastic volatility

In the Black-Scholes-Merton model, the log-price process
X: = log S; satisfies

A stochastic volatility model postulates that
dXt = Ut dt + Ot th,

for (o : t > 0) a stochastic process.
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Stochastic volatility models

Why stochastic volatility?

@ statistical properties: in general much better
@ economic properties: incompleteness!
@ pricing/hedging: involved/not always possible

@ “microscopic”, “physical” justification: perhaps reasonable?
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Stochastic volatility models

Examples of stochastic volatility models

@ Heston:
do? = o — 02) dt + 11/ 0? dB:.
o GARCH-type:

do? = a(f — 0?) dt 4+ 102 dB:.
e 3/2 model:

do? = a(f — 02) dt + 7(c2)3/? dB.

Which one should we use?
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Stochastic volatility models

Nonparametric estimation of stochastic volatility models

Idea: use nonparametric estimator to choose the statistically most
reasonable parametric model.
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Figure: AEX data and estimator of the density of log o2.
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Stochastic volatility models

“Physical” justification

Reasonable that volatility has its own dynamics, partly independent
of the dynamics of individual stocks (“temperature” of the
market).

Volatility clustering and switching between “calm” and “excited"”
periods may be explained e.g. by a double well potential.

SDE for volatility:

\ /\ do? = V'(62) dt + 7(0*(Xy)) dB,

\ / where B is a second Brownian motion.

Figure: Potential V
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Stochastic volatility models

Completeness of the Black-Scholes market

The Black-Scholes market is complete: every “reasonable”
contingent claim can be perfectly hedged by a self-financing
portfolio consisting of stocks and bonds.

Intuitive reason: there are as many independent risky assets as
sources of randomness. Or: by trading the stock the randomness
caused by the Brownian motion can be “neutralized”. In other
words: there are enough risky assets to “hedge away” the
randomness.

Technical reason: there is a unique martingale measure.
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Stochastic volatility models

Incompleteness of stochastic volatility models

In SV-models typically more sources of randomness than risky
assets.

As a result, not every derivative can be perfectly hedged in a SV
model: incompleteness.

Some consequences:
@ have to resort to e.g. super hedging or quantile hedging,
@ for non-attainable derivatives, there is a whole interval of
possible no-arbitrage prices,
@ need additional considerations to choose a specific price (e.g.
utility considerations).
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Stochastic volatility models

Statistical soundness vs. completeness

Roughly speaking:

Models having the desirable property of completeness are typically
not realistic from the statistical point of view.

Statistically sound models are typically incomplete and hence give
rise to more involved pricing procedures.
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Stochastic volatility models

Statistical soundness vs. completeness

Roughly speaking:

Models having the desirable property of completeness are typically
not realistic from the statistical point of view.

Statistically sound models are typically incomplete and hence give
rise to more involved pricing procedures.

No widespread consensus...
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Fractional Brownian motion models

Fractional Brownian motion models
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Fractional Brownian motion models

Where does the Brownian motion come from?

Donsker ('52):

Zl,ZQ,. ooy i.i.d. EZ,‘ =0, VarZ,- = 1.

[nt]

(m_ 1 .
X; _ﬁ;z, t e [0,1].

X(" — Brownian motion

in D[0, 1].
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Donsker's theorem visualized

e}
<
@
N

1

30

10

Fractional Brownian motion models

0

T T T T T
200 400 600 800

Harry van Zanten (T U/

-6
1

-10

50

-100
L

T T T T T T
0 2000 6000 10000

Beyond the Black-Scholes-Merton model



Fractional Brownian motion models

What if there is a memory in the system?

Davydov ('70), Taqqu ('75):

71,275, ..., stationary, ..., EZ; =0, Var(Zy +--- + Z,) ~ n?H,
€ (0,1), ...

[nt]

1
x" = Z, telo1].
‘ \/Var 1+ Z 0. 1]

X" — fractional Brownian motion

in D[0, 1].
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Fractional Brownian motion models

Fractional Brownian motion

Fractional Brownian motion (fBm):

Gaussian process WH = (W} : t > 0), centered,

1
EWHWH = Z(¢2H 1 2H _ | — s2H),

5
with H € (0,1) the Hurst index.

Kolmogorov ('40), Mandelbrot & Van Ness ('68)
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Fractional Brownian motion models

Fractional Brownian motion properties

Basic properties:

- H = 1/2: ordinary Brownian motion,

- stationary increments,

- H-self similar: for all a >0, (a=HW! : t > 0) has the same law
as WH,

- sample paths are “H-smooth”,

- for H > 1/2, long range dependence:

SEWY — W)W = oo,

- for H # 1/2: not Markov, not a (semi)martingale.

-E(WH — WwH)2 = |t — s|?M: for H > 1/2 the process is
superdiffusive, for H < 1/2 it is subdiffusive.
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Fractional Brownian motion models

Fractional Brownian motion paths
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Figure: H=0.3, H=0.8
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Fractional Brownian motion models

Fractional Black-Scholes model

Model for asset prices:
H
Se = Spett N,
where

w o drift, o : volatility, WH . fractional Brownian motion.

Idea: Gaussianity plausible on appropriate time scales, fBm allows
for more realistic dependence structure.

Data analysis studies: typically H ~ 0.6.
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Fractional Brownian motion models

Properties of the fBm model

Good news:

@ Statistical fit better than for BS model.

@ Microscopic explanation as scaling limit.

Harry van Zanten (TUf) Beyond the Black-Scholes-Merton model



Fractional Brownian motion models

Properties of the fBm model

Good news:

@ Statistical fit better than for BS model.

@ Microscopic explanation as scaling limit.

Bad news:

@ Can not use stochastic calculus or PDE tools.

@ The model allows for arbitrage!
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Fractional Brownian motion models

Making sense of fBm models

Arbitrage opportunities arise in the usual setup:
@ No transaction costs,

@ Large class of continuous-time trading strategies allowed.
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Fractional Brownian motion models

Making sense of fBm models

Arbitrage opportunities arise in the usual setup:
@ No transaction costs,
@ Large class of continuous-time trading strategies allowed.

Possible ways to remove arbitrage opportunities:

@ Reduce the set of allowed trading strategies (e.g. only finitely
many trading times).

@ Introduce transaction costs (e.g. proportional to volumes
traded).
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Fractional Brownian motion models

Models with transaction costs

Recent developments:

After introducing transaction costs, BM can be replaced by any
continuous process X with conditional full support:

]P’( sup | Xs — Xe — F(s)] < | Xs:s< t) >0
s€ft,T]

forall 0 <t < T, continuous f : [t, T| — R with f(0) =0, and
e>0.

This leads to an arbitrage-free model.
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Fractional Brownian motion models

Models with transaction costs

Let X be a Gaussian process with stationary increments and
spectral measure p(dX) = f(\) dA.

® Jog f(A
/ Og)\Q()dA>—oo,
1

then X has conditional full support.

Example: for the fBm with Hurst index H, f(\) = cy|A|1 721,
Hence, the fBm has CFS.
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Fractional Brownian motion models

Models with transaction costs

For these models with general, non-semimartingale price processes:

@ How about hedging?

@ How about pricing?
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Fractional Brownian motion models

Models with transaction costs

For these models with general, non-semimartingale price processes:

@ How about hedging?

@ How about pricing?

Matters are currently unresolved. ..
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Concluding remarks

Concluding remarks
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Concluding remarks

The Black-Scholes-Merton model does not properly describe
all aspects of real asset price data.

Stochastic volatility or fBm models typically do better.

Stochastic volatility: incompleteness, how to choose derivative
prices?

Fractional Brownian motion: arbitrage, how to deal with it?

The debate is ongoing. ..
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Concluding remarks

@ The Black-Scholes-Merton model does not properly describe
all aspects of real asset price data.

@ Stochastic volatility or fBm models typically do better.

@ Stochastic volatility: incompleteness, how to choose derivative
prices?

@ Fractional Brownian motion: arbitrage, how to deal with it?
@ The debate is ongoing. ..

THANKS FOR YOUR ATTENTION!
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