Toward a mechanistic approach of macroeconomy

Marcel Ausloos

7 rue des Chartreux, B-4122 Plainevaux

Previously at
Group for Research and Applications of Physics in Economy and Sociology

Community extraction through network structural analysis

with

Mircea Gligor, Neamt, Romania
Janusz Miskiewicz, Wroclaw, Poland
Francisco Redelico \& Araceli Proto, Buenos Aires, Argentina

Fluctuations and Correlations
 Countries characterized by macro-economic indicators
 A cluster expansion-like method 0000000000000000000000000000000.0
 (Evolving) Weighted Networks with Vector-like Nodes
 Globalization through distance correlations

Please read/see: (1)

- M. Gligor \& M. A., Cluster structure of EU-15 countries derived from the correlation matrix analysis of macroeconomic indices fluctuations, Eur. Phys. J. B 57 (2007) 139-146
- M. Gligor \& M. A., Convergence and cluster structures in EU area according to fluctuations in macroeconomic indices, J. Econ. Integration 23 (2008) 297-330
- M. A. \& M. Gligor, Cluster Expansion Method for Evolving Weighted Networks Having Vector-like Nodes, Acta Phys. Polon. A 114 (2008) 491499
- M. Gligor \& M. A., Clusters in weighted macroeconomic networks : the EU case. Introducing the overlapping index of GDP/capita fluctuation correlations, Eur. Phys. J. B 63 (2008) 533-539
- F. O. Redelico, A.N. Proto, \& M. A., Hierarchical structures in the Gross Domestic Product per capita fluctuation in Latin American countries, Physica A 388 (2009) 3527-3535

Please readlsee: (2)

Follow up of studies
on correlations between GDPs of rich countries

- J. Miskiewicz \& M. A., An attempt to observe economy globalization: the cross correlation distance evolution of the top 19 GDP's, Int. J. Mod. Phys. C 17 (2006) 317-332
- M. A. \& R. Lambiotte, Clusters or networks of economies? A macroeconomy study through GDP fluctuation correlations, Physica A 382 (2007) 16-21
- R. Lambiotte \& M. A., N-body decomposition of bipartite networks, Phys. Rev. E 72 (2005) 066117 (8 pages)

Macroeconophyics

- Questions ?
- Agents ?
- In microeconophysics : fundamentlists/chartists
- In macroeconophysics : ?
- Level of modelization
- Less data : short time series
- GDP released quaterly, adjusted monthly,
- Stationarity ? (... Transitivity)
- Data not so standardized

Major aim : < Hamiltonian construction »

The border countries and their GDP per capita levels (in \$PPP, 1995 prices)

1960
1978
2000

First to second

Portugal (3205) Portugal (7993) Greece (13821)
Croatia (3085) Puerto Rico Barbados (7662) (13297)

Second to \quad Haiti (2139) Armenia (5294) Malaysia (9887) third

Malaysia (2120) Fiji (5156) Slovak (8595)

Third to fourth

Nigeria (1080)
Madagascar (1031)

Guyana (2728) Egypt (4630)
Cote d'Ivoire (2649)

Bulgaria (4313)

PPP, EKS, GK,

- PPP are interspatial indices constructed for the purpose of comparing currencies and volumes across countries,
- just as a consumer price index measures the cost of a basket of goods and services over time.
- Elteto-Koves-Szulc (EKS) method
- Geary Khamis (GK) method
- The EKS PPP result from the geometric average of the direct PPP between a pair of countries and all the indirect PPP derived through third countries,
- with the direct PPP having twice the weight of each indirect PPP

Content (1) : globalization question

- toward a Globalization 'conclusion'’ :
- distance correlations => network diameter/size
- < globalization limit» ? ... !
- Globalization process in economy is understood as an increase of similarities within (macroeconomy) development patterns
- Various correlation measures
- Various distance definitions
- Theil index
- q-Theil index

Content (2) : GDP correletions

- How to extract clusters and/or communities through a network analysis
- Have a mechanistic interpretation
- GDP/capita (GDP/c) correlations investigated in various time windows (T),
- for the time interval 1990-2005.
- Target group of countries : three sets based on
- 25 European (EU), 18 Latin American (LA) countries, USA
- EU25: LA18: EU25\&USA: LA18\&USA; EU25\&LA18; EU25\&LA18\&USA

Content (3) : Network construction

- Links are weighted edges based on the coherent Pearson correlation coefficient (CPCC) between the countries GDP/c
- measured over a specific T
- N.B. Possible time lag effects are to be examined
- Define an average overlap index (AOI) for each node.

Content (4) : network anallysis

- The characteristics of each fully connected weighted network evolve with time!
- How to extract clusters and/or communities through a network analysis ?
- To illustrate cluster appearance and stability a double attrition process is applied:
- on the nodes, through the AOI ranking,
- on the links, through the CPCC values.
- ... the vector node network: a generalisation taking into account various macroeconomic indices
- Tagged nodes => Hamiltonian-like with "interactions"

Content (5): PC'A

- PCA: Principal Component Analysis
- Statistically relevant eigenvalues and eigenvectors of the CPCC andjacency matrix

1. Data

Macro-economy Indicators :

- Gross Domestic Product (GDP)
- Final Consumption Expenditure (FCE)
- Gross Capital Formation (GCF)
- Net Exports (NEX)
- GDP/capita
- GDP/worked hour
- Consumer Price Index
- Interest Rates of the Central Banks
- Labour Force
- Unemployment
- Gini coefficient

MEI

Gross Domestic Product (GDP)

- = sum of gross value added by all resident producers plus product taxes and minus subsidies
- Final Consumption Expenditure (FCE)
- = sum of household and government final consumption expenditure
- Gross Capital Formation (GCF)
- = outlays on additions to the fixed assets plus net changes in the inventories
- Net Exports (NEX)
- = Exports - Imports

Data source

http://www.ggdc.net/databases/hna.htm
http:/lgo.worldbank.org
http.//devdata. worldbank.org/query/default.htm
Time interval 1990-2005

- EU-25 + $\quad M=\ldots$
- LA-18 +
- USA Notations:

Roots Web Surname List http://helpdesk.rootsweb.com/codes/

data

- http.//devdlata. worldbank.org/query/default.htm
- (1972-2004);
- http://www.economicswebinstitute.org/concepts.htm
- (1986-2000);
- http.//www.oecd.org/about/0,2337,en 2649 201185 1 1 111 1,00.html
- (2003-2004).

GDP, C, Y, E Data source

- http://devdata.worldbank.org/query/default.htm
- http://www.cia.gov/cia/publications/factbook/rankorder/2004 rank.html
- http://www.economicswebinstitute.org/concepts.htm (data taken between1986-2000);
- http://www.oecd.org/about/0,2337,en 2649 201185 1111 1_1,00.html (2003-2004).

GDP data (EKS/GK)

GDP - EKS log

GDP examples

GDP "sslopes"

2. Methodology

- Cluster Variation Method (*)
- statistical mechanics and condensed matter
- Beyond a bipartite graph made of
- (i) variables: vector nodes : i, j, \ldots,
- macro-economic features, defining the phase space
- (ii) function nodes : a, b, \ldots.
- countries , ... linked by (i)
(*) A. Pelizzola
Cluster Variation Method in Statistical Physics and Probabilistic Graphical Models J. Phys. A 38 (2005) R309-339.

Sort of "final" Cost Fcn. \& Factor Graph

"Economic Theory"

- Hamiltonian $=$ Cost function

$$
\begin{gathered}
\mathcal{H}=\sum_{a}^{N} \mathcal{H}_{a}\left(s_{a}\right)= \\
=\mathcal{H}_{0}\left(s_{0}\right)+\mathcal{H}_{1}\left(s_{1}\right)+\mathcal{H}_{2}\left(s_{2}\right)+\ldots
\end{gathered}
$$

Hamilttonian "theory"

$$
\mathcal{H}=\sum_{a}^{N} \mathcal{H}_{a}\left(s_{a}\right) \quad p(s)=\frac{1}{\mathcal{Z}} \exp [-\mathcal{H}(s)]
$$

$$
s_{a} \quad a=1, \ldots \text { (4) }
$$

$\boldsymbol{s}_{\boldsymbol{a}} \quad a=1, \ldots(4)$
$\mathcal{Z}=\exp [-\mathcal{F}]=\sum_{s} \exp [-\mathcal{H}(s)]$

$$
\begin{gathered}
\mathcal{S}_{\alpha}\left(s_{\alpha}\right)=-\sum_{s \in \alpha} p(s) \cdot \ln p(s) \\
s_{\alpha} \quad \alpha=1, \ldots(M)
\end{gathered}
$$

Number of «agents »

3. Methodl: (1)

- A given macro economic indicator
- e.g. Data : 1990-2005
- A set of countries; \& invent "AVR" ("average")
- Window for t-averaging : e.g. $T=5 y$ or $10 y$
- Correlations $\quad>$ distances
- Adjacency matrix
(*)
- Network construction and evolution
- According to some filter : correlation levels
- => communities
- (*) Statistical distance matrix can also be constructed

Correlations/distances (1)

$$
C_{(t, T)}(A, B)=\frac{\langle A B\rangle_{(t, T)}-\langle A\rangle_{(t, T)}\langle B\rangle_{(t, T)}}{\sqrt{\left(\left\langle A^{2}\right\rangle_{(t, T)}-\langle A\rangle_{(t, T)}^{2}\right)\left(\left\langle B^{2}\right\rangle_{(t, T)}-\langle B\rangle_{(t, T)}^{2}\right)}} .
$$

- A, B : $M E I(t)$

$$
d_{s}(A, B)_{(t, T)}=\sqrt{2\left(1-C_{(t, T)}(A, B)\right)}
$$

$$
C_{i j}(t, T)=\frac{\left\langle x_{i} x_{j}\right\rangle_{T}-\left\langle x_{i}\right\rangle_{T}\left\langle x_{j}\right\rangle_{T}}{\sqrt{\left\langle x_{i}^{2}-\left\langle x_{i}\right\rangle_{T}^{2}\right\rangle_{T}\left\langle x_{j}^{2}-\left\langle x_{j}\right\rangle_{T}^{2}\right\rangle_{T}}}
$$

Correlations/dlistances (2)

$$
\hat{C}_{i, j}\left(k, T_{2}\right)=\left[\frac{1}{\nu} \sum_{t=k}^{k+T_{2}} C_{i, j}^{2}\left(t, T_{1}\right)\right]^{1 / 2} \quad \text { Usually: } v=T
$$

- But here: $v=N-T+1$

$$
\hat{C}_{i, j}(T)
$$ -N.B.

$$
\hat{C}_{i j}(T)=\left[\frac{1}{\nu} \sum_{t=k}^{k+T} C_{i j}^{2}(t)\right]^{1 / 2} \quad \backsim T_{2}
$$

$$
\hat{C}_{i i}(T)=\left[\frac{1}{N-T+1} \sum_{t=k}^{k+T} 1\right]^{1 / 2}=\left[\frac{T}{N-T+1}\right]^{1 / 2} \quad d_{i i}(T)=\sqrt{2\left(1-\hat{C}_{i i}(T)\right)} .
$$

Cumulative distribution function

3. Methodl: (2)

- A given macro economic indicator
- e.g. Data: 1990-2005
- A set of countries; invent "ALL" ("average")
- Window for t-averaging : e.g. $T=5$ y or 10 y
- Correlations \quad - distances
- Adjacency matrix

$$
w_{i j}(T) \equiv \hat{C}_{i j}(T)
$$

- Network construction and evolution
- According to some filter : correlation levels
- => communities
- Statistical distance matrix can also be constructed

Networks (1)

- Complete Graphs
- Minimum Spanning Tree
- Minimal Length Path
- UMLP
- BLMP

Networks (2)

- UMLP
- Attachment starting from seed («ALL»)
- Linear ; Unidirectional
- BLMP
- Attachment starting from seed («ALL»)
- Linear ; Bidirectional
- LMST
- root : the pair of closest neighbouring countries
- Then the country closest to any node is searched for and attached.

Network characteristics (1) Degree clistribution

Vertex degree (in weighted network):

$$
\begin{equation*}
k_{i}=\sum_{j=1, j \neq i}^{M} w_{i j} \tag{T}
\end{equation*}
$$

$$
\text { thus: } \quad<k>=\frac{1}{M} \sum_{i=1, i \neq j}^{M} \sum_{j=1}^{M} w_{i j}
$$

Average degree

Network characteristics (2) Overlap coefficient

in weighted networks:

Number of common neighbors $\quad N_{i j}=\sum_{l=1}^{M}\left(w_{i l}+w_{j l}\right)$

Overlapping coefficient

$$
O_{i j}=\frac{N_{i j}}{4(M-1)(M-2)}\left[\sum_{p=1 ; p \neq i}^{M} w_{i p}+\sum_{q=1 ; q \neq j}^{M} w_{j q}\right]
$$

which generalizes:

$$
O_{i j}=\frac{N_{i j}\left(k_{i}+k_{j}\right)}{4(M-1)(M-2)}, i \neq j .
$$

Network characteristics (AOI)

Country Averaged Overlapping coefficient
EU25 (90-05)
($T=5$)

$$
<O_{i}>=\frac{1}{M-1} \sum_{j=1}^{M} O_{i j}
$$

PRE

AOI hierarchy

	25 European countries, ramked according to their AOI , from GDP/capita yearly dat between 1990 and 2005. The Income group according to the World Bank ATLAS method, t-Student confidence interval ($t c i$) for the AOI and k_{i} are given				
	Country	Acronym		AOI (tci)	k_{i}
	Name		Group		
	Ireland	IRL	OEC	0.800 (0.799; 0.801)	21.878
	Austria	Aut	OEC	0.799 (0.798; 0.800)	21.853
	Denmark	DNK	OEC	0.798 (0.797; 0.799)	21.825
	Finland	FIN	OEC	0.798 (0.797; 0.799)	21.812
-	Spain	ESP	OEC	0.796 (0.795; 0.797)	21.775
	Belgium	BEL	OEC	0.796 (0.795; 0.797)	21.769
	Poland	POL	UMC	0.794 (0.792; 0.795)	21.698
	Hungary	HUN	OEC	0.792 (0.791; 0.793)	21.664
	Slovenia	SVN	NOC	0.792 (0.791; 0.793)	21.644
	Sweden	SWE	OEC	0.787 (0.786; 0.788)	21.509
	United Kingdom	GBR	OEC	$0.784(0.783 ; 0.785)$	21.431
	France	FRA	OEC	0.777 (0.776; 0.778)	21.232
	Estonia	EST	NOC	0.774 (0.773; 0.775)	21.155
	Luxembourg	LUX	OEC	0.766 (0.765; 0.767)	20.945
	Malta	MLT	NOC	0.766 (0.765; 0.767)	20.934
	Slovak Republic	SvK	OEC	0.765 (0.764; 0.766)	20.905
	Italy	ITA	OEC	$0.764(0.763 ; 0.765)$	20.870
	Germany	DEU	OEC	0.763 (0.762; 0.765)	20.864
	Greece	GRC	OEC	0.761 (0.760; 0.762)	20.804
H025	Netherlands	NLD	OEC	$0.754(0.753 ; 0.755)$	20.603
	Lithuania	LTV	UMC	0.730 (0.729; 0.731)	19.919
	Portugal	POR	OEC	0.719 (0.718; 0.720)	19.590
	Czech Republic	CZE	OEC	0.717 (0.716; 0.717)	19.529
	Switzerland	CHE	OEC	0.678 (0.677; 0.679)	18.401
	mean.			0.769 (0.768; 0.770)	

Percolation point of view (1)
 $$
n=T=5 ; t=0.98
$$

EU25

60\%

Percolation point of view (2)

$$
n=T=5 ; t=1.64
$$

EU25

Percolation point of view (3)
 $$
n=T=5 ; t=2.35
$$

EU25

90\%

Kurtosis vs. window size

K_{G}

K_{U}

Properties of $O_{i j}$

- Fully disconnected :
$O_{i j}=0$
- Fully connected

$$
\begin{gathered}
O_{i j}=1 \\
\left(N_{i j}=M-2 ; k_{i}=k_{j}=M-1\right)
\end{gathered}
$$

- Otherwise
- "average", for a given node :

$$
\left\langle O_{l}\right\rangle=\frac{1}{M-1} \sum_{m=1}^{M} O_{l m}
$$

=> hierarchy

$25+18+1 \mathrm{AOI}_{900}(90-05)$

($T=5$)

18 LA + USA

18 Latin American countries, ranked according to their AO1, from GDP/capita yearly data between 1990 and 2005. Income group according to the World Bank ATLAS method, t-Student confidence interval (tci) for the AOI and k_{i} are given

| Country
 Name | Acronym | Income
 Group | AOI | (tci) |
| :---: | :---: | :---: | :---: | :---: |k_{i}

18 Latin American countries and USA, ranked according to their AOI, from GDP/capita yearly data between 1990 and 2005 . Income group according to the World Bank ATLAS method, t-Student confidence interval (tci) for the AOI and k are gives

Country	Acronym	Income	AOI	
Name		Group		k_{i}
United States	USA	OEC	$0.620(0.617 ; 0.623)$	14.814
Colombia	COL	LMC	$0.605(0.602 ; 0.608)$	14,454
El Salvador	SLV	LMC	$0.601(0.598 ; 0.604)$	14,351
Guatemala	GTM	LMC	$0.596(0.593 ; 0.599)$	14,245
Chile	CHL	UMC	$0.588(0.584 ; 0.591)$	14,040
Nicaragua	NIC	LMC	$0.587(0.584 ; 0.590)$	14,024
Bolivia	BOL	LMC	$0.581(0.578 ; 0.584)$	13,887
Costa Rica	CRI	UMC	$0.578(0.575 ; 0.581)$	13,804
Panama	PAN	UMC	$0.575(0.572 ; 0.579)$	13,745
Dominican Rep.	DOM	LMC	$0.569(0.566 ; 0.572)$	13,584
Uruguay	URY	UMC	$0.564(0.562 ; 0.567)$	13,472
Paraguay	PRY	LMC	$0.554(0.552 ; 0.556)$	13,218
Argentina	ARG	UMC	$0.543(0.541 ; 0.546)$	12,952
Honduras	HND	LMC	$0.543(0.540 ; 0.545)$	12,932
Ecuador	ECU	LMC	$0.541(0.538 ; 0.544)$	12,895
Mexico	MEX	UMC	$0.541(0.538 ; 0.544)$	12,890
Peru	PER	UMC	$0.535(0.532 ; 0.538)$	12,746
Brazil	BRA	UMC	$0.535(0.532 ; 0.538)$	12,739
Venezuela RB.	VEN	UMC	$0.508(0.505 ; 0.510)$	12,041
mean.			$0.586(0.584 ; 0.588)$	

Network characteristics (3) Global Nocal path length

Characteristic path length

$$
\begin{gathered}
L=\frac{1}{N(N-1)} \sum_{i, j \in N ; i \neq j} d_{i j} \\
d_{i j}(T)=\sqrt{2\left(1-\hat{C}_{i j}(T)\right)}
\end{gathered}
$$

local path length L_{i} attributed to each node, e.g. for node i

$$
L_{i}=\frac{1}{(N-1)} \sum_{j \in N} d_{i j}
$$

Network characteristics (4) Global /local efficiency

Characteristic global efficiency

$$
E=\frac{1}{N(N-1)} \sum_{i, j \in N ; i \neq j} \frac{1}{d_{i j}}
$$

local efficiency E_{i} for node i, i.e.

$$
E_{i}=\frac{1}{(N-1)} \sum_{i, j \in N} \frac{1}{d_{i j}}
$$

GNI/c (1)

2007

- low income (LC), if the income per capita is USD 935 or less
- lower middle income (LMC), USD 936-3.705
- upper middle income (UMC), USD 3.706-11.455;
- high income (HC), USD 11.456 or more.

EU25 vS. LA18-EU25-USA

AOI > 0.686
0.784

Mean statistical distance

$$
d_{s}(A, B)_{(t, T)}=\sqrt{2\left(1-C_{(t, T)}(A, B)\right)}
$$

Usual « statistical distance
 (Theil indlex) Distance correlations

$$
d_{s}(A, B)_{(t, T)}=\sqrt{2\left(1-C_{(t, T)}(A, B)\right)}
$$

3 different types of networks :
=> Somewhat network independent

Mean distance

Conclusion (2): globalization

- Observed globalization process does not depend on the type of studied network
- «No » globalization process ca. 1960
- as seen through mean distance maximum
- Globalization process since 1970 and destabilisation after 2000
- as observed as a decrease of the network size.
- Globalization process is better seen if time lag greater than 5 yrs.
- Shift of the maximum is consistent with increase in time lag.
- q-Theil distance analysis gives more consistent results

3. Method : (3)

- A given macro economic indicator
- e.g. Data: 1990-2005
- A set of countries; invent "AVR" ("average")
- Winclow for t-averaging : e.g. $T=5$ y or $10 y$
- Correlations \quad distances
- Adjacency matrix
- Network construction and evolution
- According to some filter : correlation levels
- => communities
- Statistical distance matrix can also be constructed

4. MA-MPL (1)

- Repeat for each macro economic indicator
- e.g. Data : 1990-2005
- same countries; same windows for t-averaging
- Correlation matrices (4) =>
- Statistical distance matrices (4)
- Networks
- According to some filter : correlation level

MA-MLP (2)

- Compare correlations
- Distance correlations =>
- Clusters (def. next)
- Movements inside hierarchy and networks
- Statistics : searching for "stability" of clusters
- Resulting from "average" (over indices)
- "sensitivity degree"
- => Hamiltonian or Cost function
- Entropy ...

Cluster def.

- A cluster is a subset of the factor graph such that
- if a "function node" belongs to the cluster
- all "variable nodes" belong to the cluster
- "function node" : country
- "variable node" : MEindex

e.g. GDP/c : EU25\&USA:

Clusters

- Group countries according to weights, links
- For various time windows
- Moved as a function of time
- Look for consistency through threshold
- At "confidence level"

5. Movement correlations

$$
\begin{aligned}
& w_{i j} \\
& C_{i j}=>\hat{C}_{i j} \\
& d_{i j} \\
& C D F\left(d_{i j}\right) \\
& L_{i} \\
& \left\langle L_{i}\right\rangle-L_{i}=\hat{d}_{i}
\end{aligned}
$$

$$
\hat{c}_{i j}(t)=\frac{\left\langle\hat{d}_{i}(t) \hat{d}_{j}(t)>-\left\langle\hat{d}_{i}(t)><\hat{d}_{j}(t)\right\rangle\right.}{\sqrt{\left\langle\left[\hat{d}_{i}(t)\right]^{2}-\left\langle\hat{d}_{i}(t)>^{2}><\left[\hat{d}_{j}(t)\right]^{2}-\left\langle\hat{d}_{j}(t)>^{2}\right\rangle\right.\right.}}
$$

- $\hat{d}_{i}(t)$: minimal path length distance to the average
- $C>0.9$; $C<-0.5$
- [FRA-SWE-DEU] \& [BEL-GBR-IRE-DNK-PRT]
- ITA; LUX; AUT; GRC

(s_{1}) GDP MIPL d to AVR 1

	AT	BE	DE	DK	ES	FI	FR	UK	GR	IE	IT	LU	NL	PT	SE
$\begin{aligned} & \hline 94- \\ & 98 \end{aligned}$. 67	. 86	. 86	. 86	. 40	. 40	. 67	. 86	. 40	. 86	. 86	. 40	. 40	. 86	. 86
95 -															
99 96	. 60	. 65	. 52	. 71	. 21	. 77	. 45	. 77	. 37	. 65	. 90	. 37	23	. 83	. 52
96 00	. 58	32	. 46	. 61	. 34	. 81	. 46	. 32	32	. 53	32	. 20	. 60	. 60	. 46
${ }_{01}^{97}$. 48	30	. 48	. 30	. 28	. 42	. 48	. 44	. 68	. 38	. 68	. 14	. 28	. 28	. 48
98.															
02	. 43	26	. 19	. 19	. 21	. 43	. 19	. 19	1.04	. 29	. 44			. 21	. 29
99-	. 25	23	. 19	. 19	. 29	. 26	. 19	. 37	1.15	. 26	37	. 23		. 19	. 28
04	. 27	. 27	. 17	. 26	. 28	. 27	. 21	. 27			28	. 27		. 21	. 27

$\left(s_{1}\right)$ GDP Corr. 2

	AT	BE	DE	DK	ES	FI	FR	UK	GR	IE	IT	LU	NL	PT	SE
AT	1	.77	.88	.88	.33	.69	.88	.69	-.69	.75	.71	.42	.61	.89	.85
BE		1	.88	.90	.41	.27	.80	.94	-.59	.92	.83	.85	.23	.90	.91
DE			1	.90	.61	.35	.98	.86	-.65	.85	.78	.61	.52	.86	.99
DK				1	.50	.58	.87	.84	-.80	.93	.67	.77	.58	.99	.88
ES						.10	.19	.24	.20	.55	.05	.36	.66	.37	.64
FI							.42	.25	-.62	.34	.27	.14	.60	.64	.26
FR								.79	-.71	.81	.73	.52	.60	.82	.95
UK									-.52	.82	.90	.85	.12	.86	.86
GR										-.82	-.38	-.56	-.62	-.76	-.60
IE											.63	.85	.43	.89	.87
IT										1	.05	.73	.77		
LU											1.	.50	.65		
NL												1	.84		
PT														1	
SE															

$\left(s_{2}\right)$ FCE MIPL d to AVR 2

	AT	BE	DE	DK	ES	FI	FR	UK	GR	IE	IT	LU	NL	PT	SE
$\begin{aligned} & 94- \\ & 98 \end{aligned}$. 88	. 65	. 85	. 88	. 65	. 37	. 65	. 65	. 65	. 65	. 37	. 65	. 65	. 65	. 65
$\begin{aligned} & 95- \\ & 99 \end{aligned}$. 79	. 79	. 79	. 81	. 79	. 41	. 79	. 79	. 93	. 79	. 53	. 59	. 79	. 79	. 79
96-	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	. 26	1.02	1.02	1.02	1.02
$97-$ 01	. 51	. 51	. 51	. 65	. 51	. 73	. 88	. 51	. 65	. 51	. 33	. 88	. 51	. 51	. 51
$\begin{aligned} & 98-1 \\ & 02 \end{aligned}$. 52	. 52	. 52	. 96	. 52	. 66	. 95	. 65	. 96	. 52	. 35	1.19	. 52	. 52	. 52
$\begin{aligned} & 99- \\ & 03 \end{aligned}$. 45	. 42	. 45	1.00	. 45	. 53	. 40	. 46	1.00	. 42	. 30	. 92	. 45	. 45	. 45
$\begin{aligned} & 00- \\ & 04 \\ & \hline \end{aligned}$. 88	. 65	. 85	. 88	. 65	. 37	. 65	. 65	. 65	. 65	. 37	. 65	. 65	. 65	. 65

Movement correlations inside $\left(s_{2}\right)$ (FCE) hierarchy

CORRELATIONS BETWEEN THE MOVEMENTS OF COUNTRIES INSIDE HIERARCHY

$\left(s_{2}\right)$ FCE Corr. 3

(s_{3}) GCF MIPL d to AVR 4

	AT	BE	DE	DK	ES	FI	FR	UK	GR	IE	IT	LU	NL	PT	SE
$\begin{aligned} & 94 \\ & 98 \end{aligned}$. 51	. 48	. 59	. 52	. 66	. 48	. 66	. 58	. 89	. 67	. 38	. 85	. 67	. 37	. 51
$\begin{aligned} & 95- \\ & 99 \end{aligned}$. 47	. 46	. 75	. 49	. 54	. 46	. 54	. 61	. 75	. 49	. 33	. 83	. 49	. 39	. 58
$\begin{aligned} & 96-1 \\ & 00 \\ & 97- \end{aligned}$. 75	. 78	. 75	. 78	. 75	. 78	. 75	. 58	. 75	. 84	. 32	. 32	. 48	. 20	. 75
01	. 70	. 47	. 70	. 62	. 70	. 62	. 70	. 57	. 70	. 38	. 63	. 29	. 29	. 09	. 70
$\begin{aligned} & 98- \\ & 02 \end{aligned}$. 46	. 46	. 46	. 68	. 46	. 68	. 46	. 61	. 46	. 46	1.13	. 46	. 46	. 46	. 46
$\begin{aligned} & 99- \\ & 03 \end{aligned}$. 70	. 70	. 70	. 88	. 70	. 88	. 70	. 70	. 70	. 70	1.07	. 70	. 70	. 70	. 70

$\left(s_{3}\right)$ GCF Corr. 5

	AT	BE	DE	DK	ES	FI	FR	UK	GR	IE	IT	LU	NL	PT	SE
AT	1	.76	.59	.68	.88	.69	.88	.10	.19	.45	-.04	-.58	-.12	-.26	.94
BE		1	.47	.81	.67	.79	.67	.35	.15	.85	-.02	-.27	.32	.15	.73
DE			1	.10	.64	.09	.64	.05	.55	.30	-.57	-.02	-.08	-.25	.81
DK				1	.41	1	.41	.61	-.32	.50	.56	-.40	.24	.39	.55
ES					1	.40	1	-.04	.61	.58	-.35	-.26	.11	-.29	.83
FI						1	.40	.58	-.37	.46	.57	-.46	.17	.35	.56
FR							1	-.04	.61	.58	-.35	-.26	.11	-.29	.83
UK								1	-.21	.20	.63	.37	.61	.91	.12
GR									1	.44	-.76	.45	.37	-.20	.27
IE										1	-.26	.10	.62	.21	.40
IT											1	-.15	.12	.60	-.21
LU												1	.73	.60	-.46
NL													1	.78	-.17
PT													1	-.27	
SE													1		

(sq) NEX MIPL d to AVR 6

	AT	BE	DE	DK	ES	FI	FR	UK	GR	IE	IT	LU	NL	PT	SE
$\begin{aligned} & 94- \\ & 98 \\ & 95- \end{aligned}$	1.27	. 19	. 65	. 89	. 45	. 80	. 65	. 62	. 75	. 62	. 62	. 80	. 64	. 62	. 62
99	1.13	. 40	. 66	1.11	. 66	. 87	. 66	. 56	. 87	. 56	. 56	. 87	1.11	. 56	. 56
$\begin{aligned} & 96- \\ & 00 \end{aligned}$	1.29	. 72	. 52	. 81	. 52	. 81	. 56	22	. 81	. 72	. 54	. 81	. 54	. 54	. 72
$97-$	1.06	. 55	. 64	. 80	. 64	. 70	. 64	26	. 39	. 55	. 64	. 70	. 64	. 64	. 55
$\begin{aligned} & 98- \\ & 02 \end{aligned}$. 94	. 73	. 54	. 73	. 54	. 67	. 73	. 54	. 54	. 73	. 54	. 67	. 67	. 54	. 73
$\begin{aligned} & 99- \\ & 03 \end{aligned}$. 37	. 65	. 37	1.03	. 50	. 82	. 79	. 76	. 65	. 79	. 50	. 82	. 82	. 37	. 79

(s_{4}) NEX Corr. 7

	AT	BE	DE	DK	ES	FI	FR	UK	GR	IE	IT	LU	NL	PT	SE
AT	1	-.39	.80	-.32	.11	.02	-.89	-.62	.30	-.59	.60	.02	-.26	.84	-.59
BE		1	-.65	-.39	.09	-.39	.15	-.30	-.32	.62	-.61	-.39	-.27	-.48	.62
DE			1	-.07	.44	-.05	-.56	-.35	.06	-.92	.82	-.05	.13	.93	-.92
DK				1	.22	.85	.28	.56	.58	-.14	-.28	.85	.86	-.41	-.14
ES					1	-.03	-.16	-.37	-.18	-.64	.23	-.03	.53	.30	-.64
FI						1	-.13	.30	.86	-.04	-.29	1	.56	-.31	-.04
FR							1	.82	-.29	.47	-.47	-.13	.35	-.67	.47
UK								1	-.21	.34	-.40	.30	.50	-.57	.34
GR									1	.05	-.35	.86	.40	-.16	.05
IE										1	-.82	-.04	-.28	-.81	$\mathbf{1}$
IT											1	-.29	-.24	.90	-.82
LU												1	.56	-.31	-.04
NL												1	-.25	-.28	
PT													1	-.81	
SE										1					

N.B. Randomized C case

shuffled time

GDP

	AT	BE	DE	DK	ES	FI	FR	UK	GR	IE	IT	LU	NL	PT	SE
AT	1	.19	-.07	-.28	.23	-.23	.45	.55	-.47	.07	-.35	.28	-.43	.29	-.49
BE		1	.51	.10	-.10	-.47	.16	.24	-.35	-.48	-.61	.41	.07	-.55	.18
DE			1	.53	.24	-.22	.70	-.22	-.48	-.50	-.11	-.34	-.02	.24	.16
DK				1	-.32	.19	.19	.27	-.20	-.64	-.22	-.67	-.15	.36	.34
ES					1	.42	.58	-.57	-.60	.32	.66	-.21	.06	.37	.15
FI						1	.00	-.16	-.17	-.02	.71	-.67	.28	.33	.43
FR							1	-.06	-.53	-33	.17	-.44	.00	.62	-.32
UK								1	.00	-.46	-.68	.09	-.23	.00	-.32
GR									1	-.05	.08	.10	.50	-.37	-.42
IE										1	.26	.44	-.44	.05	.08
IT											1	-.52	.47	.32	.10
LU												1	-.22	-.67	-.12
NL													1	-.40	-.12
PT															1
SE										1					

conclusion is: (here) no structure

Randomized world

EU25
 Summary ol Tables

	AT	BE	DE	DK	ES	FI	FR	UK	GR	IE	IT	LU	NL	PT	SE
$\begin{aligned} & \hline 94- \\ & 98 \end{aligned}$. 88	. 65	. 85	. 88	. 65	. 37	. 65	65	${ }^{65}$. 65	. 37	65	. 6	. 65	. 65
95.															
99	79	. 79	. 79	. 81	. 79	41	. 79	. 79	. 93	. 79	. 53	. 59	. 79	. 79	. 79
$\begin{aligned} & 96- \\ & 00 \end{aligned}$	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	26	1.02	1.02	1.02	1.02
$\begin{aligned} & 97-2 \\ & 01 \end{aligned}$	51	. 51	. 51	. 65	51	. 73	88	51	. 65	51	33	. 88	. 51	51	. 51
$\begin{aligned} & 98-8 \\ & 02 \end{aligned}$	52	. 52	. 52	. 96	. 52	. 66	95	. 65	. 96	. 52	. 35	1.19	. 52	. 52	S2
99-	. 45	. 42	4	1.00	5	. 53	40	. 46	1.00	. 42	. 30	92	. 45	. 45	. 4
$\begin{aligned} & 00- \\ & 04 \\ & \hline \end{aligned}$. 88	. 65	. 85	. 88	. 65	. 37	. 65	. 65	. 65	. 65	. 37	. 65	. 65	. 65	. 65

GDP $\begin{aligned} & \text { FCE }\end{aligned}$
 GCF NEX

	AT	BE	DE	DK	ES	FI	FR	UK	GR	IE	IT	LU	NL	PT	SE
94	51	. 48	. 59	52	66	48	. 66	58	89	. 67	. 38	85	67	37	51
95 -															
99	47	46	. 75	. 49	54	46	. 54	61	. 75	49	. 33	83	49	. 39	. 58
$\begin{aligned} & 96- \\ & 00 \end{aligned}$. 75	. 78	. 75	. 78	75	. 78	. 75	58	. 75	. 84	. 32	32	48	20	. 75
${ }_{01}^{97}$. 70	. 47	. 70	. 62	. 70	. 62	. 70	. 57	. 70	. 38	. 63	29	29	. 09	. 70
$\begin{aligned} & 98- \\ & 02 \end{aligned}$	46	46	46	. 68	46	. 68	46	.61	46	46	1.13	46	. 46	46	46
99-	. 70	. 70	. 70	. 88	. 70	. 88	. 70	. 70	. 70	. 70	1.07	70	. 70	. 70	. 70

Summary C Tables

EU25

GDP	FCE
GCF	NEX

	AT	BE	DE	DK	ES	FI	FR	UK	GR	IE	IT	LU	NL	PT	SE
AT	1	. 76	. 5	. 68	. 88	. 69	. 88	. 10	19	45	-. 04	- 58	-. 12	-. 26	. 94
BE		1	. 47	81	. 67	. 79	. 67	35	. 15	. 85	-. 02	-27	32	. 15	. 73
DE			1	10	64	09	. 64	. 05	. 55	. 30	-. 57	-. 02	-. 08	-. 25	. 81
DK				1	. 41	1	. 41	. 61	-32	. 50	. 56	-. 40	24	39	55
Es					1	40	1	-. 04	. 61	. 58	-.35	-26	11	-. 29	. 83
FI						1	40	. 58	-.37	. 46	. 57	-. 46	. 17	35	. 56
FR							1	-. 04	. 61	. 58	-.35	-. 26	11	-. 29	. 83
UK								1	-.21	. 20	. 63	. 37	.61	91	12
GR									1	44	-.76	. 45	37	-. 20	27
IE										1	-.26	. 10	. 62	21	40
IT											1	- 15	. 12	. 60	-21
LU												1	73	. 60	- 46
NL													1	78	- 17
PT														1	-27
SE															1

	AT	BE	DE	DK	ES	FI	FR	UK	GR	IE	IT	LU	NL	PT	SE
AT	1	-39	. 80	-32	. 11	. 02	-.89	-. 62	30	-. 59	. 60	. 02	-. 26	. 84	-. 59
BE		1	-.65	-39	. 09	-39	. 15	- 30	-.32	. 62	-. 61	-39	-. 27	-. 48	. 62
DE			1	-. 07	44	-. 05	-.56	-35	. 06	-92	. 82	-. 05	13	93	-92
DK				1	. 22	85	. 28	. 56	58	-. 14	-. 28	. 85	. 86	-. 41	-. 14
Es					1	-. 03	-. 16	-37	-. 18	-.64	23	-. 03	. 53	. 30	-.64
FI						1	-. 13	. 30	. 86	-. 04	-. 29	1	. 56	-. 31	-. 04
FR							1	. 82	-. 29	. 47	-. 47	- 13	. 35	-.67	. 47
UK								1	21	. 34	-. 40	. 30	. 50	-. 57	. 34
GR									1	. 05	-.35	. 86	. 40	-. 16	. 05
IE										1	-.82	-. 04	-. 28	-. 81	1
IT											1	-29	-. 24	. 90	-.82
LU												1	. 56	-. 31	-. 04
NL													1	-. 25	-28
PT														1	-.81
SE															1

6. Hæmiltoni̊n structure (1)

Table 5 The EU-15 country clustering. The second column displays the eigenvector whose components are used for building the classification scheme. The groups into parentheses are the second-order clusters

INDICATOR	EVC	Clusters
Gross Domestic Product (GDP)	v_{2}	BEL-GBR-ITA-LUX
		AUT-DEU-DNK-FRA-PRT (ESP-FIN-NLD)
Final Consumption Expenditure	v_{2}	AUT-DEU
		(DNK-FIN-FRA-GRC-LUX)
Gross Capital Formation	ν_{2}	BEL-DNK-FIN-GBR-PRT
		ESP-FRA
Net Exports	v_{1}	AUT-DEU-ITA-PRT
		DNK-FRA-GBR-IRL-SWE
Consumer Price Index	ν_{1}	DEU-ITA-GRC-LUX
		FIN-FRA-IRL
Rate of Interest	ν_{2}	GBR-LUX-SWE
		All the others, except for GRC
Labour Force	v_{1}	AUT-BEL-ESP-GBR-LUX
		DEU-DNK-ITA-PRT
Unemployment	ν_{1}	AUT-DEU-FRA-GRC-ITA-SWE
		DNK-ESP-FIN-GBR-IRL-LUX-NLD
GDP/hour worked	v_{1}	DEU-FRA-LUX-PRT
		(ESP-GRC-SWE)
GDP/capita	v_{2}	BEL-DEU-FRA-GRC-ITA-LUX-SWE
		ESP-FIN-IRL-NLD-PRT
Gini Coefficient	v_{1}	AUT-BEL-DEU-DNK-GBR-LUX-NLD-SWE
		ESP-FRA-GRC-IRL-ITA-PRT

GDP \& FCE

GCF \& NEX

Hamiltonian structure (2)

$C^{2}>0.81$

- $H=(\operatorname{LUX})\left(s_{4}\right)+(\mathrm{NLD})\left(s_{2}\right)$
$+(\mathrm{AUT})\left(s_{2}, s_{3}\right)+(\mathrm{BEL})\left(s_{1}, s_{2}\right)+(\mathrm{DNK})\left(s_{1}, s_{3}\right)$
$+(\operatorname{ESP})\left(s_{2}, s_{3}\right)+($ FIN $)\left(s_{3}, s_{4}\right)+($ FRA $)\left(s_{1}, s_{3}\right)+(\operatorname{ITA})\left(s_{1}, s_{4}\right)$
$+(\operatorname{GBR})\left(s_{1}, s_{2}, s_{3}\right)+(\mathrm{DEU})\left(s_{1}, s_{2}, s_{4}\right)+(\operatorname{IRL})\left(s_{1}, s_{2}, s_{4}\right)$
$+(\mathrm{PRT})\left(s_{1}, s_{2}, s_{3}, s_{4}\right)+(\mathrm{SWE})\left(s_{1}, s_{2}, s_{3}, s_{4}\right)$.

Hamiltonian structure (3)

$$
\begin{aligned}
& H=\boldsymbol{A} \boldsymbol{U} \boldsymbol{T}\left(x_{1}, x_{2}, x_{3}, x_{4}, y_{2}, z_{1}, z_{2}, z_{3}, w_{1}, w_{2}\right)+\boldsymbol{B E L}\left(x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, z_{1}, z_{3}, w_{1}, w_{2}\right)+ \\
& \boldsymbol{D E U}\left(x_{1}, x_{2}, x_{4}, y_{1}, y_{2}, z_{1}, z_{2}, z_{3}, w_{1}, w_{2}\right)+\boldsymbol{D N K}\left(x_{1}, x_{3}, x_{4}, y_{2}, z_{1}, z_{2}, w_{1}, w_{2}\right)+ \\
& \boldsymbol{\operatorname { E S P }}\left(x_{2}, x_{3}, y_{2}, z_{1}, z_{2}, w_{1}, w_{2}\right)+\boldsymbol{F I N}\left(x_{3}, x_{4}, y_{1}, y_{2}, z_{2}, z_{3}, w_{1}, w_{2}\right)+ \\
& \boldsymbol{F R} \boldsymbol{A}\left(x_{1}, x_{3}, x_{4}, y_{1}, y_{2}, z_{2}, z_{3}, w_{1}, w_{2}\right)+\boldsymbol{G B R}\left(x_{1}, x_{2}, x_{3}, x_{4}, y_{1}, y_{2}, z_{1}, z_{2}, z_{3}, w_{1}, w_{2}\right)+ \\
& \boldsymbol{\operatorname { G R C }}\left(x_{4}, y_{1}, z_{2}, w_{1}, w_{2}\right)+\boldsymbol{\operatorname { I R L }}\left(x_{1}, x_{2}, x_{3}, x_{4}, y_{1}, y_{2}, z_{2}, w_{1}, w_{2}\right)+ \\
& \boldsymbol{I T A}\left(x_{1}, x_{4}, y_{1}, y_{2}, z_{1}, z_{2}, w_{1}, w_{2}\right)+\boldsymbol{L} \boldsymbol{U} \boldsymbol{X}\left(x_{1}, x_{4}, y_{1}, y_{2}, z_{1}, z_{2}, z_{3}, w_{1}, w_{2}\right)+ \\
& \boldsymbol{N L D}\left(x_{2}, x_{4}, y_{2}, z_{2}, w_{1}, w_{2}\right)+\boldsymbol{P R T}\left(x_{1}, x_{2}, x_{3}, x_{4}, y_{1}, y_{2}, z_{1}, z_{2}, z_{3}, w_{1}, w_{2}\right)+ \\
& \boldsymbol{S W E}\left(x_{1}, x_{2}, x_{3}, x_{4}, y_{1}, y_{2}, z_{2}, w_{1}, w_{2}\right)
\end{aligned}
$$

"thermodynamics" resulits

- Probability distribution :

$$
p_{\alpha}\left(s_{\alpha}\right)=\sum_{s \backslash s_{\alpha}} p(s)
$$

- Entropy :

$$
S_{\alpha}\left(s_{\alpha}\right)=-\sum_{s_{\alpha}} p_{a}\left(s_{\alpha}\right) \ln p_{a}\left(s_{\alpha}\right)
$$

	Function Nodes	Cluster	$\begin{gathered} \text { Number } \\ \text { of } \\ \text { links } \end{gathered}$	$\begin{gathered} \hline \text { Number } \\ \text { of } \\ \text { possible } \\ \text { links } \\ \hline \end{gathered}$	Probability	Entropy
	GDP-FCEGCF	AUT-BEL-DNK-ESP-FRA-GBR-NLD	14	28	0.500	0.347
	FCE-GCFNEX	$\begin{aligned} & \text { AUT-ESP-FIN-LUX- } \\ & \text { NLD } \end{aligned}$	8	20	0.400	0.367
	GDP-FCENEX	BEL-DEU-IRL-ITA-LUX-NLD	12	24	0.500	0.347
	GDP-GCF- NEX	DNK-FIN-FRA-ITALUX	9	20	0.450	0.359

"Partial Conclusion"

- Network construction
- Distance filtering method
- "Correlation measure"
- Statistical physics
- Entropy criterion for (evolving) clusters
- Maximum : no GDP
- Minimum : necessarily GDP and FCE
\square Relations between macro-economic indicators

Network characteristics (5)

Sensitivity degree

EU25
(94-03)

$$
\left(\chi_{i}\right)_{\alpha}=\sum_{\substack{i, j=1 \\ i=j}}^{N}\left(\hat{C}_{i j}\right)^{2}
$$

$$
(T=5)
$$

- "Hierarchy"
- Gross Domestic Product (GDP)
- Final Consumption Expenditure (FCE)
- Gross Capital Formation (GCF)

GDP		FCE		GCF		NEX	
DK	9.08	BE	8.34	AT	4.99	PT	5.23
PT	8.71	IE	8.34	SE	4.69	DE	4.92
DE	8.68	ES	8.32	ES	4.66	IE	4.76
SE	8.47	NL	8.32	FR	4.66	SE	4.76
IE	8.26	PT	8.32	BE	4.58	IT	4.41
BE	8.25	SE	8.32	DK	4.18	AT	3.99
FR	8.21	UK	8.14	FI	4.09	DK	3.50
AT	7.60	DE	7.42	IE	3.04	FR	3.24
UK	7.59	AT	7.15	PT	2.89	FI	3.23
IT	5.68	FR	3.07	DE	2.85	LU	3.23
GR	5.64	FI	3.06	IT	2.70	UK	2.91
LU	5.40	LU	1.81	UK	2.68	BE	2.71
NL	3.25	DK	1.61	GR	2.63	NL	2.63
ES	2.97	GR	1.60	LU	2.39	GR	2.49
FI	2.68	IT	1.13	NL	2.31	ES	1.69

- Net Exports (NEX)

7. Conclusions

- Beyond bipartite graphs : (very) complex networks
- (New?) "hamiltonian" / "thermodynamic" method
- To search for Clusters
- To present a Hierarchy
- Economic conclusions/interpretations
- Flexibility
- Movement correlations
- Globalization
- Models
- Control \& Forecasting

$$
\begin{gathered}
\text { This should ullow to slisecuss leuders } \\
\text { \& followers, loosely or highly } \\
\text { connected countries. }
\end{gathered}
$$

and

prepare some modeling with dynamics:
country = heterogeneous agent
characterized by
Spins or Bits or Pins or Tags

Let me

- thank Dr. Peter Denteneer for the invitation
- thank you ALL for your attention ...
any comment?

Doel \#?

PCC : For ONE MEI ... Network
CPCC : For 4 (.. 11) MEI ... Networks AOI

Double threshold attrition
Distance evolutions
PCC
CPCC

Main Points summary/review:

- Data : GDP as a macroeconomy index
- Analysis on increment (fluctuation) correlations is performed for different time windows (does it exist an optimal one?)
- Mathernatical - statistical approach ("distances")
- => Weighted networks $w_{i j}(t, T)$
- Results displayed as a function of time through different clustering techniques
- Adjacency matrix (eigenvalues, eigenvectors)
- Overlapping/hierarchy coefficient
- Percolation approach (with level-criterion)
- Two possible attrition processes
- Networks/clusters of countries are observed

N.B.

- The system is represented by a network, nodes being the countries; links are « weights » (or GDP fluctuations).
- In order to extract structures from the network, we average the time correlations in different windows.
- => « average degree», etc ...
- The matrix-based method reveals the emergence of a number of «common factors ", through the main eigenvectors (Kaiser criterion and Cattel scree test).
- This leads to a Hamiltonian-like formulation and can be developped into statistical thermodynamics ideas

N.B. btw

- Such a measure of « collective habits » does fit the usual expectations defined by politicians or economists, - «common factors».
- It reveals geographical and political connexions.
- It reveals ... «statistical distances».
- We have introduced the country «overlapping hierarchy coefficient».

Ex.

FRANCE, GDP by Sector of Origin in Current Prices
Millions Francs
Millions Francs

	ID	1815	1816	1817	1818	1819	1820	1821
AGRICULTURE, HUNTING, FORESTRY AND FISHING	A; B							
AGRICULTURE, HUNTING AND FORESTRY	A							
FISHING	B							
TOTAL INDUSTRY	C: D; E: F	2710	3007	3097	3412	3110	3252	3379
MINING AND QUARRYING	C							
MANUFACTURING	D							
ELECTRICITY, GAS AND WATER SUPPLY	E							
CONSTRUCTION	F							
WHOLESALE AND RETAIL TRADE; HOTELS AND RES	G; H							
TRADE	G	509	644	792	708	650	662	688
HOTELS AND RESTAURANTS	H							
TRANSPORT, STORAGE AND COMMUNICATIONS	1							
FINANCIAL INTERMEDIATION; REAL ESTATE, RENTII	J; K							
FINANCIAL INTERMEDIATION	J							
REAL ESTATE, RENTING AND BUSINESS ACTIVITIE	K							
COMMUNITY, SOCIAL AND PERSONAL SERVICES	P; MISCs							
PUBLIC ADMINISTRATION AND DEFENCE: COMPU	L							
EdUCATION	M							
HEALTH AND SOCIAL WORK	N							
OTHER COMMUNITY, SOCIAL AND PERSONAL SEF	0	82	103	126	112	102	103	107
PRIVATE HOUSEHOLDS WITH EMPLOYED PERSOI	P	177	182	186	191	195	200	205
EXTRA-TERRITORIAL ORGANIZATION AND BODIE:	Q							
total value added	tVA							
NET INDIRECT TAXES	ITAX							
TOTAL GDP	GDP	7378	8895	10594	9554	8866	8966	9268
	ID	1815	1816	1817	1818	1819	1820	1821
AGRICULTURE, HUNTING, FORESTRY AND FISHING	A; B							
AGRICULTURE, HUNTING AND FORESTRY	A							
Agriculture	1	2752	3839	5268	4053	3715	3637	3764
Forestry	2							
FISHING	B							

Should we expect a "grand theory"?

Consider Tocqueville's ''warning'’...

I hate...these absolute systems which make all the events in history depend on primary causes, linking one to another by an inevitable chain, and which, so to speak, take out people from the general history of mankind. I find them narrow in their pretended grandeur, and false under their guise of mathematical truths. I believe, whatever the view of the writers who have invented these sublime theories to nourish their own vanity and to facilitate their work, that many of the important historical facts cannot be explained but by the accidental circumstances, and that many others remain inexplicable. And that finally, chance, or rather that mixing of the secondary causes, which we thus call, since we do not know how to tell them apart, explain a lot of what we see on the world stage. But I strongly believe that chance does not do anything which is not prepared in advance. The existing reality, nature of the institutions, state of mind of people, customs, are the raw materials with which chance constructs the facts which surprise and awe us.

App. 1 Theill index

Theil index:

$$
T h_{A}(t, T)=\frac{1}{T} \sum_{i=t}^{t+T}\left(\frac{A(i)}{\langle A\rangle_{(t, T)}} \ln \frac{A(i)}{\langle A\rangle_{(t, T)}}\right)
$$

Manhattan distance:

$$
d_{l e}(A, B)_{\left(t, T_{1}, T_{2}\right)}=\left|\left\langle T h_{A}\left(t, T_{1}\right)-T h_{B}\left(t, T_{1}\right)\right\rangle_{\left(t, T_{2}\right)}\right|
$$

Henri Theil

- 13 October 1924 in Amsterdam, died 2000

- a Dutch econometrician
- graduated from the University of Amsterdam
- succeeded to Jan Tinbergen at the Erasmus University Rotterdam
- later in Chicago and at the University of Florida.

Gini and Theil Index

- In Gini terms:

$$
\sum_{i=1}^{n} G_{i} p_{i} \pi_{i}+\frac{1}{\mu} \sum_{i}^{n} \sum_{j>i}^{n}\left(y_{j}-y_{i}\right) p_{i} p_{j}+L
$$

where $G_{i}=$ individual country Gini coeff., $\pi_{\mathrm{i}}=$ income share, $y_{i}=$ country income, $\mathrm{p}_{i}=$ popul. share,
$\mu=$ overall mean income, $n=$ number of countries

- In Theil:

$$
\sum_{i=1}^{n} p_{i} T i+\sum_{i=1}^{n} p_{i} \ln \frac{\mu}{y_{i}}
$$

1 UMLP

2 BMLP

3 LMST

$«$ hot» : large $T_{1} \&$ small T_{2}
$«$ cold» : large $T_{2} \&$ small T_{1}

7,8,9,10 : UMLLP

$\mathrm{T}_{1}=10 \mathrm{yrs}, \mathrm{T}_{2}=10 \mathrm{yrs}$

$\mathrm{T}_{1}=10 \mathrm{yrs}, \mathrm{T}_{2}=5 \mathrm{yrs}$

tau $=0 \mathrm{yrs} \quad, \quad$ tau=6 yrs tau= $4 \mathrm{yrs} \quad+\quad \begin{array}{r}\text { tau= } \\ \text { tau } \\ \text { yrs } \\ \mathrm{yrs}\end{array}$

$$
\mathrm{T}_{1}=15 \mathrm{yrs}, \mathrm{~T}_{2}=15 \mathrm{yrs}
$$

11,12,13,14 : BMLP

15,16,17,18 : LMST

$$
\begin{aligned}
& \begin{aligned}
& \text { tau }=0 \mathrm{yrs} \\
& \text { tau } 2 \mathrm{yrs} \quad . \quad \begin{array}{l}
\text { tau }=6 \mathrm{yrs} \\
\text { tau }=8 \mathrm{yrs}
\end{array}
\end{aligned} \\
& \text { tau=4 yrs * tau=10 yrs }
\end{aligned}
$$

tau=0 yrs - tau=6 yrs tau $=2 \mathrm{yrs} \quad * \quad \begin{array}{r}\text { tau }=8 \\ \text { yrs } \\ \text { tau }=4 \\ \mathrm{yrs}\end{array} \quad * \quad$ yrs
$\mathrm{T}_{1}=15 \mathrm{yrs}, \mathrm{T}_{2}=15 \mathrm{yrs}$

9,13,17 : mean (10,10) U,B,L

9,13,17 : sttll (10,10) U,B,B

$10,14,18$: mean $(15,15)$ U,B,L

$\begin{aligned} \text { tau } & =0 \mathrm{yrs} \quad: \quad \text { tau=6 } \mathrm{yrs} \\ \text { tau } & =2 \mathrm{yrs} \quad, \quad \text { tau }=8 \mathrm{yrs}\end{aligned}$ tau=4 yrs \quad tau= 10 yrs

Summary 1-3 : mean U,B,L

FIG. 1: Mean distance between countries in the case of the Theil distance and UMLP network. The distance is averaged over the network links and the time. The size of T_{1} and T_{2} are presented on the vertical and horizontal axis respectively. From left to right the three figures correspond to a di erent time lag value: $=0 y r s,=5 y r s$ and $=10 y r s$

FIG. 2: Mean distance between countries in the case of the Theil distance and BMLP network. The distance is averaged over the network links and the time. The size of T_{1} and T_{2} are presented on the vertical and horizontal axis respectively. From left to right the three figures correspond to a di erent time lag value: $=0 y r s,=5 y r s$ and $=10 y r s$.

FIG. 3: Mean distance between countries in the case of the Theil distance and LMST network. The distance is averaged over the network links and the time. The size of T_{1} and T_{2} are presented on the vertical and horizontal axis respectively. From left to right the three figures correspond to a di erent time lag value: $=0 y r s,=5 y r s$ and $=10 y r s$

Distance statistics

n-n : number of networks

Networks (3)

- 3 types
- Link number : $M=20+1$
- in the analysis both time windows are used simultanousely
- Theil mapping, T_{1} and Correlation, T_{2}
- the « official» size of the time window in which data is analyzed is equal to the sum of the Theil mapping and Correlation time windows
- ... the number of generated networks is equal to the time series length (54) minus the total time window size $\left(T_{1}+T_{2}+\tau\right)$
- (... mulitplied by the number of time lags τ !)

"Partial Conclusion"

(Theil index) Distance correlations

- Mean distance between countries (and std) : the largest for UMLP network and the smallest for LMST network
- For large time lag : the mean distance increases
- The position where (as a function of Theil mapping and correlation window size) the maximum occurs shifts
- With increased time lag: the Theil mapping and correlation window size at which the maximum mean is found is decreasing
- This maximum mean distance is observed for large Theil time window size and short correlation time windows
- The smallest value of the mean distance is found for the opposite combination of the window parameters

App. 2 PCA

- See decrease of EV1
- and increase of other EVs.
- Related to change in shape of CDF.
- Suggests change in number of "common factors" (*) in dynamics of GDP.
(*) : economic, social, political, ...

Top six eigenvalues

EU25
like
fractional
contribution
to total
variance
1/25
Kaiser criterion

Cluster structure (1)

EU25

Cluster structure (2)

Cluster structure (3)

EU25

Scandinavian

Cluster structure (4)

EU25

Central-Eastern

Cluster structure (5)

EU25

Cluster structure (5)

Fisher-z

$$
C_{i j}^{(z)}(T)=\sigma<z_{i j}>+\mu
$$

Table 1 The first 10 eigenvalues of the correlation matrices constructed by averaging the coefficients of determination (the first row) and Fisher z-values (the second row)

Eval $\left[C_{q}^{\left(d^{\prime}\right)}\right]$	$\mathbf{1 5 . 1 3 2}$	2.255	1.159	1.077	0.912	0.719	0.663	0.603	0.505	0.428
Eval $\left[C_{\psi}^{(x)}\right]$	$\mathbf{1 0 . 0 2 9}$	$\mathbf{3 . 8 1 3}$	2.365	2.040	1.412	1.206	0.976	0.860	0.676	0.397

$$
\begin{aligned}
z_{i j}=\frac{C_{i j}-\mu}{\sigma} & \\
& <z_{i j}>=\frac{1}{\nu} \sum_{i=1}^{k+T} z_{i}(t)
\end{aligned}
$$

Modlel (1)

In a network composed of N nodes with directed links. Initially, a fraction of the nodes are activated. A node becomes activated at a time step if all the nodes whose links arrive at him were activated.

Model (5)

Local leadership

Global leaders are certainly important nodes in a network (extreme statistics), but, at the local level, one expects that local leaders may have an important role Local leaders= nodes whose degree is larger or equal to the degree of all of their neighbours

Probability for a node of degree k to be a leader:

$$
Z_{k} \rightarrow \begin{cases}1 & \text { for } \gamma>3 \\ e^{-1 /<k>} & \text { for } \gamma=3 \\ 0 & \text { for } \gamma<3\end{cases}
$$

$$
n_{k} \approx k^{-\gamma}
$$

