Write NAME, INITIALS and STUDENT NUMBER on every sheet you hand in. Start each problem on a new page. The problems below can earn you the following number of grade points: (1) 20, (2) 20, (3) 30, (4) 20.

1) Consider a spin $\frac{1}{2}$ object and define $\hat{\sigma}_{\alpha} \equiv \cos \alpha \hat{\sigma}_{x}+\sin \alpha \hat{\sigma}_{y}$. We study a physical system in a mixture state, constructed from the $\hat{\sigma}_{z}$-eigenstate $\left|\sigma_{z}=-1\right\rangle$ and the $\hat{\sigma}_{\alpha}$-eigenstate $\left|\sigma_{\alpha}=1\right\rangle$ with weights $\frac{1}{4}$ and $\frac{3}{4}$, respectively.
(a) Write down the state operator $\hat{\rho}$ that describes the mixture.
(b) Show that:

$$
\hat{\rho}=\frac{1}{2} \hat{1}-\frac{1}{8}\left(\hat{\sigma}_{z}-3 \hat{\sigma}_{\alpha}\right)
$$

(c) Write down the matrix $\rho_{\sigma, \sigma^{\prime}}$ in the σ_{z}-representation. Show explicitly using this matrix that the state operator indeed describes a mixture?
(d) Compute the expectation values $\left\langle\sigma_{x}\right\rangle,\left\langle\sigma_{y}\right\rangle,\left\langle\sigma_{z}\right\rangle$ and $\left\langle\sigma_{\alpha}\right\rangle$ in the mixture state.
2) Consider a harmonic oscillator with Hamiltonian \hat{H} :

$$
\begin{gathered}
\hat{H}=\frac{1}{2}\left(\hat{P}^{2}+\hat{Q}^{2}\right) \hbar \omega=\left(\hat{N}+\frac{1}{2}\right) \hbar \omega, \\
\hat{N} \equiv \hat{a}^{\dagger} \hat{a} \quad, \quad \hat{a} \equiv \frac{1}{\sqrt{2}}(\hat{Q}+i \hat{P})
\end{gathered}
$$

The commutator of position operator \hat{Q} and momentum operator \hat{P} is given by: $[\hat{Q}, \hat{P}]=i \hat{1}$. Let $|n\rangle$ denote the orthonormal set of eigenstates of $\hat{N}: \hat{N}|n\rangle=n|n\rangle$ $(n=0,1,2, \ldots)$. The operation of the lowering operator \hat{a} on these states is given by: $\hat{a}|n\rangle=\sqrt{n}|n-1\rangle$.
(a) Let $|q\rangle$ denote the eigenstates of the position operator \hat{Q} (with real eigenvalues $q \in(-\infty, \infty))$. The wave function of state $|n\rangle$ in the position representation is then given by: $\varphi_{n}(q)=\langle q \mid n\rangle$. Write down the relation between the states $|q\rangle$ and the states $|n\rangle$ in terms of the wave function $\varphi_{n}(q)$.
(b) Let $|\chi(t)\rangle$ denote a (time-dependent) state vector, which at time $t=0$ is given in terms of two eigenstates of $\hat{N}:|\chi(0)\rangle=\frac{1}{\sqrt{2}}(|2\rangle+i|3\rangle)$. Calculate $|\chi(t)\rangle$.
(c) Calculate the expectation value in state $|\chi(t)\rangle$ of the operator \hat{P}.
(d) Calculate the dispersion $\Delta_{\chi} P$.
3) As an application of the Second Quantization formalism we study the following electron-phonon Hamiltonian for electrons in a crystal interacting with phonons, i.e. lattice vibrations:

$$
\begin{gathered}
H=H_{0}+H_{1}, \\
H_{0}=\sum_{\vec{q}} \hbar \omega_{\vec{q}} \hat{b}_{\vec{q}}^{\dagger} \hat{b}_{\vec{q}}+\sum_{\vec{k}} \varepsilon_{\vec{k}} \hat{a}_{\vec{k}}^{\dagger} \hat{a}_{\vec{k}}, \\
H_{1}=\sum_{\vec{k}, \vec{q}} M_{\vec{q}} \hat{a}_{\vec{k}+\vec{q}}^{\dagger} \hat{a}_{\vec{k}}\left(\hat{b}_{\vec{q}}+\hat{b}_{-\vec{q}}^{\dagger}\right),
\end{gathered}
$$

where H_{0} contains parts for independent harmonic oscillators (describing the phonons; wave vectors \vec{q}, frequencies $\omega_{\vec{q}}$, creation operators $\hat{b}_{\vec{q}}^{\dagger}$) and independent electrons (wave vectors \vec{k}, energies $\varepsilon_{\vec{k}}$, creation operators $\hat{a}_{\vec{k}}^{\dagger}$). H_{1} is the interaction term with $M_{\vec{q}}$ the electron-phonon coupling, which we assume to be weak; the interaction term can therefore be seen as a perturbation. Note that the spin-index is suppressed for the electrons, i.e. we don't write it, although we keep in mind that electrons do have spin; for our convenience this convention is maintained in the following.
(a) Give the fundamental algebraic relations for the phonon operators $\hat{b}_{\vec{q}}$ and $\hat{b}_{\vec{q}}^{\dagger}$, and for the electron operators $\hat{a}_{\vec{k}}$ and $\hat{a}_{\vec{k}}^{\dagger}$.
(b) To gain insight in the effect of the phonons on the electrons in a crystal, one may perform a similarity transformation:

$$
\tilde{H}=e^{-S} H e^{S}
$$

with e^{S} an unitary transformation. Show that if we can find S such that:

$$
H_{1}+\left[H_{0}, S\right]=0
$$

and take it that S is of the same order as H_{1}, then the transformed Hamiltonian \tilde{H} can be written as H_{0} plus terms that are second order or higher in the perturbation. Compute the second order term. Note that you don't need the explicit forms of H_{0} and H_{1} for this part.
(c) We propose that S can be of the form:

$$
S=\sum_{\vec{k}, \vec{q}}\left(A \hat{b}_{-\vec{q}}^{\dagger}+B \hat{b}_{\vec{q}}\right) M_{\vec{q}} \hat{a}_{\vec{k}+\vec{q}}^{\dagger} \hat{a}_{\vec{k}} .
$$

Compute A and B such that the condition in (b) is fulfilled.
(d) Write down the result for S and give an interpretation of the denominators in the coefficients A and B.
(e) Show that the second order term in \tilde{H}, which is proportional to $\left|M_{\vec{q}}\right|^{2}$, will have terms where the operator part is of the form:

$$
\hat{a}_{\vec{k}+\vec{q}}^{\dagger} \hat{a}_{\vec{k}} \hat{a}_{\overrightarrow{k^{\prime}-\vec{q}}}^{\dagger} \hat{a}_{\overrightarrow{k^{\prime}}}
$$

(f) Compute the pre-factors of the terms treated under (e), assuming $\omega_{\vec{q}}=\omega_{-\vec{q}}$. From this result, what can you say about the effect of phonons on the electrons in a crystal?
4) We consider a particle with mass m in one spatial dimension on which no forces act. The Lagrangian L is then given by:

$$
L(\dot{x}, x)=\frac{1}{2} m \dot{x}^{2},
$$

where x denotes position and the dot above x means differentiation with respect to time. The action $\mathcal{S}[x(t)]$ in terms of the Lagrangian is generally given by:

$$
\mathcal{S}[x(t)]=\int_{t_{A}}^{t_{B}} \mathrm{~d} t L(\dot{x}, x) .
$$

Therefore the classical action $\mathcal{S}_{\mathrm{cl}}$ for such a particle that at time t_{A} is at position x_{A} and at (later) time t_{B} at position x_{B} is given by:

$$
\mathcal{S}_{\mathrm{cl}}=\frac{m\left(x_{B}-x_{A}\right)^{2}}{2\left(t_{B}-t_{A}\right)}
$$

Using the above result the quantummechanical propagator for a free particle can be derived through a path integral. The propagator is given by:

$$
<x_{B}, t_{B} \mid x_{A}, t_{A}>=\int_{x_{A}}^{x_{B}} \mathfrak{D}[x(t)] e^{i S[x(t)] / \hbar} .
$$

To calculate the path integral we first split up the integration path $x(t)$ in the classical path $\bar{x}(t)$ and a deviation $y(t): x(t)=\bar{x}(t)+y(t)$.
(a) Show that the propagator can be written as:

$$
<x_{B}, t_{B} \mid x_{A}, t_{A}>=e^{\frac{i}{\hbar} \mathcal{S}_{\mathrm{cl}}} \int_{0}^{0} \mathfrak{D}[y(t)] \exp \left\{\frac{i}{\hbar} \int_{t_{A}}^{t_{B}} \mathrm{~d} t L(\dot{y}, y)\right\} .
$$

To evaluate the path integral over $y(t)$ the interval $\left[t_{A}, t_{B}\right]$ is split up in N small intervals Δt. We remind the reader that for general L the action can then be written as (identify x_{A} with x_{0} and x_{B} with x_{N}):

$$
\mathcal{S}[x(t)]=\lim _{N \rightarrow \infty, \Delta t \rightarrow 0} \Delta t \sum_{j=1}^{N}\left[\frac{m}{2}\left(\frac{x_{j}-x_{j-1}}{\Delta t}\right)^{2}-V\left(x_{j-1}\right)\right] .
$$

Also remember that the measure for path integration is defined as:

$$
\int_{x_{A}}^{x_{B}} \mathfrak{D}[x(t)]=\lim _{N \rightarrow \infty} \int_{-\infty}^{+\infty} \mathrm{d} x_{1} \cdots \int_{-\infty}^{+\infty} \mathrm{d} x_{N-1}\left(\frac{m}{2 \pi i \hbar \Delta t}\right)^{\frac{N}{2}}
$$

(b) Evaluate the path integral and write down the full expression for the propagator of a free particle in terms of x_{A}, x_{B}, t_{A}, and t_{B}. You will probably need the following identity:

$$
\int_{-\infty}^{+\infty} \mathrm{d} x_{1} \cdots \int_{-\infty}^{+\infty} \mathrm{d} x_{N-1} \exp \left\{i \sum_{j=1}^{N}\left(x_{j}-x_{j-1}\right)^{2}\right\}=\left(\frac{(i \pi)^{N-1}}{N}\right)^{\frac{1}{2}} e^{i\left(x_{N}-x_{0}\right)^{2} / N}
$$

(c) Give an analysis of how the (properly generalized) result of (b) can be used to describe the double-slit interference experiment. Use a set-up in which the particle source is at the origin \mathcal{O}, the two slits are at $x=L$ and heights $z= \pm z_{0}$, and the screen on which the interference pattern is detected is at $x=2 L$. Your analysis should include an expression involving free-particle propagators for the probability to detect a particle on the screen at arbitrary height z (calculation of this expression is not required).

