Write NAME, INITIALS and STUDENT NUMBER on every sheet you hand in. Start each new problem on a new page.
All problems count for the same number of points (20) in the grading.

1) Consider a harmonic oscillator: $\left[\hat{a}, \hat{a}^{\dagger}\right]=\hat{1}, \hat{n} \equiv \hat{a}^{\dagger} \hat{a}, \hat{n}$-basis $\{|n\rangle\}$ with $n=$ $0,1,2, \ldots, \quad \hat{a}|n\rangle=\sqrt{n}|n-1\rangle, \quad \hat{a}^{\dagger}|n\rangle=\sqrt{n+1}|n+1\rangle$. An ensemble of such oscillators happens to be characterised by the following state (or: density) operator:

$$
\hat{\rho}=\frac{1}{2}|2\rangle\langle 2|-\frac{i}{2}|2\rangle\langle 3|+\frac{i}{2}|3\rangle\langle 2|+\frac{1}{2}|3\rangle\langle 3|
$$

(a) Determine the state (or: density) matrix in the n-representation, $\rho_{n n^{\prime}}$.
(b) Does the given state operator describe a quantum system in a pure state or does it describe a mixture? Give an argument for your answer.
(c) In case the state operator is $\hat{\rho}$, determine the following expectation values (or: ensemble averages): $\langle a\rangle,\left\langle a^{\dagger}\right\rangle$ and $\langle n\rangle$.
2) Consider a spin $\frac{1}{2}$ object. Let the Hamilton operator be: $\hat{H}=-\hbar \omega \hat{\sigma}_{y}$. The normalised eigenstates of $\hat{\sigma}_{y}$ can be used as a basis and are given by:

$$
|+, y\rangle=\frac{1}{\sqrt{2}}(|+\rangle+i|-\rangle) \quad \text { and } \quad|-, y\rangle=\frac{1}{\sqrt{2}}(i|+\rangle+|-\rangle),
$$

in terms of the eigenstates $|+\rangle$ and $|-\rangle$ of $\hat{\sigma}_{z}$.
(a) Determine the matrix corresponding to $\hat{\sigma}_{z}$ in the σ_{y}-representation (i.e. in the basis of eigenstates of $\hat{\sigma}_{y}$).
(b) Argue that the (unitary) matrix U that transforms a general state vector in the σ_{z}-representation into the corresponding state vector in the σ_{y}-representation is given by:

$$
U=\frac{1}{\sqrt{2}}\left(\begin{array}{rr}
1 & -i \\
-i & 1
\end{array}\right)
$$

Now, the state vector in the σ_{z}-representation at $t=0$ is: $\chi(t=0)=\binom{\cos \gamma}{\sin \gamma}$. Call the state vector in de $\sigma_{y}-$ representation:

$$
\eta(t)=\binom{e(t)}{f(t)}
$$

(c) Determine $\eta(t=0)$ and solve the Schrödinger-equation $i \hbar \frac{\partial}{\partial t} \eta(t)=\hat{H} \eta(t)$ in the $\sigma_{y}-$ representation.
(d) Using the results derived in (a) and (c), show that the expectation value of $\hat{\sigma}_{z}$ at time t is given by:

$$
\left\langle\sigma_{z}\right\rangle(t)=\cos (2 \omega t-2 \gamma)
$$

3) Consider a single species of bosons with annihilation- and creation operators \hat{a} and \hat{a}^{\dagger}, respectively. The Hamilton operator for this quantum many-body system is:

$$
\begin{equation*}
\hat{H}=\omega\left(\hat{a}^{\dagger} \hat{a}+\frac{1}{2}\right)+\frac{1}{2} \Delta\left(\hat{a}^{\dagger} \hat{a}^{\dagger}+\hat{a} \hat{a}\right) . \tag{1}
\end{equation*}
$$

We take $\hbar=1$ throughout this problem. The following transformation is useful to gain insight into the properties of this quantum system:

$$
\begin{align*}
\hat{b} & =\lambda \hat{a}+\mu \hat{a}^{\dagger} \tag{2a}\\
\hat{b}^{\dagger} & =\lambda^{*} \hat{a}^{\dagger}+\mu^{*} \hat{a} \tag{2b}
\end{align*}
$$

where λ and μ are complex numbers.
(a) Show that the transformation (2) preserves the canonical commutation relations provided $|\lambda|^{2}-|\mu|^{2}=1$.
(b) Assuming λ and μ to be real and using the result of (a), show that transformation (2) brings the Hamiltonian (1) into the form:

$$
\begin{equation*}
\hat{H}=\tilde{\omega}\left(\hat{b}^{\dagger} \hat{b}+\frac{1}{2}\right) . \tag{3}
\end{equation*}
$$

Provide expressions for $\tilde{\omega}, \lambda^{2}$, and μ^{2} in terms of ω and Δ.
(c) If the bosons characterized by \hat{a} and \hat{a}^{\dagger} are considered as excitations of a harmonic oscillator, the connection with the (Hermitian) operators for position and momentum of the oscillator, \hat{x} and \hat{p}, is given by:

$$
\begin{equation*}
\hat{a}=\frac{1}{\sqrt{2}}\left(\sqrt{m \omega} \hat{x}+\frac{i \hat{p}}{\sqrt{m \omega}}\right) \tag{4}
\end{equation*}
$$

Express the Hamiltonian in terms of \hat{x} and \hat{p} for the special case $\Delta=\omega$. How would you interpret this result physically?
4) Consider a many-body system corresponding to N-particle systems consisting of N identical spin- $\frac{1}{2}$ particles with Hamilton operator:

$$
\hat{H}_{N}=\sum_{i=1}^{N} \hat{h}^{(i)} \quad, \quad \hat{h}=\frac{\hat{\vec{p}}^{2}}{2 m}+B \hat{\sigma}_{x} .
$$

Use the discrete $\vec{k} \sigma$-representation $\left(\hat{\vec{p}}|\vec{k} \sigma\rangle=\hbar \vec{k}|\vec{k} \sigma\rangle, \hat{\sigma}_{z}|\vec{k} \sigma\rangle=\sigma|\vec{k} \sigma\rangle\right.$, $\sigma=+1,-1)$.
(a) Give the fundamental algebraic relations of the annihilation- and creationoperators $\hat{a}_{\vec{k} \sigma}$ and $\hat{a}_{\vec{k} \sigma}^{\dagger}$.
(b) Show that the many-body energy operator \hat{H} in the $\vec{k} \sigma$-representation is of the following form and determine f, g_{+}and g_{-}:

$$
\hat{H}=\sum_{\vec{k} \sigma} f \hat{a}_{\vec{k} \sigma}^{\dagger} \hat{a}_{\vec{k} \sigma}+\sum_{\vec{k}}\left(g_{+} \hat{a}_{\vec{k}, 1}^{\dagger} \hat{a}_{\vec{k},-1}+g_{-} \hat{a}_{\vec{k},-1}^{\dagger} \hat{a}_{\vec{k}, 1}\right) .
$$

(c) Compute $\left[\hat{H}, \hat{a}_{\vec{k} \sigma}\right]$.
(d) Calculate the Heisenberg-picture operator $\hat{c}_{\vec{k}}(t)$ with $\hat{c}_{\vec{k}} \equiv \hat{a}_{\vec{k}, 1}+\hat{a}_{\vec{k},-1}$.
5) In classical mechanics a harmonic oscillator with mass m and (angular) frequency ω in one spatial dimension is given by the following Lagrangian L (the dot above x means differentiation with respect to time):

$$
L(\dot{x}, x)=\frac{1}{2} m \dot{x}^{2}-\frac{1}{2} m \omega^{2} x^{2} .
$$

The equation of motion follows from the Euler-Lagrange equation:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \frac{\partial L}{\partial \dot{x}}-\frac{\partial L}{\partial x}=0
$$

The action \mathcal{S} for the path $x(t)$ is given by:

$$
\mathcal{S}[x(t)]=\int \mathrm{d} t L(\dot{x}, x)
$$

where the integral runs from begin- to end-time of the path.
(a) Calculate the action $\mathcal{S}_{\mathrm{cl}}$ for the classical path of the harmonic oscillator that starts at time $t=0$ at position y and ends at time t^{\prime} with velocity equal to: $-y \omega \sin \left(\omega t^{\prime}\right)$.
(b) The quantummechanical propagator for a harmonic oscillator that at time t_{0} has position x_{0} and at time t^{\prime} has position x^{\prime} is given by:

$$
<x^{\prime}, t^{\prime}\left|x_{0}, t_{0}\right\rangle=\left\langle x^{\prime}\right| e^{-i \hat{H}\left(t^{\prime}-t_{0}\right) / \hbar}\left|x_{0}\right\rangle
$$

where the Hamiltonian is given by:

$$
\hat{H}=\frac{\hat{p}_{x}^{2}}{2 m}+\frac{1}{2} m \omega^{2} \hat{x}^{2} .
$$

Show that the propagator for the harmonic oscillator with position x at $t=0$ and position x^{\prime} a short time interval Δt later is of the following form and determine the function $T\left(p, x, x^{\prime}\right)$:

$$
\left\langle x^{\prime}\right| e^{-i \hat{H} \Delta t / \hbar}|x\rangle=\frac{1}{2 \pi \hbar} \int_{-\infty}^{\infty} \mathrm{d} p \exp \left\{i T\left(p, x, x^{\prime}\right) \Delta t / \hbar\right\}+\mathcal{O}(\Delta t)^{2}
$$

If necessary, use that the scalar product of eigenstates of \hat{x} en \hat{p}_{x} is given by:

$$
\langle x \mid p\rangle=\frac{1}{\sqrt{2 \pi \hbar}} e^{i p x / \hbar}
$$

