EXAM QUANTUM THEORY

(Course Dr. P.J.H. Denteneer, Fall 2006)

January 18, 2007 14.00 - 17.00h

Write NAME, INITIALS and STUDENT NUMBER on every sheet you hand in. Start each new problem on a new page.

All problems count for the same number of points (20) in the grading.

1) Consider a harmonic oscillator: $[\hat{a}, \hat{a}^{\dagger}] = \hat{1}$, $\hat{n} \equiv \hat{a}^{\dagger}\hat{a}$, \hat{n} -basis $\{|n\rangle\}$ with $n = 0, 1, 2, ..., \hat{a}|n\rangle = \sqrt{n} |n-1\rangle$, $\hat{a}^{\dagger}|n\rangle = \sqrt{n+1} |n+1\rangle$. An ensemble of such oscillators happens to be characterised by the following state (or: density) operator:

$$\hat{\rho} = \frac{1}{2} |2\rangle \langle 2| - \frac{i}{2} |2\rangle \langle 3| + \frac{i}{2} |3\rangle \langle 2| + \frac{1}{2} |3\rangle \langle 3|$$

- (a) Determine the state (or: density) matrix in the *n*-representation, $\rho_{nn'}$.
- (b) Does the given state operator describe a quantum system in a *pure state* or does it describe a *mixture*? Give an argument for your answer.
- (c) In case the state operator is $\hat{\rho}$, determine the following expectation values (or: ensemble averages): $\langle a \rangle$, $\langle a^{\dagger} \rangle$ and $\langle n \rangle$.
- 2) Consider a spin $\frac{1}{2}$ object. Let the Hamilton operator be: $\hat{H} = -\hbar\omega\hat{\sigma}_y$. The normalised eigenstates of $\hat{\sigma}_y$ can be used as a basis and are given by:

$$|+,y\rangle = \frac{1}{\sqrt{2}} \left(|+\rangle + i \left|-\rangle\right)$$
 and $|-,y\rangle = \frac{1}{\sqrt{2}} \left(i \left|+\rangle + \left|-\rangle\right)\right)$,

in terms of the eigenstates $|+\rangle$ and $|-\rangle$ of $\hat{\sigma}_z$.

- (a) Determine the matrix corresponding to $\hat{\sigma}_z$ in the σ_y -representation (i.e. in the basis of eigenstates of $\hat{\sigma}_y$).
- (b) Argue that the (unitary) matrix U that transforms a general state vector in the σ_z -representation into the corresponding state vector in the σ_y -representation is given by:

$$U = \frac{1}{\sqrt{2}} \left(\begin{array}{cc} 1 & -i \\ -i & 1 \end{array} \right) \; .$$

Now, the state vector in the σ_z -representation at t = 0 is: $\chi(t = 0) = \begin{pmatrix} \cos \gamma \\ \sin \gamma \end{pmatrix}$. Call the state vector in de σ_y -representation:

$$\eta(t) = \left(\begin{array}{c} e(t) \\ f(t) \end{array}\right) \ .$$

- (c) Determine $\eta(t=0)$ and solve the Schrödinger-equation $i\hbar \frac{\partial}{\partial t}\eta(t) = \hat{H}\eta(t)$ in the σ_y -representation.
- (d) Using the results derived in (a) and (c), show that the expectation value of $\hat{\sigma}_z$ at time t is given by:

$$\langle \sigma_z \rangle(t) = \cos\left(2\omega t - 2\gamma\right)$$

3) Consider a single species of bosons with annihilation- and creation operators \hat{a} and \hat{a}^{\dagger} , respectively. The Hamilton operator for this quantum many-body system is:

$$\hat{H} = \omega \left(\hat{a}^{\dagger} \hat{a} + \frac{1}{2} \right) + \frac{1}{2} \Delta \left(\hat{a}^{\dagger} \hat{a}^{\dagger} + \hat{a} \hat{a} \right) .$$

$$\tag{1}$$

We take $\hbar = 1$ throughout this problem. The following transformation is useful to gain insight into the properties of this quantum system:

$$\hat{b} = \lambda \,\hat{a} + \mu \,\hat{a}^{\dagger},$$
 (2a)

$$\hat{b}^{\dagger} = \lambda^* \,\hat{a}^{\dagger} + \mu^* \,\hat{a},\tag{2b}$$

where λ and μ are complex numbers.

- (a) Show that the transformation (2) preserves the canonical commutation relations provided $|\lambda|^2 |\mu|^2 = 1$.
- (b) Assuming λ and μ to be real and using the result of (a), show that transformation (2) brings the Hamiltonian (1) into the form:

$$\hat{H} = \tilde{\omega} \left(\hat{b}^{\dagger} \hat{b} + \frac{1}{2} \right) . \tag{3}$$

Provide expressions for $\tilde{\omega}, \lambda^2$, and μ^2 in terms of ω and Δ .

(c) If the bosons characterized by \hat{a} and \hat{a}^{\dagger} are considered as excitations of a harmonic oscillator, the connection with the (Hermitian) operators for position and momentum of the oscillator, \hat{x} and \hat{p} , is given by:

$$\hat{a} = \frac{1}{\sqrt{2}} \left(\sqrt{m\omega} \ \hat{x} + \frac{i \ \hat{p}}{\sqrt{m\omega}} \right) \ . \tag{4}$$

Express the Hamiltonian in terms of \hat{x} and \hat{p} for the special case $\Delta = \omega$. How would you interpret this result physically?

4) Consider a many-body system corresponding to N-particle systems consisting of N identical spin- $\frac{1}{2}$ particles with Hamilton operator:

$$\hat{H}_N = \sum_{i=1}^N \hat{h}^{(i)} , \qquad \hat{h} = \frac{\hat{\vec{p}}^2}{2m} + B \hat{\sigma}_x$$

Use the discrete $\vec{k}\sigma$ -representation ($\hat{\vec{p}}|\vec{k}\sigma\rangle = \hbar\vec{k}|\vec{k}\sigma\rangle$, $\hat{\sigma}_z|\vec{k}\sigma\rangle = \sigma|\vec{k}\sigma\rangle$, $\sigma = +1, -1$).

- (a) Give the fundamental algebraic relations of the annihilation- and creationoperators $\hat{a}_{\vec{k}\sigma}$ and $\hat{a}^{\dagger}_{\vec{k}\sigma}$.
- (b) Show that the many-body energy operator \hat{H} in the $\vec{k}\sigma$ -representation is of the following form and determine f, g_+ and g_- :

$$\hat{H} = \sum_{\vec{k}\sigma} f \hat{a}_{\vec{k}\sigma}^{\dagger} \hat{a}_{\vec{k}\sigma} + \sum_{\vec{k}} \left(g_{+} \hat{a}_{\vec{k},1}^{\dagger} \hat{a}_{\vec{k},-1} + g_{-} \hat{a}_{\vec{k},-1}^{\dagger} \hat{a}_{\vec{k},1} \right)$$

- (c) Compute $\left[\hat{H}, \hat{a}_{\vec{k}\sigma}\right]$.
- (d) Calculate the Heisenberg-picture operator $\hat{c}_{\vec{k}}(t)$ with $\hat{c}_{\vec{k}} \equiv \hat{a}_{\vec{k},1} + \hat{a}_{\vec{k},-1}$.
- 5) In classical mechanics a harmonic oscillator with mass m and (angular) frequency ω in one spatial dimension is given by the following Lagrangian L (the dot above x means differentiation with respect to time):

$$L(\dot{x}, x) = \frac{1}{2}m\dot{x}^{2} - \frac{1}{2}m\omega^{2}x^{2}$$

The equation of motion follows from the Euler-Lagrange equation:

$$\frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial L}{\partial \dot{x}} - \frac{\partial L}{\partial x} = 0$$

The action \mathcal{S} for the path x(t) is given by:

$$\mathcal{S}[x(t)] = \int dt L(\dot{x}, x) \quad ,$$

where the integral runs from begin- to end-time of the path.

- (a) Calculate the action S_{cl} for the classical path of the harmonic oscillator that starts at time t = 0 at position y and ends at time t' with velocity equal to: $-y\omega\sin(\omega t')$.
- (b) The quantummechanical *propagator* for a harmonic oscillator that at time t_0 has position x_0 and at time t' has position x' is given by:

$$\langle x', t'|x_0, t_0 \rangle = \langle x'|e^{-i\hat{H}(t'-t_0)/\hbar}|x_0\rangle$$
,

where the Hamiltonian is given by:

$$\hat{H} = \frac{\hat{p}_x^2}{2m} + \frac{1}{2}m\omega^2 \hat{x}^2 \; .$$

Show that the propagator for the harmonic oscillator with position x at t = 0and position x' a *short* time interval Δt later is of the following form and determine the function T(p, x, x'):

$$\langle x'|e^{-i\hat{H}\Delta t/\hbar}|x\rangle = \frac{1}{2\pi\hbar} \int_{-\infty}^{\infty} dp \exp\left\{iT(p,x,x')\Delta t/\hbar\right\} + \mathcal{O}\left(\Delta t\right)^2 \;.$$

If necessary, use that the scalar product of eigenstates of \hat{x} en \hat{p}_x is given by:

$$\langle x|p \rangle = \frac{1}{\sqrt{2\pi\hbar}} e^{ipx/\hbar}$$