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Thermal fluctuations strongly modify the large length-scale elastic
behavior of cross-linked membranes, giving rise to scale-dependent
elastic moduli. Whereas thermal effects in flat membranes are well
understood, many natural and artificial microstructures are mod-
eled as thin elastic shells. Shells are distinguished from flat mem-
branes by their nonzero curvature, which provides a size-dependent
coupling between the in-plane stretching modes and the out-of-
plane undulations. In addition, a shell can support a pressure dif-
ference between its interior and its exterior. Little is known about
the effect of thermal fluctuations on the elastic properties of shells.
Here, we study the statistical mechanics of shape fluctuations in a
pressurized spherical shell, using perturbation theory and Monte
Carlo computer simulations, explicitly including the effects of cur-
vature and an inward pressure. We predict novel properties of fluc-
tuating thin shells under point indentations and pressure-induced
deformations. The contribution due to thermal fluctuations in-
creases with increasing ratio of shell radius to thickness and domi-
nates the response when the product of this ratio and the thermal
energy becomes large compared with the bending rigidity of the
shell. Thermal effects are enhanced when a large uniform inward
pressure acts on the shell and diverge as this pressure approaches
the classical buckling transition of the shell. Our results are relevant
for the elasticity and osmotic collapse of microcapsules.

The elastic theory of thin plates and shells (1), a subject over a
century old, has recently found new applications in under-

standing the mechanical properties of a wide range of natural
and artificial structures at microscopic length scales. The mechan-
ical properties of viral capsids (2–4), red blood cells (5), and hollow
polymer and polyelectrolyte capsules (6–10) have been measured
and interpreted in terms of elastic constants of the materials
making up these thin-walled structures. Theoretically, models that
quantify the deformation energy of a 2D membrane have been
used to investigate the shapes of viral capsids (11–13) and their
expected response to point forces and pressures (14–17), as well
as shape transitions of pollen grains (18).
Like its counterparts in other areas of science, such as fluid

dynamics and the theory of electrical conduction in metals, thin
shell theory aims to describe the physics of slowly varying dis-
turbances in terms of a few macroscopic parameters, such as the
shear viscosity of incompressible fluids and the electrical con-
ductivity of metals. Despite such venerable underpinnings as the
Navier–Stokes equations and Ohm’s law, these hydrodynamic
theories can break down, sometimes in spectacular ways. For
example, it is known from mode coupling theory (19) and from
renormalization group calculations (20) that thermal fluctuations
cause the shear viscosity of incompressible fluids to diverge log-
arithmically with system size in a 2D incompressible fluid. In the
theory of electrical conduction, quenched disorder due to impu-
rities coupled with interactions between electrons lead to a dra-
matic breakdown of Ohm’s law in thin films and one-dimensional
wires at low temperatures, with a conductance that depends on
the sample dimensions (21).
Even more dramatic breakdowns of linear response theory can

arise in thin plates and shells. Unlike the macroscopic shell
structures of interest to civil engineers, thermal fluctuations can
strongly influence structures with size of order microns, because
the elastic deformation energies of extremely thin membranes
(with nanoscale thicknesses) can be of the order of the thermal

energy kBT (where kB is the Boltzmann constant and T the
temperature) for typical deformations. The statistical mechanics
of flat solid plates and membranes (i.e., membranes with no
curvature in the unstrained state) have been studied previously
(see refs. 22 and 23 and references therein). Thermal fluctua-
tions lead to scale-dependent elastic moduli for flat membranes,
causing the in-plane elastic moduli to vanish at large length
scales while the bending rigidity diverges (24, 25). These anom-
alies arise from the the nonlinear couplings between out-of-plane
deformations (transverse to the plane of the undeformed mem-
brane) and the resultant in-plane strains, which are second order
in the out-of-plane displacements.
Much less is known about spherical shells subject to thermal

fluctuations (Fig. 1A). In fact, the coupling between in-plane and
out-of-plane modes is significantly different. Geometry dictates
that a closed spherical shell cannot be deformed without stretch-
ing; as a result, out-of-plane deformations provide a first-order
contribution to the in-plane strain tensor (1). This introduces new
nonlinear couplings between in-plane and out-of-plane deforma-
tions, which are forbidden by symmetry in flat membranes.We can
also consider the buckling of spherical shells under uniform ex-
ternal pressure, which has no simple analog for plates (Fig. 1B).
An early exploration with computer simulations combined an
analysis of the elastic energy due to the linear strain contributions
of a spherical membrane with the nonlinear corrections from flat
membranes to suggest new scaling behavior for thermally fluctu-
ating spherical membranes (26). However, an important nonlinear
coupling triggered by the curved background metric was not
considered, nor was the effect of an external pressure investigated.
Here, we study the mechanics of fluctuating spherical shells, using
perturbation theory and numerical simulations, taking into ac-
count the nonlinear couplings introduced by curvature as well as
the effects of a uniform external pressure.

Results and Discussion
Elastic Energy of a Thin Shell. The elastic energy of a deformed
spherical shell of radius R is calculated using shallow-shell theory
(27). This approach considers a shallow section of the shell, small
enough so that slopes measured relative to the section base are
small (Fig. S1). The in-plane displacements of the shallow sec-
tion are parameterized by a two-component phonon field uiðxÞ,
i= 1; 2; the out-of-plane displacements are described by a field
f ðxÞ in a coordinate system x= ðx1; x2Þ tangent to the shell at the
origin. We focus on amorphous shells, with uniform elastic
properties, and can thus neglect the effect of the 12 inevitable
disclinations associated with crystalline order on the surface of
a sphere (11). In the presence of an external pressure p acting
inward, the elastic energy for small displacements in terms of the
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bending rigidity κ and Lamé coefficients μ and λ reads (details in
SI Text)

G=
Z ​

d2x
�
κ

2
�
∇2f

�2
+ μu2ij +

λ

2
u2kk − pf

�
; [1]

where the nonlinear strain tensor is

uijðxÞ= 1
2
�
∂iuj + ∂jui + ∂if∂jf

�
− δij

f
R
: [2]

Here, d2x ≡ ffiffiffi
g

p
dx1dx2, where g is the determinant of the metric

tensor associated with the spherical background metric. Within
shallow shell theory, g≈ 1 (SI Text).
If we represent the normal displacements in the form f ðxÞ=

f0 + f ′ðxÞ, where f0 represents the uniform contraction of the
sphere in response to the external pressure, and f ′ is the defor-
mation with reference to this contracted state so that

R ​d2x  f ′= 0,
then the energy is quadratic in fields u1, u2, and f0. These variables
can be eliminated in a functional integral of expð−G½ f ′; f0;
u1; u2�=kBTÞ by Gaussian integration (details in SI Text). The ef-
fective free energy Geff that results is the sum of a harmonic part
G0 and an anharmonic part G1 in the remaining variable f ′ðxÞ,

G0 =
1
2

Z ​

d2x
�
κ
�
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R2f ′
2
�
; [3]
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ij ∂if ′∂jf ′

�2
−

f ′
R
PT
ij ∂if ′∂jf ′

�
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where Y = 4μðμ+ λÞ=ð2μ+ λÞ is the 2D Young’s modulus and
PT
ij = δij −∂i∂j=∇2 is the transverse projection operator. The

“mass” term Y ðf ′=RÞ2 in the harmonic energy functional reflects
the coupling between out-of-plane deformation and in-plane
stretching due to curvature, absent in the harmonic theory of
flat membranes (plates). The cubic interaction term with a cou-
pling constant −Y=2R is also unique to curved membranes and
is prohibited by symmetry for flat membranes. These terms are
unusual because they have system-size–dependent coupling
constants. Note that an inward pressure (p> 0) acts like a nega-
tive R-dependent surface tension in the harmonic term. As re-
quired, the effective elastic energy of fluctuating flat mem-
branes is retrieved for R→∞ and p= 0. In the following, we
exclusively use the field f ′ðxÞ and thus drop the prime without
ambiguity.

When only the harmonic contributions are considered, the
equipartition result for the thermally generated Fourier com-
ponents fq =

R
d2x  f ðxÞexpðiq · xÞ with 2D wavevector q are

D
fq fq′

E
0
=

AkBTδq;−q′

κq4 −
pR
2
q2 +

Y
R2

; [4]

where A is the area of integration in the ðx1; x2Þ plane. Long-
wavelength modes are restricted by the finite size of the sphere;
i.e., q ≳ 1=R. In contrast to flat membranes for which the ampli-
tude of long-wavelength (q→ 0) modes diverges as kBT=ðκq4Þ,
the coupling between in-plane and out-of-plane deformations
of curved membranes cuts off fluctuations with wave vectors
smaller than a characteristic inverse length scale (26),

q*= ðℓ*Þ−1 =
�

Y
κR2

�1=4
≡

γ1=4

R
;

where we have introduced the dimensionless Föppl-von Kármán
number γ =YR2=κ (11). We focus here on the case γ � 1, so
ℓ* � R. As p approaches pc ≡ 4

ffiffiffiffiffiffi
κY

p
=R2, the modes with q= q*

become unstable and their amplitude diverges. This corresponds
to the well-known buckling transition of spherical shells under
external pressure (27). When p> pc, the shape of the deformed
shell is no longer described by small deformations from a sphere,
and the shallow shell approximation breaks down.

Anharmonic Corrections to Elastic Moduli. The anharmonic part of
the elastic energy, neglected in the analysis described above,
modifies the fluctuation spectrum by coupling Fourier modes at
different wave vectors. Upon rescaling all lengths by ℓ*, it can be
shown that the size of anharmonic contributions to hjfqj2i is set
by the dimensionless quantities kBT

ffiffiffi
γ

p
=κ and p=pc. The corre-

lation function including the anharmonic terms in Eq. 3 is given
by the Dyson equation,

D		fq		2
E
=

1D		fq		2
E−1
0
−ΣðqÞ

; [5]

where ΣðqÞ is the self-energy, which we evaluate to one-loop
order, using perturbation theory. Whereas hjfqj2i can be numer-
ically evaluated at any q, an approximate but concise description
of the fluctuation spectrum is obtained by expanding the self-
energy up to order q4 and defining renormalized values YR, κR,
and pR of the Young’s modulus, bending rigidity, and pressure,
from the coefficients of the expansion:

AkBT
D		fq→ 0

		2E−1 ≡ κRq4 −
pRR
2

q2 +
YR

R2 +O
�
q6
�
: [6]

To lowest order in kBT=κ and p=pc we obtain the approximate
expressions (details in SI Text)

YR ≈Y
�
1−

3
256

kBT
κ

ffiffiffi
γ
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1+

4
π

p
pc

��
; [7]

pR ≈ p+
1

24π
kBT
κ

pc
ffiffiffi
γ
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p
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�
; [8]

and

κR ≈ κ

�
1+

61
4; 096

kBT
κ

ffiffiffi
γ

p �
1−

1; 568
915π

p
pc

��
: [9]

Fig. 1. Simulated thermally fluctuating shells. (A) Triangulated shell with
5,530 points separated by average nearest-neighbor distance r0 with Young’s
modulus Y = 577e=r20 and bending rigidity κ = 50e at temperature kBT = 20e,
where e is theenergy scale of the Lennard-Jones potential used to generate the
disordered mesh. (B) Same as in Awith external pressure p= 0:5pc, where pc is
the classical buckling pressure. The thermally excited shell has already buckled
under pressure to a shape with a much smaller enclosed volume than in A.
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(See SI Text and Figs. S2 and S3 for details of the calculation and the
complete dependence on p=pc.) Thus, the long-wavelength deforma-
tions of a thermally fluctuating shell are governed by a smaller effec-
tive Young’s modulus, a larger effective bending rigidity, and
a nonzero negative surface tension even when the external pressure
is zero. At larger p=pc, however, both the Young’s modulus and the
bending modulus fall compared with their zero-temperature values,
and the negative effective surface tension determined by pR gets very
large. The complete expressions for the effective elastic parameters,
including the full p=pc dependence, show that all corrections diverge
as p=pc → 1. Furthermore, the effective elastic constants are not only
temperature dependent, but also system size dependent, becauseffiffiffi
γ

p ∝R. Although the corrections are formally small for kBT � κ,
they nevertheless diverge asR→∞! The thermally generated surface
tension, strong dependence on external pressure, and size depen-
dence of elastic constants are unique to spherical membranes, with
no analog in planar membranes.

Simulations of Thermally Fluctuating Shells. We complement our
theoretical calculations with Monte Carlo simulations of ran-
domly triangulated spherical shells with discretized bending and
stretching energies that translate directly into a macroscopic 2D
Young’s modulus Y and a bending ridigity κ (28, 29). (Details are
provided in Materials and Methods.) Here we study shells with
600< γ < 35; 000 and 2× 10−6 < kBT=κ< 0:5. The anharmonic
effects are negligible at the low end of this temperature range.
The fluctuation spectra of the simulated spherical shells are

evaluated using an expansion of the radial displacement field in
spherical harmonics (30). The radial position of a node i at
angles (ϕ; θ) can be written as riðϕ; θÞ=R0

~
+ f ðϕ; θÞ with R0

~
the

average radius of the fluctuating vesicle. The function f ðϕ; θÞ can
be expanded in (real) spherical harmonics,

f ðϕ; θÞ = R
XlM
l=0

Xm=l

m=−l
AlmYlmðϕ; θÞ; [10]

where lM is the large wave-number cutoff determined by the num-
ber of nodes in the lattice ðlM + 1Þ2 =N (30). The theoretical pre-
diction for the fluctuation spectrum including anharmonic effects is
(SI Text)

kBT
D
jAlmj2

E−1
≈ κRðl+ 2Þ2ðl− 1Þ2 − pRR3

�
1+

lðl+ 1Þ
2

�

+YRR2
�
3
�
l2 + l− 2

�
3ðl2 + lÞ− 2

�
:

[11]

Fig. 2 displays our theoretical and simulation results for the fluc-
tuation spectrum. At the lowest temperature (corresponding to
kBT

ffiffiffi
γ

p
=κ ≈ 0:1 � 1), the spectrum is well described by the bare

elastic parameters Y, κ, and p. At the intermediate temperature
(kBT

ffiffiffi
γ

p
=κ≈ 10) anharmonic corrections become significant, en-

hancing the fluctuation amplitude for some values of l by about
20–40% compared with the purely harmonic contribution. At this
temperature, one-loop perturbation theory successfully describes
the fluctuation spectrum. However, at the highest temperature
simulated (kBT

ffiffiffi
γ

p
=κ≈ 24), the anharmonic corrections observed

in simulations approach 50% of the harmonic contribution at zero
pressure and over 100% for the pressurized shell. With such large
corrections, we expect that higher-order terms in the perturbation
expansion contribute significantly to the fluctuation spectrum and
the one-loop result overestimates the fluctuation amplitudes.
Similarly, thermal fluctuations modify the mechanical response

when a shell is deformed by a deliberate point-like indentation. In
experiments, such a deformation is accomplished using an atomic
force microscope (2, 9). In our simulations, two harmonic springs
are attached to the north and south pole of the shell. By changing
the position of the springs the depth of the indentation can be
varied (Fig. 3A, Inset). The thermally averaged pole-to-pole dis-
tance hzi is measured and compared with its average value in the
absence of a force, hz0i. For small deformations, the relationship
between the force applied at each pole and the corresponding
change in pole–pole distance is spring-like with a spring constant
ks : hFi≡ ksðhz0i− hziÞ. The spring constant is related to the am-
plitude of thermal fluctuations in the normal displacement field
in the absence of forces by (detailed derivation in SI Text)

ks =
kBT

2
D
½f ðxÞ�2

E ≈
kBT


z20
�
− hz0i2

: [12]

This fluctuation-response relation is used to measure the tempera-
ture dependence of ks from simulations on fluctuating shells with no
indenters.Atfinite temperature, anharmonic effects computed above
make this spring constant both size and temperature dependent:

ks ≈
4

ffiffiffiffiffiffi
κY

p

R

�
1− 0:0069

kBT
κ

ffiffiffi
γ

p �
: [13]

Fig. 3A shows the force-compression relation for a shell with
R= 20 r0 and dimensionless temperatures kBT

ffiffiffi
γ

p
=κ= 1:36× 10−4

and kBT
ffiffiffi
γ

p
=κ= 34. The linear response near the origin (Fig. 3B) is

A B

Fig. 2. Fluctuation spectrumin sphericalharmonics. Sphericalharmonicamplitudeof the shapefluctuationsofelastic shells is plottedagainst thedimensionless spherical
wave number l for a shell with R= 40r0;Y = 577e=r20 , and κ= 50e at temperatures kBT=κ= 7:4× 10−4 (blue), 0.07 (red), and 0.18 (yellow). Thefluctuation amplitudes are
scaled by kBT so that the spectra at different temperatures would coincide in the harmonic approximation. Each section corresponds to a different value of the external
pressure:p= 0 (A) andp= 0:2pc (B). ThesymbolsarefromMonteCarlo simulations,andthesolid linesarethe theoreticalprediction (Eq.11), usingtherenormalizedelastic
constants fromperturbationtheory (Eqs.7–9), except for the lowest temperature,where thebareelastic constantsareusedbecause theanharmoniceffectsarenegligible.
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very well described by ks measured indirectly from the fluctuations
in z0 at each temperature, Eq. 12. The thermal fluctuations lead to
an appreciable 20% reduction of the spring constant for this case.
Measuring spring constants over a range of temperatures (Fig. 3C)
confirms that the shell response softens as the temperature is in-
creased, in agreement with the perturbation theory prediction. We
note, however, a small but systematic shift due to the finite mesh
size of the shells, an ∼5% effect for the largest systems simulated
here. At the higher temperatures (kBT

ffiffiffi
γ

p
=κ> 20), the measured

spring constants deviate from the perturbation theory prediction,
once again we believe due to the effect of higher-order terms.
We also simulate the buckling of thermally excited shells under

external pressure. When the external pressure increases beyond
a certain value (which we identify as the renormalized buckling
pressure), the shell collapses from a primarily spherical shape (Fig.
1A) to a shape with one or more large volume-reducing inver-
sions (Fig. 1B). For zero-temperature shells, this buckling is
associated with the appearance of an unstable deformationmode
in the fluctuation spectrum. At finite temperature, the appear-
ance of a mode with energy of order kBT is sufficient to drive
buckling. Anharmonic contributions, strongly enhanced by an
external pressure, also reduce the effective energy associated with
modes in the vicinity of q* primarily due to the enhanced negative
effective surface tension pRR=2 (Eq. 8). As a result, unstable
modes arise at lower pressures and we expect thermally fluctu-
ating shells to collapse at pressures below the classical buckling
pressure pc. This is confirmed by simulations of pressurized shells
(Fig. 4). When anharmonic contributions are negligible
(kBT

ffiffiffi
γ

p
=κ � 1), the buckling pressure observed in simulations is

only ∼ 80% of the theoretical value because the buckling transi-
tion is highly sensitive to the disorder introduced by the random
mesh. Relative to this low temperature value, the buckling pres-
sure is reduced significantly when kBT

ffiffiffi
γ

p
=κ becomes large.

Conclusion and Outlook. In summary, we have demonstrated that
thermal corrections to the elastic response become significant
when kBT

ffiffiffi
γ

p
=κ � 1 and that first-order corrections in kBT=κ

already become inaccurate when kBT
ffiffiffi
γ

p
=κ ≳ 20. Human red

blood cell (RBC) membranes are known examples of curved
solid structures that are soft enough to exhibit thermal fluctua-
tions. Typical measured values of the shear and bulk moduli of

A B

C

Fig. 3. Temperature dependence of response to point forces. (A) Force-compression curves for simulations of indented shells (symbols) with R= 20r0,
Y =577e=r20 , and κ= 50e at low (kBT=κ= 2× 10−7) and high (kBT=κ= 0:5) temperatures. The lines show the expected linear response at small deformations with
the spring constant ks measured independently from fluctuations in z0 (ks = 29:15e=r20 for kBT=κ= 2× 10−7, ks = 23:63e=r20 for kBT=κ= 0:5). For indentation
depths larger than 1− hzi=hz0i≈ 0:05, the regions around the poles become inverted and the response becomes nonlinear. (Inset) Schematic showing the
definition of z0 (the pole-to-pole distance in the absence of indentations) and z (pole-to-pole distance following an indentation imposed by harmonic springs
whose free ends are brought close together) for a snapshot of the fluctuating shell. (B) Blow-up of the boxed region near the origin in A, highlighting the
linear response regime. (C) Spring constants extracted from fluctuations for shells with three different radii as a function of temperature, rescaled by the
classical result for linear response of thin shells at zero temperature. The dashed line shows the perturbation theory prediction, Eq. 13. The low-temperature
spring constant deviates from the classical result due to a finite mesh size effect that falls with increasing R (increasing mesh size).

Fig. 4. Temperature dependence of the buckling pressure. Shown is buckling
pressure for simulated shells at various radii and temperatures, normalized by
the classical (i.e., zero temperature) critical buckling pressure pc for perfectly
uniform, zero-temperature shells with the same parameters. For all shells,
Yr20=κ =11:54. In separate sets of symbols,weeither vary the shell radius over the
range 7:5≤R=r0 ≤55 while keeping the temperature constant (kBT = 2×10−6κ,
blue circles; kBT = 0:4κ, yellow squares) or vary the temperature over the range
2× 10−8 ≤ kBT=κ≤ 0:4 while keeping the radius constant at R= 20r0 (red tri-
angles). The parameter kBT

ffiffiffi
γ

p
=κ sets the strength of anharmonic corrections for

thermally fluctuating shells. Inset shows the 1=R2 dependence of the buckling
pressure as the radius is varied, for shells at low and high temperatures.
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RBC membranes correspond to Y ≈ 25 μN/m (5, 31), whereas
reported values of the bending rigidity κ vary widely from 6 kBT
to 40 kBT (5, 32). Using an effective radius of curvature R≈ 7 μm
(5) gives kBT

ffiffiffi
γ

p
=κ in the range 2–35. Thus, RBCs could be good

candidates to observe our predicted thermal effects, provided
their bending rigidity is in the lower range of the reported values.
For continuum shells fabricated from an elastic material with a

3DYoung’s modulus E, thickness h, and typical Poisson ratio ≈ 0:3,
kBT

ffiffiffi
γ

p
=κ≈ 100RkBT=ðEh4Þ. Hence very thin shells with a suffi-

ciently high radius-to-thickness ratio (R=h) must display significant
thermal effects. Polyelectrolyte (9) and protein-based (33) shells with
R=h≈ 103 havebeen fabricated,but typical solid shells haveabending
rigidity κ several orders of magnitude higher than kBT unless h ≲ 5
nm. Microcapsules of 6 nm thickness fabricated from reconstituted
spider silk (33)withR≈ 30 μmandE≈ 1GPahavekBT

ffiffiffi
γ

p
=κ≈ 3 and

could exhibit measurable anharmonic effects.
Thermal effects are particularly pronounced under finite external

pressure—an indentation experiment carried out at p= pc=2 on the
aforementioned spider silk capsules would show corrections of 10%
from the classical zero-temperature theory. For similar capsules
with half the thickness, perturbative corrections at p= pc=2 are
larger than 100%, reflecting a drastic breakdown of shell theory
because of thermal fluctuations. The breakdown of classical shell
theory explored here points to the need for a renormalization
analysis, similar to that carried out already for flat plates (34).

Materials and Methods
Monte Carlo Simulations of Randomly Triangulated Shells. A random triangu-
lation of radius R0 is constructed by distributing N nodes on the surface of
a sphere with the required radius. The first two of these nodes are fixed
at the north and the south pole of the sphere whereas the positions of the
remaining N− 2 nodes are randomized and equilibrated in a Monte Carlo
simulation. During this equilibration process the nodes interact via a steeply
repulsive potential (the repulsive part of a Lennard-Jones potential). After
equilibration, when the energy has reached a constant value on average, the
simulation is stopped and the final configuration is “frozen.” The neighbors
of all nodes are determined using a Delaunay triangulation (35). The spherical
configurations as well as the connection lists are used in further simulations.

In subsequent simulations nearest neighbors are permanently linked by
a harmonic potential giving rise to a total stretching energy (36),

Es =
k
2

X
i;j

�			rij − r0ij
			2
; [14]

where the sum runs over all pairs of nearest neighbors, rij is the distance
between two neighbors, and r0ij is the equilibrium length of a spring. The
equilibrium length r0ij is determined at the start of the simulation, when the
shell is still perfectly spherical and thus the stretching energy vanishes for
the spherical shape. The spring constant k is related to the 2D Lamé coef-
ficients λ= μ=

ffiffiffi
3

p
k=4 and the 2D Young’s modulus Y = 2k=

ffiffiffi
3

p
(36).

Themean curvature (more precisely, twice the mean curvature) at node i is
discretized using (30, 37, 38)

Hi =
1
σi
ni ·

X
jðiÞ

σij
lij

�
ri − rj

�
; [15]

where ni is the surface (unit) normal at node i (the average normal of the faces
surrounding node i), σi =

P
jðiÞσij lij is the area of the dual cell of node i, σij =

lij½cot  θ1 + cot  θ2�=2 is the length of a bond in the dual lattice, and lij = jri − rj j is
the distance between the nodes i and j. The total curvature energy is

Eb =
κ

2

X
i

σiðHi −H0Þ2 [16]

with κ the bending rigidity and H0 the spontaneous curvature at node i. In all

simulations H0 = 2=R0 (because Hi is twice the mean curvature). In the cases
of elastic shells under pressure a term PV is added to the Hamiltonian, where
P is the external pressure and V the volume of the shell.

Similar elastic networks with stretching and bending potentials have been
studied in relation to the stability of membranes and to icosahedral and
spherical shells that contain defects (11, 17, 29, 36, 39, 40) or defect scars (38,
41–43) as well as to the deformation of icosahedral viruses (14–16) and the
crumpling of elastic sheets (28).

Simulations are performed for shells of 5,530 (R0 = 20 r0), 22,117 (R0 =
40 r0), and 41,816 (R= 55 r0) nodes. The Hookean spring constant and the
bending rigidity are taken such that the shells have Föppl–von Kármán
numbers in the range 650< γ < 35; 000 and that the dimensionless temper-
ature is in the range 2× 10−6 <kBT=κ< 0:5. Monte Carlo production runs
consist typically of 1:25× 108 Monte Carlo steps, where in a single Monte
Carlo step an attempt is made to update the positions of all nodes once on
average. Configurations were stored for analysis typically every Nsamp =
2; 000 Monte Carlo steps. For the largest system (41,816 nodes), such a run
took about 700 d of net central processing unit (CPU) time spread over
several simultaneous runs in a Linux cluster of Intel XEON X5355 CPUs. For
the smaller shells, the computational time scaled down roughly linearly with
system size.

Fluctuation Spectrum from Computer Simulations. For a particular configu-
ration of a simulated shell, the coefficients Alm of the expansion of the radial
displacements in spherical harmonics (Eq. 10) are determined by a least-
squares fit of the node positions to a finite number lM of (real) spherical
harmonics. In practice we have used lM =26 as the upper wave-number
cutoff for all simulations. At each temperature and pressure, this procedure
is repeated for about 10,000 independent configurations and the results are
averaged to obtain the curves presented in Fig. 2.

Simulations of Shells Indented by Point-Like Forces. To perform indentation
simulations, two harmonic springs are attached to the north and the south
pole of the shell. This leads to an additional term in the Hamiltonian
Vs = kiðzNi − zNÞ2=2+ kiðzSi − zSÞ2=2, where ki = κ=r20 is the spring constant of
the indenter. Here, one end of the springs, at positions zN and zS, is attached
to the vertices at the north and the south pole, respectively. The positions of
the other end of the springs, at zNi and zSi , are fixed externally and determine
the indentation force and depth, as indicated in Fig. S4.

By changing zNi and zSi , the depth of the indentation can be varied. After
the springs are fixed a certain distance apart, the thermally averaged pole-
to-pole distance Æzæ is measured and compared with its value in the absence
of a force, Æz0æ. The instantaneous force at the poles is calculated from the
instantaneous extension of the harmonic springs after each Nsamp Monte
Carlo step; thermal averaging then determines the average corresponding
to Æzæ. This provides the force-indentation curves in Fig. 3 A and B.

It is very difficult to unambiguously identify the linear regime in the force-
indentation curves. Extracting the effective spring constant of shell de-
formation ks from a linear fit in the small indentation region is subject to
inaccuracies and sensitivity to the number of points included in fitting. In-
stead, we extract the spring constants of thermally fluctuating shells by
using a relation between ks and the fluctuations in z0 (derivation in SI Text):

ks ≈
kBT

Æz20æ− Æz0æ2
: [17]

This procedure was used to measure the temperature-dependent spring
constants in Fig. 3C.
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