
Quantum Theory, Fall 2005

FINAL EXAM (Due Jan 09, 2006)

Your final exam has to be delivered to the secretary of the Lorentz Institute (Oort building, 2nd floor,
room 251) before 2pm on jan 09. For this final exam the full Honor Code is active. Your graded
exam as well as your final grade are available at the secretaries office on Jan 24, 2006.

1. This excercise highlights the Landau level structure associated with electrons which are confined
to move in a plane (the ‘2DEG’s’ realized in MOSFET’s) under the influence of a large magnetic
field.

An electron moves in the x-y plane in the presence of a uniform magnetic field in the z-direction
B = Bẑ.

a. Evaluate the commutator [Πx,Πy] where Πx = px − eAx

c
and Πy = py − eAy

c
.

b. By comparing the Hamiltonian (neglecting the kinetic energy part in z-direction) and the
commutation relation obtained in (a) with those of the one dimensional oscillator problem,
show how we can immediately write the energy eigenvalues as,

En = h̄ωc(n+ 1/2) (1)

where ωc = |eB|/(mc) is the classical cyclotron frequency and n is a non negative integer
including 0. The states with quantum number n are the Landau levels.

c. Let us now consider the time evolution of the x and y coordinates of the particle. The
starting point is Sakurai Eq. (2.6.22): mdx(t)/dt = mvx(t) = Πx(t) and mdy(t)/dt =
mvy(t) = Πy(t), where x(t) and y(t) are the position operators for the x and y coordinates
in the Heisenberg representation. In the standard harmonic oscillator problem the time
evolution of the position and momentum operators is given by

q(t) =

√

h̄

2mω

(

ae−iωt + a†eiωt
)

, p(t) = −i
√

mωh̄

2

(

ae−iωt − a†eiωt
)

(2)

where a and a† are the annihilation/creation operators at t = 0. Use the analogy with the
harmonic oscillator to demonstrate that

Πx(t) = m (vx(0) cos(ωct) + vy(0) sin(ωct)) ,

Πy(t) = m (−vx(0) sin(ωct) + vy(0) cos(ωct)) (3)

where vx(0), vy(0) are the velocities at t = 0.

d. It follows from the result of (c) that

x(t) = x0 +
vx(0)

ωc
sin(ωct) −

vy(0)

ωc
cos(ωct) = x0 −

Πy(t)

mωc

y(t) = y0 +
vx(0)

ωc
cos(ωct) +

vy(0)

ωc
sin(ωct) = x0 +

Πx(t)

mωc
(4)

where x0, y0 is the position of the particle at t = 0. Use these relations to calculate
r2(t) = [x(t) − x0]

2 +[y(t) − y0]
2. What is the classical interpretation of r2(t) and (x0, y0)?

Calculate also the expectation value of r2 in the n-th Landau level. Does this have a
classical interpretation?
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e. The x(t), y(t) and px(t), py(t) should behave as canonical position and momentum operators
satisfying [x, y] = [px, py] = 0 and [xi, pj ] = ih̄δi,j . What does this imply for the ’guiding
center coordinates’ x0, y0? Consider the commutator [x0, y0] and the commutators of x0, y0

with the Hamiltonian. Discuss what this means physically.

2. Even for the simple harmonic oscillator the propagator is quite cumbersome, and the answer is
given by Sakurai Eq. (2.5.18):

K(x1, t1;x0, t0) =

√

mω

2πih̄ sin (ω(t1 − t0))

× exp

[(

imω

2h̄ sin(ω(t1 − t0))

)

×
(

(x2
1 + x2

0) cos(ω(t1 − t0)) − 2x1x0

)

]

Let us first investigate what this propagator tells about the time evolution of a coherent state
wavefunction.

a. Given a coherent state |α〉, demonstrate that one finds a normalized wavefunction in position
representation

ψα(x) = 〈x|α〉 =

(

mω

πh̄

) 1

4

exp(−|α|2 cos2 δ) exp(−1

2

mω

h̄
x2 + α

√

2mω

h̄
x), (5)

where we have written α = |α|eiδ and have dropped an unimportant phase factor. Hint:
Start with the equation 〈x|a|α〉 = α〈x|α〉, express a as a combination of x̂ and p̂, and solve
the resulting differential equation for ψα(x).

b. Given that the wavefunction at time t = 0 is given by the ψα(x) obtained under (a), calculate
the wavefunction at some later time t using the propagator of the harmonic oscillator. Show
that

|ψα(x, t)|2 =

(

mω

πh̄

) 1

2

exp



−mω
h̄

(x− |α|
√

2

√

h̄

mω
cos(ωt− δ))2



 . (6)

Discuss what this means physically.

Inspecting the expression for the propagator one infers that the dependence on x0, x1 is entirely in
the exponential factor. Let us find out what this means using the path-integral. The Lagrangian
for a harmonic oscillator with mass m and angular frequency ω in one spatial dimension is given
by L(ẋ, x) = m

2

(

ẋ2 − ω2x2
)

.

c. An arbitrary path x(t) can be written as the sum of the classical path xcl(t) and a quantum
’detour’ y(t): x(t) = xcl(t) + y(t). Show that the propagator can be written as,

K(x1, t1;x0, t0) =

∫ x1

x0

Dx(t)e i
h̄

S[x(t)]

= e
i
h̄

SCl[x0(t0),x1(t1)] ×
∫ y=0

y=0
Dy(t)e i

h̄
S[y(t),t1−t0] (7)

where Scl is the action associated with the classical path xcl(t). This implies that the depen-
dence of the endpoints is entirely governed by the classical action while the contributions
of non-classical paths add up to a factor which depends only on the time difference t1 − t0.
Hints: (i) discuss why Dx → Dy, (ii) use the stationary phase condition δS = 0 to show
that the path integral factorizes.
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d. Determine xcl(t) and ẋcl(t) from the classical equation of motion derived from the Euler
Lagrange equation:

d

dt

∂L

∂ẋ
− ∂L

∂x
= 0. (8)

Compute the classical action using these results and demonstrate that Scl is indeed respon-
sible for the dependence of the propagator on the spatial coordinates.

3. In one dimensional physics quantum statistics is in a way non-existent and this freedom can be
used to obtain quite counterintuitive insights. A most famous example is the Jordan-Wigner
(JW) transformation: this maps the S = 1/2 spin chain on a problem of spinless fermions. The
mapping itself is an interesting, and not too difficult exercise in second quantization.

The starting point is the one dimensional anisotropic Heisenberg spin chain’ in terms of S = 1/2
spin operators Sα

i living on sites i, having nearest neighbor interactions Jα depending on the
internal spin direction α,

Ĥ = −
∞
∑

i=−∞

(

JxŜ
x
i Ŝ

x
i+1 + JyŜ

y
i Ŝ

y
i+1 + JzŜ

z
i Ŝ

z
i+1

)

. (9)

The basic idea of the JW transformation is to make use of the Pauli principle which tells us that
we can only have zero or one spinless fermion at the same position. Since the Hilbert space of
a single spin 1

2 is two dimensional we can identify the Sz = −1
2 state with the no-fermion state

and the Sz = 1
2 state with the one-fermion state:

| ↓〉 = |0〉 = c|1〉,
| ↑〉 = |1〉 = c†|0〉. (10)

Obviously this identification corresponds to (in this exercise we use h̄ = 1)

Ŝz = c†c− 1

2
, Ŝ− = c, and Ŝ+ = c†. (11)

a. Show that these relations between the spin operators and the Fermi operators are consistent
with the spin commutator relations [Ŝα, Ŝβ] = iεαβγ Ŝ

γ (α, β, γ ∈ {x, y, z}).
b. Unfortunately, fermions on different sites anticommute whereas the spins should commute.

Thus, one should modify the mapping (11) to transform a non-local anticommutation into
a commutation without changing the local commutation relations. In one dimension the
solution was found by Jordan and Wigner. One attaches a string of operators to each
fermion. The string produces the needed minus sign. The mapping becomes

Ŝ+
i = c†i exp(iπ

i−1
∑

j=−∞

c†jcj), (12)

Ŝ−
i = exp(−iπ

i−1
∑

j=−∞

c†jcj)ci, (13)

Ŝz
i = c†i ci −

1

2
. (14)

3



Show that these operators fulfill the spin commutator relations [Ŝα
i , Ŝ

β
j ] = iδijεαβγŜ

γ
i . Hint:

show first that exp(±iπ∑i−1
j=−∞ c†jcj) = Πj<i(1 − 2c†jcj).

c. Use the JW transformation (14) to show that the spin Hamiltonian (9) can be written in
terms of spinless fermions as

Ĥ = −
∑

i

[

t(c†i+1ci + c†i ci+1) + ∆(c†i+1c
†
i + cici+1)

+V (c†i ci −
1

2
)(c†i+1ci+1 −

1

2
)

]

, (15)

where t = (Jx + Jy)/4, ∆ = (Jy − Jx)/4, and V = Jz.

d. We have mapped the spin Hamiltonian (9) to a chain of spinless interacting fermions. Even
in the presence of V much is known, but this is well beyond the scope of this course.
Therefore, from now on we focus on the case of an anisotropic XY-spin chain (Jz = 0). In
this special case life is much easier since (15) reduces to a Hamiltonian of free fermions which
can be diagonalized using the tools we have learned in this course. Transform to momentum
basis c†j = 1

N

∑

q d
†
qe

iqxj (we assume N sites subject to periodic boundary conditions),
consider the fermions with momenta q > 0 and q < 0 separately, and show that the
Hamiltonian can be written as

Ĥ =
∑

q>0

[

εq(d
†
qdq − d−qd

†
−q) + i∆q(d

†
qd

†
−q − d−qdq)

]

, (16)

where εq = −2t cos(qa) and ∆q = −2∆ sin(qa). Here a denotes the lattice spacing.

e. Find the fermionic Bogoliubov transformation
(

aq

a†−q

)

=

(

u v
−v∗ u∗

)(

dq

d†−q

)

(17)

diagonalizing the Hamiltonian and show that the dispersion associated with the excitations
of the spin chain is given by

ωq =
1

2

√

J2
x + J2

y + 2JxJy cos(2qa). (18)

Sketch this result and discuss briefly the cases Jx = Jy 6= 0 and Jx = 0 6= Jy.
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