Assignment 3. (Due Oct 26, 2005)

- 1. Precessing spins in the Heisenberg picture (read ch. 2.2 carefully!):
 - a. Start with Sakurai 2.1 and find the Heisenberg operators for $S_a(t)$ with a = x, y, z as stated in the problem.
 - b. Assume that a system is in either the $|x+\rangle$ or $|x-\rangle$ Heisenberg states. Calculate the expectation values of $S_a(t)$ with a=x,y,z for these states and show that they agree with Eqs. (2.1.61, 2.1.62).
 - c. Find the Heisenberg basis kets $|x\pm,t\rangle$ corresponding to the basis kets $|x\pm\rangle$ at t=0.
 - d. Assume that a system is in either the $|x+\rangle$ or $|x-\rangle$ Heisenberg state. Calculate the probability $|\langle x\pm,t|x\pm\rangle|^2$ that a measurement of $S_x(t)$ at t>0 will result in an eigenvalue equal to the one at t=0.
 - e. Like (d) but evaluate now $|\langle x \mp, t | x \pm \rangle|^2$, i.e. the measurement yields an eigenvalue different from the one at t = 0.
 - f. Calculate the base kets $|y\pm,t\rangle$ of $S_y(t)$ and the probabilities $|\langle y\pm,t|x\pm\rangle|^2$ and $|\langle y\mp,t|x\pm\rangle|^2$ that a Heisenberg state $|x\pm\rangle$ will have eigenvalues $\pm\hbar/2$ of $S_y(t)$ at t>0.
- 2. Eq. (2.2.30) implies that a wave packet spreads in time. We want to understand this by studying the behavior of a Gaussian wave packet, Eq. (1.7.35). We start by setting k = 0 and take $\hbar = 1$ to simplify the manipulations; take V(x) = 0.
 - a. What is the time dependent wave function $\phi_{\alpha}(p,t) = \langle p | \alpha, t \rangle$ in the p-representation corresponding to Eq. (1.7.42)?
 - b. Use this result to find the time dependent dispersion of x, $\langle (\Delta x)^2 \rangle_t$. Note: if you don't know how to represent the x operator in the p representation do exercise Sakurai 1-33(a).
 - c. Use (a) to find the time dependent wave function $\psi_{\alpha}(x,t) = \langle x | \alpha, t \rangle$ (x-representation), corresponding to Eq. (1.7.35).
 - d. Use (c) to find the time dependent dispersion $\langle (\Delta x)^2 \rangle_t$. Does this agree with (b)?
 - e. How does (d) compare with eq. (2.2.30)?
 - f. Can you explain qualitatively why the dispersion in x increases?
 - g. Explain qualitatively what would change when we would have considered the case that $k \neq 0$.
 - h. What is the time dependent dispersion of p, $\langle (\Delta p)^2 \rangle_t$?
 - j. What is the expression corresponding to Eq. (2.2.30) for the time-dependence of the dispersion in p? Does the result for $\langle (\Delta p)^2 \rangle_t$ agree with this?
- 3. Consider the harmonic oscillator Hamiltonian Eq. (2.3.1.). At time t=0 the state $|\alpha\rangle = (|n\rangle + |n+1\rangle)/\sqrt{2}$ is prepared. Evaluate the expectation values $\langle \alpha | H(t) | \alpha \rangle$, $\langle \alpha | x(t) | \alpha \rangle$, and $\langle \alpha | p(t) | \alpha \rangle$ at later times t.

4. Consider a one-dimensional simple harmonic oscillator with angular frequency ω_0 . For t < 0, the system is in the ground state. For t > 0, there is also a time-dependent potential:

$$V(t) = F_0 x \cos \omega t$$

where F_0 is constant in both space and time. Obtain an expression for the the expectation value $\langle x \rangle$ as a function of time using time-dependent perturbation theory to lowest non-vanishing order. Is this procedure valid for $\omega \approx \omega_0$?

Hint: You may use
$$\langle n' | x | n \rangle = \sqrt{\frac{\hbar}{2m\omega_0}} \left(\sqrt{n+1} \, \delta_{n',n+1} + \sqrt{n} \, \delta_{n',n-1} \right).$$

5. Consider a composite system made up of two spin 1/2 particles. For t < 0, the Hamiltonian does not depend on spin and can be taken to be zero by suitably adjusting the energy scale. For t > 0, the Hamiltonian is given by

$$H = \left(\frac{4\Delta}{\hbar^2}\right) \mathbf{S}_1 \cdot \mathbf{S}_2$$

where S_1 and S_2 are the spin operators of particle 1 and 2, respectively.

Suppose that the system is in the state $|+-\rangle$ for $t \leq 0$. Find, as a function of time, the probability for the system to be found in each of the following states $|++\rangle$, $|+-\rangle$, $|-+\rangle$ and $|--\rangle$.

- a) By solving the problem exactly.
 - **Hints:** Express the Hamiltonian in terms of the total spin operator $\mathbf{S} = \mathbf{S}_1 + \mathbf{S}_2$. Find its eigenvalues and eigenvectors. Express the states $|+-\rangle$ etc. in terms of $|sm\rangle$.
- b) By solving the problem assuming the validity of time-dependent perturbation theory with H as a perturbation switched on at t = 0. Derive the probabilities to leading (non-zero) order. Under what condition does (b) give the correct results?

Notation: The state $|+,-\rangle$ is an eigenstate of \mathbf{S}_1^2 , \mathbf{S}_2^2 , S_{1z} and S_{2z} :

$$S_{1z} |+,-\rangle = +\hbar/2 |+,-\rangle$$
, $S_{2z} |+,-\rangle = -\hbar/2 |+,-\rangle$.

The state $|sm\rangle$ is an eigenstate of \mathbf{S}_1^2 , \mathbf{S}_2^2 , \mathbf{S}^2 and S_z :

$$\mathbf{S}^2 |sm\rangle = \hbar^2 s(s+1) |sm\rangle, \qquad S_z |sm\rangle = \hbar m |sm\rangle.$$