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Why high Tc is exciting.

Jan Zaanen
Instituut-Lorentz for Theoretical Physics, Leiden University, P.O. Box 9506, 2300 RA Leiden, The Netherlands

(today)

It is a common wisdom that the metallic state of solids has to do with a quantum-gas of particles
which behave like non-interacting electrons. It has become clear during the last decade that systems
of strongly interacting electrons are able to exhibit far more interesting quantum-mechanical behav-
iors. The best evidence has been found in transition metal oxides, especially so in the copper-oxide
(high Tc) superconductors. Here I will present a sketch of the main developments. The plot is
as follows: I am going to start off by shedding doubts on the established wisdom in metal physics
(section I). In section II I will introduce the ‘dynamical stripes’, referring to an unprecedented form
of quantum fluctuating order occurring on nanometer length- and picosecond time scales in the
high Tc superconductors. These dynamical stripes disappear at longer times where the physics
of the superconductivity emerges. This physics is highly anomalous and I will discuss the popu-
lar notion that it is not about quasiparticles but instead about the critical fluctuations associated
with a quantum phase transition (section III). Such a phase transition should have to do with the
disappearance of order but apparently this order cannot be detected by conventional experiments
(section IV). In the final section I will further illustrate this notion of ‘hidden order’ with ideas of
our group in Leiden. This centers around the notion that a stripe phase carries a very unusual form
of order (‘geometric order’), which can persist while the charge and spin degrees of freedom of the
stripe phase are quantum disordered, disappearing only at the high dopings associated with the best
superconductors.

I. THE UNREASONABLE FERMI-LIQUID.

Much of the present day electronics revolution would
not have been possible without the breakthroughs hap-
pening in the first half of the twentieth century in funda-
mental physics. In this era, the band-structure picture of
electrons in solids emerged. This picture is based on the
notion that the electrons behave approximately as non-
interacting fermions and all what remains to be done is to
solve the Schrödinger equation describing the motion of a
single electron through the potential exerted by the static
ion-lattice. The ultimate triumph of this idea was the ex-
planation of conventional superconductivity in terms of
the Bardeen-Cooper-Schrieffer (BCS) theory. According
to this theory, superconductivity is a sibling of the gas of
non-interacting electrons. Under the influence of any at-
tractive force, these fermions form pairs, and these pairs
can subsequently be viewed as a gas of bosons which have
to Bose-Einstein condense in the superconducting state.

This ‘paradigm’ has been extremely successful. Read-
ing the older textbooks on the subject one gets the im-
pression that it explains everything. Also in modern
fields like mesoscopic- and nano physics it is taken as
the omnipotent physical law, to the extent that theories
are judged right or wrong pending their conformation to
the principle. However, is it obvious? All one has to
realize is that electrons carry around a unit of electrical
charge, and in typical solids electrons are at average an
Angstrom or so apart. Hence, a simple estimate shows
that these electrons repel each other with an energy of
order of electron-volts. How can such huge interactions
be completely neglected?

In conventional systems, like copper wire, silicon chips
and neutron stars, the answer to this question is well es-
tablished: at the densities of interest the Fermi-energy,
being the measure of the zero-point kinetic energy, is even
larger than the Coulomb energy and under this condition
one can pretend that the electrons do not interact. How-
ever, this argument only works when the interactions are
long ranged while the potentials set by the ion lattice are
weak. In this regard, copper cum suis are special and
many systems have been identified where this argument
does not apply. In such cases one faces a problem of prin-
ciple. Even when quantum mechanics can be neglected,
dense systems of strongly interacting particles (classical
fluids) are very hard to describe, and quantum mechanics
makes this much harder. Nevertheless, for a long time it
appeared that nature was nice for theoretical physicists.
Although one had to give up on a complete description,
it appeared that one could get away with a Fermi-gas
description at large length- and time scales: the Fermi-
liquid notion of Landau.

Landau devised this strictly phenomenological descrip-
tion in the late 1950’s for 3He, the first bad player which
was identified. A number of other examples followed (like
the heavy fermion systems) and in the late 1980’s the
Fermi-liquid notion was implicitly or explicitly consid-
ered to be the universal truth. Apparently, the reasons
why Landau’s ideas were initially considered as an act of
immense intellectual courage were forgotten. Consider
3He; surely its low temperature collective physics is the
Fermi-gas, although the effective fermions are much heav-
ier than real 3He atoms. However, at the same time its
short distance physics as measured by neutron scatter-
ing is barely different from that of the classical 3He fluid
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found at higher temperatures. This is disturbing since
it is well understood that such a classical van der Waals
fluid is far from being a non-interacting gas. It is much
closer to a crystal with defects and all motions are highly
concerted. Hence, a miracle is happening in quantum
3He: at short distances it is like a van der Waals fluid
kept in a highly collective motion by quantum mechan-
ics, changing at large distances in an entity where the
effective 3He atoms seem to fly straight through each
other, not noticing each others influence except than for
the Pauli principle. How can this happen? I learned
from Bob Schrieffer that nobody has a clue and that this
problem was simply abandoned, out of despair.

These believes got badly shaken with the arrival of high
Tc superconductivity. Despite its obvious failure in this
context, the Fermi-liquid was defended with a religious
zeal. In hindsight, the 1990’s can be characterized as the
era where the condensed matter community was forced
to abandon its paradigm, in a painful process which is
not dissimilar from the sociological dynamics described
by the philosopher Kuhn.

For whatever reason, society seems to become more
and more susceptible to a phenomenon called hype. A
good example is the recent outrage around e-commerce,
but the physics community is susceptible as well. High
Tc superconductivity started out like this in 1987. In
the aftermath of the 1957 discovery of the BCS theory,
a concerted effort was organized to increase the super-
conducting transition temperature by designing materi-
als based on the BCS understanding. After 20 years or so
this got stuck at a cold 24 K. The discovery of Bednorz
and Müller of a Tc = 34K superconductor in a copperox-
ide triggered a hype which got serious by the discovery
of a truly high temperature (90 K) copperoxide super-
conductor by Paul Chu et al. in early 1987. For the next
couple of years high Tc raged like a wildfire through the
physics community, with the predictable outcome of a
severe hangover when it became clear that the rewards
associated with commercial superconductivity would not
materialize.

As an unplanned side effect, these copper oxides were
investigated in an unprecedented detail (±105 papers)
while it stimulated the refinement of a variety of exper-
imental techniques, varying from crystal growth to pho-
toemission and neutron scattering. The main result of
this effort is that it once and for all proved the Fermi-
liquid and the BCS theory to be wrong. Despite this huge
amount of experimental information, high Tc supercon-
ductivity is still a mystery and it has only become more
mysterious in the course of time. Being a mystery is not
necessarily a sufficient condition for a flourishing science
pursuit. However, it is a widespread sentiment among
the specialists to be utterly fascinated by the problem,
and this sentiment rests on the perception that the ex-
periments guide us into novel but very fertile areas of
physics research. The bottom-line is that since a couple

of years the hangover is over.

II. MESOSCOPIC QUANTUM DYNAMICS:

STRIPES.

The face of physics is a function of scale. In con-
densed matter the shortest scale is the lattice constant
and the physics is that of electrons moving in their (quasi)
atomic orbitals, often called ‘chemistry’. In the estab-
lished paradigm (e.g., copper) it is envisaged that these
chemistry electrons smoothly cross-over into Fermi-liquid
quasi-electrons: all that happens is that the Coulomb in-
teractions of the lattice scale disappear due to metallic
screening. In cuprates and other correlated oxides this
is an entirely different story. The lattice scale physics is
reasonably well understood: it is the physics of the doped
Mott-insulator. Nearly all transition metal salts are in-
sulators and this is due to the dominance of the atomic
Coulomb interactions localizing the electrical charges of
the electrons (the Mott-insulating state). The spins of
the electrons can still move freely and one typically finds
quantum-antiferromagnets. High Tc superconductivity
emerges when a CuO based Mott-insulator is doped. The
active units are two dimensional CuO layers, separated
by highly ionic oxidic layers containing uninteresting el-
ements like La. By chemical substitutions in the latter
one can add or remove electrons from the CuO layers.
This introduces charge carriers into the planes, which
delocalize quantum-mechanically. It is by now well un-
derstood that this delocalization, leading to the metal-
licity, is a highly collective affair. These moving charges
scramble the spin system and as a result the antiferro-
magnet quantum-melts locally and the charge carrier is
surrounded by a droplet of quantum spin liquid.

The above picture is appropriate for a single, isolated
carrier but it changes drastically at the carrier densities
of relevance to the superconductor which is rather high
(one out of every eight unit cells contains a hole, or so).
A collectivity sets in of a new kind having no precedent
elsewhere: the electron stripes. Instead of moving inde-
pendently, the charge carriers organize on lines, ‘rivers of
charge’, separated by Mott-insulating and antiferromag-
netic domains, and these lines themselves are subjected
to quantum meandering motions on the CuO planes. As
it turns out, these stripes can be brought to a standstill
by a variety of tricks (the so-called LLT lattice deforma-
tions, external magnetic fields), all of which involve the
removal of a relative small amount of kinetic energy from
the electron system. Under these circumstances static
stripe phases are formed where these ‘rivers of charge’,
form a regular structure which can easily be studied by
conventional means. It turns out that these stripe phases
are ubiquitous in doped Mott-insulators: they have not
only been found in cuprates but in all other doped Mott-
insulators which have been studied up to now, like the
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manganites and the nickelates. In Leiden, Hans Brom
and coworkers are investigating the ordering dynamics
of the stripes using NMR and NQR, and these studies
reveal that much remains to be understood, even when
stripes are solidifying.

One statement is conclusive: static stripe phases are
not great for superconductivity. In fact, when stripes
become static the system tends to be (quasi) insulating.
In a general sense they can be looked at as a special
kind of Wigner (=electron) crystal. However, it appears
that in the superconductors stripes are still around but
now as quantum fluctuating textures with a physical re-
ality on mesoscopic length (1-10 nanometer) and time

scales (picoseconds). A crude analogy exists with the
confinement phenomenon of quantum-chromo dynamics.
Stripes start to form at a scale of a couple of lattice con-
stants as relatively mildly fluctuating entities. However,
upon increasing the scale these quantum fluctuations be-
come more and more severe to get truly out of hand at
picosecond time scales. This is like the process occur-
ring in the QCD vacuum where at short distances the
right objects are gluons and quarks. The quark/gluon
fluctuations become more and more severe in going to
large distances with the effect that a qualitative change
in the physics occurs at the confinement scale where nu-
clear physics emerges. In the cuprate context, when the
stripe quantum fluctuations get out of hand, the physics
of the high Tc superconducting state emerges.

How do we know? The above picture is intimately
linked to progress in ‘big gun’ condensed matter experi-
mentation: photoemission and inelastic neutron scatter-
ing. Until recently, no experimental means were available
to directly probe this dynamical regime of mesoscopic
lengths and -times. How to probe fluctuating nanometer
scale textures on a picosecond time scale? Static phe-
nomena on nanometer length scales are easily accessible
with ‘conventional’ nano-technology. Laser technology
offers access to short times but averages automatically
over micrometer lengths. However, both photoemisson
and inelastic neutron scattering have in principle access
to electronic textures on nanometer length scales, which
are fluctuating on picosecond time scales. Due to an
impressive progress over the last years, the data have
become good enough to be conclusive about the stripy
mesoscopics in the high Tc cuprates. Both experiments
reveal features which indicate that both the spin- and the
electron dynamics acquire a one dimensional character,
consistent with the stripe picture on the aforementioned
time- and length scales.

This theme is actually more general. I refer to a re-
cent piece by Laughlin and coworkers (‘the middle way’),
where it is argued that more surprises should be hidden in
this mesoscopic dynamical regime which will only reveal
themselves when the appropriate experimental machin-
ery is available. For instance, a central mystery in biology
is why proteins act as flawless machines, and this is obvi-

ously related again to hard-to-probe mesoscopic dynam-
ics. Surely, neither photoemission nor neutron scattering
have to say much about this mystery, and Laughlin et al.

argue that it should be a highest priority for experimen-
talists to figure out new machines giving access to these
scales.

III. COMPETING ORDERS

It is definitely not so that with the dynamical stripes
the problem of high Tc superconductivity is solved.
Along the lines of the QCD analogy of the previous sec-
tion, at the stripe ‘confinement’ scale, the face of physics
changes drastically and the long wavelength physics of
the superconductor is yet a completely different story.
This long wavelength regime is easily accessible by con-
ventional condensed matter experimentation and it is in
this regime where the mystery is most manifest. Superfi-
cially, it has features which resemble a BCS supercon-
ductor, and there was a period that the opinion was
widespread that the cuprate superconductors somehow
rediscovered BCS physics at sufficiently low temperatures
and large scales (compare with the 3He example). How-
ever, in hindsight it appears that a variety of anomalies
were worked under the rug, while other anomalies became
manifest with the improving experimentation.

There is no debate regarding the metallic state realized
at temperatures above the superconducting transition:
it is a quantum state of matter which has not a single
feature in common with the Fermi-liquid. The newest
data indicate that this state continues smoothly into the
superconducting state and it is therefore an appropri-
ate starting point to discuss high Tc’s anomalies. One
does not have to dig deep: the simple property resistivity
makes the point as clear as anything else. The resistivity
in the normal state of the best high Tc superconductors
behaves in an extremely simple fashion: it just increases
linearly with temperature, from Tc ∼ 100K up to the
highest temperatures measured (1200 K). This is one ex-
ample of the regularity of the high Tc phenomenon as I
mentioned earlier: such a simple behavior should have a
simple and elegant explanation. Viewed from a Fermi-gas
perspective it is utterly unreasonable. When the electri-
cal current is carried by quasiparticles it has to be that
the resistivity is a more interesting function of tempera-
ture than a straight line. The reason is that the dissipa-
tion mechanism of the quasiparticle current has to change
as function of temperature. At low temperature, there
are only other quasiparticles around and the resistivity
should be proportional to T 2. At intermediate tempera-
tures phonons take over and a non-universal behavior is
expected while at high temperatures the inelastic mean
free path becomes of order of the lattice constant and
the resistivity should become temperature independent.
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Hence, quasiparticle currents cannot cause linear resis-
tivities and something else is carrying the current! What
else can it be instead? There is only a single idea around
which makes sense. It is rooted in a simple and gen-
eral idea: the current is carried by the quantum-critical
fluctuation associated with a quantum phase transition.

To appreciate the meaning of this sentence, one should
not be scared by quantum-field theory. Quantum-field
theory projects an image that it is an incomprehensible,
overly mathematical affair which is barely ever of conse-
quence, at least outside the realms of high energy physics.
This is quite besides the truth. It is better be regarded as
a collection of powerful principles and concepts which ap-
pear as increasingly simple and beautiful when one gets
used to the idea. The problem is just that it is a relatively
novel discipline which emerged in its present incarnation
in the 1970’s, and it is still to be included in the physics
teaching programs. Apparently, field theory is becoming
alive in the context of high Tc superconductivity, but
also in quantum Hall and quantum magnetism, and this
is the real reason behind the perception that substantial
progress is made in quantum condensed matter physics.

Quantum-field theory is about the quantum mechan-
ics of systems with an infinity of degrees of freedom and
such systems are governed by principles which are dif-
ferent from those of the few particle problems getting
exposure in the textbooks. Its modern incarnation rests
on the path-integral formalism: a quantum system in D
space dimensions can be viewed as a statistical physics
problem in D+1 dimensions, with some special effects
like the (anti) periodicity in the time direction, Berry
phases, etcetera. The role of temperature in the sta-
tistical physics problem is taken by the coupling con-
stant, measuring the strength of the quantum fluctu-
ations, while physical temperature enters the quantum
problem as the inverse length of the imaginary time axis.

Taking this seriously, the idea of quantum-criticality
becomes exceedingly simple. Statistical physics is about
phase transitions between ordered states, breaking some
symmetry spontaneously, and disordered states where
the symmetry is restored. At the phase transition these
two collective states of matter are competing and when
the phase transition is continuous this competition looks
the same on all scales, up to some short distance cut-off.
This universe becomes self-similar, which in turn implies
that correlation functions become algebraic, decaying like
x−η. Imagine now an ordered system at zero temper-
ature, where the strength of the quantum-fluctuations
can be tuned from the outside. At some point a transi-
tion will follow to a quantum-disordered state. Accord-
ing to the path integral formalism one can think about
this quantum phase transition as a classical phase transi-
tion in space-time. When this is a continuous transition
the path-integral formalism implies that in space-time a
self-similar state is realized: the quantum critical state.
Since everything is algebraic, also the real-time dynamics

becomes algebraic and dynamical responses behave typ-
ically like power laws ∼ 1/Eα (‘cusps’, ‘branch cuts’),
where E is the energy pumped in the system from the
outside. This is in marked contrast with quasi-particle
excitations which show up as sharp spikes (‘poles’) in re-
sponse functions. Quasiparticles correspond with lumps
of energy localized at some point in space-time and at
the the critical point this is not possible because the
quasiparticle breaks the scale invariance. Instead, what
one has are excitations (‘quantum critical fluctuations’)
which fill all of space-time.

During the last few years, the quality of the data on
the high Tc superconductors, coming from photoemis-
sion, neutron scattering and optical experiments have im-
proved dramatically. Although these experiments mea-
sure different properties, they all show that the low lying
excitations of the have a cusp like nature, at least in the
best cuprate superconductors. This in itself already gives
a strong support that we are dealing with a quantum-
critical system. However, a cross-check is possible. The
above discussion refers to data taken at very low tem-
peratures. A next specialty of the quantum critical state
is that temperature plays a quite peculiar role. As al-
ready stated, in the path-integral formalism temperature
enters as the inverse length of the imaginary time axis
and at zero temperature the time axis is infinitely long.
However, at finite temperatures the time axis has a fi-
nite length and, therefore, temperature breaks the scale

invariance in space-time! Hence, besides the short dis-
tance cut-off (which can be argued to be easily of order
1000 K in the cuprates) the only scale in the problem
is temperature itself! Using general properties of finite
size scaling one can argue that zero frequency properties
measured at a finite temperature should be just linearly
proportional to temperature. I set out to explain why
the resistivity is behaving like this, to find a most nat-
ural and general rational for this behavior in terms of
quantum criticality! This is not all because many other
properties, including those at finite energies and temper-
atures, find a natural explanation within this framework.

IV. HIDDEN ORDER.

Phase transitions tend to happen at isolated points
in control parameter space and the same applies to
quantum-phase transitions. The most important con-
trol parameter is the coupling constant, parametrizing
the strength of the quantum fluctuations, and there are
good reason to believe that this coupling constant is in
turn controlled by the amount of doping in the high Tc
cuprates. The perfect quantum-criticality as described in
the previous section is found at a particular doping which
is in the close vicinity of the doping density where Tc is
at maximum. Going away from this point, bumps and
wiggles (e.g., ‘pseudo-gap’) appear in physical properties
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which are consistent with the notion that, although the
system cannot make a choice at short distances/short
times/high temperatures, it has made up its mind at
large distances/long times/low temperatures. The phase
transition is about two competing states of matter which
are differing in symmetry and away from the phase tran-
sition one of the two states wins the contest. What are
these states?

So much is clear that the quantum criticality is found
right in the middle of the superconducting regime, and
surely these two states cannot be distinguished on their
capacity to spontaneously break the gauge symmetry.
Something else is disordering. On the high doping side
there is a sense that things start to look more normal
(BCS-like). Although far from being a proven fact, the
notion is popular that this state is at least symmetry-
wise indistinguishable from a conventional superconduc-
tor. Hence, on the underdoped side a form of order has to
be present which is alien to a Fermi-liquid type supercon-
ductor. Remarkably, it is at present completely unclear
what this order is. Although it reveals its presence in-
directly through the quantum-criticality, it is apparently
impossible to see it directly. Experimentalists have tried
hard and found nothing. For this reason it is called the
hidden order.

To unravel the nature of this hidden order is the holy
grail of high Tc. Given that it disappears at the max-
imum Tc, the belief is widespread that it also will tell
us something about the origin of the superconductivity.
A number of ingenious theoretical proposals are around
where this link is made quite explicit. These all belong to
the class of theories based on the idea of spin-charge sep-
aration. The basic idea is quite simple. It is asserted that
the electrons fall apart in particles which carry the charge
of the electron (‘holons’) and excitations which carry its
spin (‘spinons’). The electron is a fermion which cannot
bose condense to form a superconductor. However, when
the spinon carries away the fermionic character of the
electron the holon is a charge e boson and these bosons
can in principle condense at a high temperature. Al-
though it is well established that spin-charge separation
happens all the time in one dimensional systems, it has
appeared to be very difficult to demonstrate that it can
happen in higher dimensional systems like the cuprate
superconductors. There is a variety of uncontrolled the-
ories around, based on spin-charge separation, which all
have the structure of a QCD-like gauge theory. These
have in common that besides the superconductivity very
unconventional forms of long range order can occur. A
first example is the SU(2) gauge theory by Patrick Lee
and coworkers, suggesting that the hidden order is a flux

phase. In a flux phase, spontaneous electrical currents
are flowing around the plaquettes in the lattice, setting
up a pattern of magnetic moments. These moments are
not easy to observe because they are very small. How-
ever, they are in principle observable and experimental-

ists have looked hard without finding anything. A more
recent idea is the Ising (Z2) gauge theory for spin-charge
separation by Matthew Fisher and coworkers. They pro-
pose a transition where the topological character of the
gauge-vacuum is changing, coming up with the prediction
that in the hidden order phase the system should remem-
ber that it contained Abrikosov flux lines, even when it
is made non-superconducting. In the mean time, experi-
ments have been performed to check this prediction, with
a negative outcome.

Besides these ideas centered around the spin-charge
separation idea, there are a number of other propos-
als around like the ‘conventional’ flux phases (Varma,
Laughlin and coworkers), as well as the ideas of Sachdev
and coworkers regarding a possible symmetry change of
the superconducting state itself. Although the books are
not closed on the subject, it appears that these all suffer
from the same problem as the gauge theories: if around,
these kinds of order should have been observed in the
mean time. Let me finally turn to a suggestion from our
Leiden group. I find that it should be taken seriously,
for two reasons: (a) it is firmly based on stuff we know is
real, the stripes, (b) it is sufficiently outrageous to have
a chance to be even true.

V. STRIPES AND GEOMETRIC ORDER.

I have now arrived at the point where the circle can be
closed. I started out the discussion of high Tc supercon-
ductivity with the anomalous behaviors called dynamical
stripes, to give it no further mention in the discussion of
the long-wavelength quantum critical behaviors. Could
it be that the stripes and the quantum criticality have
to do with each other? This is not obvious. Recalling
the analogy with QCD, the experiments indicate that
the stripy stuff literally disappears at a scale which is to
be considered as small in the context of the quantum-
critical behaviors seen in the optimally superconductors.
Although stripes occur at distances which are quite large
as compared to the lattice constant, stripy things should
be around on macroscopic scales to be of relevance to the
hidden order and the quantum criticality. Stripes can be
forced to order, so that this requirement is fulfilled, but
for this to happen one has to pay the price that super-
conductivity disappears.

These statement are based on the perception that
stripe order coincides with charge order and spin order
(antiferromagnetism). These orders are easy to observe.
The meaning of the dynamical stripes is that the charge-
and spin are indeed observed, but that they appear to
be deep in the quantum disordered regime, far from the
phase transition. At the same time, I also argued that
the low energy physics of the cuprates emerges from this
‘stripy ultraviolet’ which is so strikingly different from the
electron ultraviolet of simple metals. Is there something
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in this ‘short’ distance stripe physics which we have over-
looked, which can survive up to the macroscopic scale?

I gave in fact an incomplete characterization of stripe
order in the second section. Stripes are more than just
spin and charge order. They carry yet another form
of order which is so unfamiliar that it only got formu-
lated mathematically last year, although the community
at large has been staring at it since 1994. The crucial
experimental observation is that the charge stripes are
at the same time Ising domain walls in the stripe anti-
ferromagnet. Every time one passes a charge stripe the
spin ordering pattern changes from up-down-up-down to
down-up-down-up. Why this happens is actually quite
well understood. Many theoretical calculations, includ-
ing the ones which led to the theoretical discovery of the
stripes by Gunnarsson and myself in 1987, have repro-
duced this ‘anti-phase boundarieness’. This physics is
not essential for the further discussion and I refer the
reader to the relevant literature. Viewed from a sym-
metry perspective, the anti-phase boundarieness at first
appears as an absurdity. Domain walls are topological
defects associated with a discrete (Ising-like, Z2) symme-
try. The problem is that the spin system is a Heisenberg
spin system: the antiferromagnetic order parameter can
as well point along the z-, x- or y-direction, or anywhere
in between. In theorist’s jargon this is called O(3) sym-
metry and such a symmetry only allows for topological
defects called skyrmions, which are entirely different from
domain walls. Hence, calling stripes domain walls in the
spin system is just a misnomer.

As it turns out, the same basic Z2 structure is present
in the exact (Bethe-ansatz) solutions for the one dimen-
sional systems. It turns out to be responsible for the
spin-charge separation: the Ising domain wall becomes a
point (or ‘particle’) in one dimension and it binds to the
electron, thereby ‘eating’ the spin of the electron, turn-
ing it into a holon. In two dimensions, domain ‘points’
turn into domain ‘lines’ and after binding the electrons
to these domain lines one obtains precisely the stripes.
Stripes might be called ‘spin-charge separation in two di-
mensions’ or, semantically more correct, the Luttinger
liquid might be called a ‘mildly fluctuating one dimen-
sional stripe phase’.

I have still not answered the question: the stripe (or
holon) is a domain wall in what? Much helped by the
highly advanced theory for the one dimensional case we
only recently figured out the answer. This stuff is sub-
lattice parity.

Sublattice parity refers to a geometrical property of
the space in which the spin system lives. Given that spin
system is antiferromagnetic, there is a crucial difference
between a bipartite and non-bipartite embedding space.
A bipartite lattice is one which can be subdivided into
two sublattices (A and B) and a simple square lattice as
realized in the cuprates is a good example. This subdi-
vision can be done in two ways: · · · −A− B −A− B · · ·

or · · · − B − A − B − A − · · ·, and this ‘sublattice par-
ity’ is obviously an Ising degree of freedom. Given that
the nearest-neighbor interactions are by far the strongest,
one can realize a neat antiferromagnet on such a bipar-
tite lattice by just putting, say, up-spins on the A- and
down spins on the B-sublattice. If the bipartiteness is
destroyed, the spin system gets frustrated because one
can no longer satisfy the requirement that all neighbor-
ing spins are anti-parallel. In fact, the only property of
the embedding space which matters for the quantum an-
tiferromagnet is if the embedding space is bipartite or
not.

Strangely, the Bethe-Ansatz solutions for the one di-
mensional systems show unambiguously that the electron

charge binds to flips in the sublattice parity. This defines
a new bipartite space in which the spins move and this
is behind the explanation of spin-charge separation. Ap-
plying this one dimensional recipe to the two dimensional
case one obtains the stripes. The antiphase-boundariness
as seen in the experiments reveals that sublattice parity is
around as a ‘hidden variable’. In the static stripe phases
this sublattice parity is ordered, because every time one
crosses a charge stripe the antiferromagnet reverses its
direction, without any exception.

Therefore, in the ordered stripe phases sublattice par-
ity order is far from hidden. However, it is not hard to
imagine that sublattice parity actually goes undercover.
A priori, there is nothing against the theoretical possi-
bility that the charge- and spin degrees of freedom quan-
tum disorder, long before sublattice parity order gives up.
Imagine that the stripes are still intact lines, maintaining
their domain wall character, while these lines themselves
form a quantum fluid. Only if one would take snapshots
one would be able to see that there are two different types
of domains. If one waits too long one only sees the av-
erage, characterized by equal amounts of A-B-A-B and
B-A-B-A sublattice parity. One would expect that even-
tually at sufficiently high doping even sublattice parity
order should disappear. For instance, assuming that the
overdoped state of the cuprates is a conventional BCS
superconductor, it has to be that sublattice parity or-
der has disappeared because this kind of order is alien
to a conventional superconductor. Sublattice parity or-
der has to disappear at a quantum-phase transition. Our
suggestion is that high Tc’s hidden order is sublattice
parity order, which is disappearing at the famous quan-
tum critical point.

This is the simple idea. However, as a pleasant circum-
stance we found out that it is like opening a Pandora’s
box of interesting theoretical physics. The reason is that
sublattice parity is a geometrical structure, comparable
but far simpler than the physical space-time of general
relativity. At the quantum phase transition, where the
sublattice parity order is disappearing, it is not so much
the spins or the charges which go critical, but it is in-
stead the effective space-time in which they are living
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which is undergoing the critical fluctuations. This sug-
gests that it has something to do with the notoriously
difficult problem of quantum gravity. However, we are
much helped by the rather simple nature of ‘sublattice
gravity’. With little success, theorists have attempted
to map gravity on a gauge theory. We found out that
this strategy does become very successful in the present
context: the gauge theory of relevance turns out to be
Wegner’s Z2 gauge theory. This is a lucky circumstance,
because this is one of the few gauge theories which is
completely understood. Among others, the phase transi-
tion where sublattice parity order disappears turns out to
correspond with the confinement transition of the gauge
theory which is known to be a second order transition.

Did we solve the problem? It is too early to say, be-
cause we are still facing considerable theoretical diffi-
culties associated with the fermion signs – we seem to
have a reasonable understanding of the theory when the
matter (spin-, charge-) fields are bosonic but there are
theoretical- as well as experimental (nodal states) reasons
to believe that a sign structure is around. More worri-
some, when the stripes are dynamical sublattice parity
order gets very well hidden indeed! It seems fundamen-
tally impossible to observe it directly and only its indirect
influence on especially the spin system is accessible by ex-
perimental means. We do in fact predict a new type of
spin-like order (the quantum spin-nematic) which can be
nailed down using conventional experimental means but
it is not said that this state is also realized. It is a weird
state and it cannot be excluded that it is lying somewhere
on an experimentalists shelf, as suspected machine prob-
lem. However, we are not optimistic in this regard and
there is nothing in the theory saying that this state has

to be realized.
The bottom-line is that sublattice parity order is suf-

fering from the problem that it is too well hidden. For
the time being we take the liberty to continue working
on it, finding inspiration in Dirac’s principle that when
the mathematics is beautiful nature will do it.
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