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Abstract

An introductory survey of the theoretical ideas and calculations and the experimental results which de-
part from Landau Fermi liquids is presented. The common themes and possible routes to the singularities
leading to the breakdown of Landau Fermi liquids are categorized following an elementary discussion
of the theory. Soluble examples of singular or non-Fermi liquids include models of impurities in metals
with special symmetries and one-dimensional interacting fermions. A review of these is followed by a
discussion of singular Fermi liquids in a wide variety of experimental situations and theoretical models.
These include the eKects of low-energy collective Muctuations, gauge Aelds due either to symmetries
in the Hamiltonian or possible dynamically generated symmetries, Muctuations around quantum critical
points, the normal state of high-temperature superconductors and the two-dimensional metallic state. For
the last three systems, the principal experimental results are summarized and the outstanding theoretical
issues are highlighted. c© 2002 Elsevier Science B.V. All rights reserved.

PACS: 7.10.Ay; 71.10.Hf; 71.10.Pm; 71.27.+a
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1. Introduction

1.1. Aim and scope of this paper

In the last two decades a variety of metals have been discovered which display thermodynamic
and transport properties at low temperatures which are fundamentally diKerent from those of the
usual metallic systems which are well described by the Landau Fermi-liquid theory. They have
often been referred to as Non-Fermi liquids. A fundamental characteristic of such systems is that
the low-energy properties in a wide range of their phase diagram are dominated by singularities
as a function of energy and temperature. Since these problems still relate to a liquid state of
fermions and since it is not a good practice to name things after what they are not, we prefer
to call them singular Fermi liquids (SFL).

The basic notions of Fermi-liquid theory have actually been with us at an intuitive level since
the time of Sommerfeld: He showed that the linear low-temperature speciAc heat behavior of
metals as well as their asymptotic low-temperature resisitivity and optical conductivity could
be understood by assuming that the electrons in a metal could be thought of as a gas of
non-interacting fermions, i.e., in terms of quantum mechanical particles which do not have
any direct interaction but which do obey Fermi statistics. Meanwhile, Pauli calculated that the
paramagnetic susceptibility of non-interacting electrons is independent of temperature, also in
accord with experiments in metals. At the same time it was understood, at least since the work
of Bloch and Wigner, that the interaction energies of the electrons in the metallic range of
densities are not small compared to the kinetic energy. The rationalization for the qualitative
success of the non-interacting model was provided in a masterly pair of papers by Landau
[152,153] who initially was concerned with the properties of liquid 3He. This work epitomized
a new way of thinking about the properties of interacting systems which is a cornerstone of
our understanding of condensed matter physics. The notion of quasiparticles and elementary
excitations and the methodology of asking useful questions about the low-energy excitations
of the system based on concepts of symmetry, without worrying about the myriad unnecessary
details, is epitomized in Landau’s phenomenological theory of Fermi liquids. The microscopic
derivation of the theory was also soon developed.

Our perspective on Fermi liquids has changed signiAcantly in the last two decades or so.
This is due both to changes in our theoretical perspective, and due to the experimental devel-
opments: on the experimental side, new materials have been found which exhibit Fermi-liquid
behavior in the temperature dependence of their low-temperature properties with the coePcients
often a factor of order 103 diKerent from the non-interacting electron values. These obser-
vations dramatically illustrate the power and range of validity of the Fermi-liquid ideas. On
the other hand, new materials have been discovered whose properties are qualitatively dif-
ferent from the predictions of Fermi-liquid theory (FLT). The most prominently discussed
of these materials are the normal phase of high-temperature superconducting materials for
a range of compositions near their highest Tc. Almost every idea discussed in this review
has been used to understand the high-Tc problem, but there is no consensus yet on the
solution.

It has of course been known for a long time that FLT breaks down in the Muctuation regime
of classical phase transitions. This breakdown occurs in a more substantial region of the phase
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Fig. 1. Schematic phase diagram near a quantum critical point. The parameter along the x-axis can be quite general,
like the pressure or a ratio of coupling constants. Whenever the critical temperature vanishes, a QCP, indicated
with a dot in the Agure, is encountered. In the vicinity of such a point quantum mechanical, zero-point Muctuations
become very important. However, when Tc is Anite, critical slowing down implies that the relevant frequency scale
goes as ! ∼ |Tc − T |�z , dwarAng quantum eKects; the standard classical critical methodology then applies. An
example of a phase diagram of this type for MnSi is shown in Fig. 34 below.

diagram around the quantum critical point (QCP) where the transition temperature tends to zero
as a function of some parameter, see Fig. 1. This phenomenon has been extensively investigated
for a wide variety of magnetic transitions in metals where the transition temperature can be
tuned through the application of pressure or by varying the electronic density through alloying.
Heavy fermions, with their close competition between states of magnetic order with localized
moments and itinerant states due to Kondo eKects, appear particularly prone to such QCPs.
Equally interesting are questions having to do with the change in properties due to impurities
in systems which are near a QCP in the pure limit.

The density–density correlations of itinerant disordered electrons at long wavelengths and low
energies must have a diKusive form. In two dimensions this leads to logarithmic singularities in
the eKective interactions when the interactions are treated perturbatively. The problem of Anding
the ground state and low-lying excitations in this situation is unsolved. On the experimental
side, the discovery of the metal–insulator transition in two dimensions and the unusual properties
observed in the metallic state make this an important problem to resolve.

The one-dimensional electron gas reveals logarithmic singularities in the eKective interactions
even in a second-order perturbation calculation. A variety of mathematical techniques have been
used to solve a whole class of interacting one-dimensional problems and one now knows the
essentials of the correlation functions even in the most general case. An important issue is
whether and how this knowledge can be used in higher dimensions.
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The solution of the Kondo problem and the realization that its low-temperature properties
may be discussed in the language of FLT has led in turn to the formulation and solution of
impurity models with singular low-energy properties. Such models have a QCP for a particu-
lar relation between the coupling constants; in some examples they exhibit a quantum critical
line. The thermodynamic and transport properties around such critical points or lines are those
of local singular Fermi liquids. Although the direct experimental relevance of such models
(as of one-dimensional models) to experiments is often questionable, these models, being sol-
uble, can be quite instructive in helping to understand the conditions necessary for the break-
down of FLT and associated quasiparticle concepts. The knowledge from zero-dimensional and
one-dimensional problems must nevertheless be extrapolated with care.

A problem which we do not discuss but which belongs in the study of SFLs is the quantum
Hall eKect problem. The massive degeneracy of two-dimensional electrons in a magnetic Aeld
leads to spectacular new properties and involves new fractional quantum numbers. The essentials
of this problem were solved following Laughlin’s inspired variational calculation. The principal
reason for the omission is Arstly that excellent papers reviewing the developments are available
[213,72,111] and secondly that the methodology used in this problem is in general distinct from
those for discussing the other SFLs which have a certain unity. We will however have occasions
to refer to aspects of the quantum Hall eKect problem often. Especially interesting from our
point of view is the weakly singular Fermi liquid behavior predicted in the �= 1

2 quantum Hall
eKect [118].

With less justiAcation, we do not discuss the problem of superconductor to insulator and=or
to metal transitions in two-dimensional disordered systems in the limit of zero temperature
with and without an applied magnetic Aeld. Interesting new developments in this problem with
references to substantial earlier work may be found in [176,177,247]. The problem of transitions
in Josephson arrays [247] is a variant of such problems.

One of the principal aspects that we want to bring to the foreground in this review is the
fact that SFLs all have in common some fundamental features which can be stated usefully in
several diKerent ways. (i) They have degenerate ground states to within an energy of order kBT .
This degeneracy is not due to static external potentials or constraints as in, for example the
spin-glass problem, but degeneracies which are dynamically generated. (ii) Such degeneracies
inevitably lead to a breakdown of perturbative calculations because they generate infra-red
singularities in the correlation functions. (iii) If a bare particle or hole is added to the system,
it is attended by a divergent number of low-energy particle–hole pairs, so that the one-to-one
correspondence between the one-particle excitation of the interacting problem and those of the
non-interacting problem, which is the basis for FLT, breaks down. (iv) Since SFLs are concerned
with dynamically generated degeneracies within energies of order of the measuring temperature,
the observed properties are determined by quantum-mechanical to classical crossovers and in
particular by dissipation in such a crossover.

On the theoretical side, one may now view Fermi-liquid theory as a forerunner of the renor-
malization group ideas. The renormalization group has led to a sophisticated understanding of
singularities in the collective behavior of many-particle systems. It is likely that these methods
have an important role to play in understanding the breakdown of FLT.

The aim of this paper is to provide a pedagogical introduction to SFLs, focused on
the essential conceptual ideas and on issues which are settled and which can be expected to
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survive future developments. Therefore, we will not attempt to give an exhaustive review of the
literature on this problem or of all the experimental systems which show hints of SFL behavior.
The experimental examples we discuss have been selected to illustrate both what is essentially
understood and what is not understood even in principle. On the theoretical side, we will shy
away from presenting in depth the sophisticated methods necessary for a detailed evaluation
of correlation functions near QCP—for this we refer to the book by Sachdev [225]—or for an
exact solution of local impurity models (see, e.g. [124,227,259]). Likewise, for a discussion of
the application of quantum critical scaling ideas to Josephson arrays or quantum Hall eKects,
we refer to the nice introduction by Sondhi et al. [247].

1.2. Outline of the paper

The outline of this paper is as follows. We start by summarizing in Section 2 some of the
key features of Landau’s FLT—in doing so, we will not attempt to retrace all of the ingredients
which can be found in many of the classic textbooks [208,37]; instead our discussion will be
focused on those elements of the theory and the relation with its microscopic derivation that
allow us to understand the possible routes by which the FLT can break down. This is followed
in Section 3 by the Fermi-liquid formulation of the Kondo problem and of the SFL variants of
the Kondo problem and of two interacting Kondo impurities. The intention here is to reinforce
the concepts of FLT in a diKerent context as well as to provide examples of SFL behavior which
oKer important insights because they are both simple and solvable. We then discuss the problem
of one spatial dimension (d= 1), presenting the principal features of the solutions obtained. We
discuss why d= 1 is special, and the problems encountered in extending the methods and the
physics to d¿ 1. We then move from the comforts of solvable models to the reality of the
discussion of possible mechanisms for SFL behavior in higher dimensions. First we analyze
in Section 5 the paradigmatic case of long-range interactions. Coulomb interactions will not
do in this regard, since they are always screened in a metal, but transverse electromagnetic
Aelds do give rise to long-range interactions. The fact that as a result no metal is a Fermi
liquid for suPciently low temperatures was already realized long ago [127]—from a practical
point of view, this mechanism is not very relevant, since the temperatures where these eKects
become important are of order 10−16 K; nevertheless, conceptually this is important since it is
a simple example of a gauge theory giving rise to SFL behavior. Gauge theories on lattices
have been introduced to discuss problems of fermions moving with the constraint of only zero
or single occupation per site. We then discuss in Section 6 the properties near a quantum
critical point, taking Arst an example in which the ferromagnetic transition temperature goes
to zero as a function of some externally chosen suitable parameter. We refer in this section
to several experiments in heavy fermion compounds which are only partially understood or
not understood even in principle. We then turn to a discussion of the marginal Fermi liquid
phenomenology for the SFL state of copper-oxide high-Tc materials and discuss the requirements
on a microscopic theory that the phenemenology imposes. A sketch of a microscopic derivation
of the phenemenology is also given. We close the paper in Section 8 with a discussion of the
metallic state in d= 2 and the state of the theory treating the diKusive singularities in d= 2
and its relation to the metal–insulator transition.
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2. Landau’s Fermi liquid

2.1. Essentials of Landau Fermi liquids

The basic idea underlying Landau’s Fermi-liquid theory [152,153,208,37] is that of analyt-
icity, i.e., that states with the same symmetry can be adiabatically connected. Simply put, this
means that whether or not we can actually carry out the calculation we know that the eigen-
states of the full Hamiltonian of the same symmetry can be obtained perturbatively from those
of a simpler Hamiltonian. At the same time states of diKerent symmetry cannot be obtained
by “continuation” from the same state. This suggests that given a tough problem which is im-
possible to solve, we may guess a right simple problem. The low energy and long wavelength
excitations, as well as the correlation and the response functions of the impossible problem bear
a one-to-one correspondence with the simpler problem in their analytic properties. This leaves
Axing only numerical values. These are to be determined by parameters, the minimum number
of which is Axed by the symmetries. Experiments often provide an intuition as to what the
right simple problem may be: for the interacting electrons, in the metallic range of densities, it
is the problem of kinetic energy of particles with Fermi statistics. (If one had started with the
opposite limit, just the potential energy alone, the starting ground state is the Wigner crystal—a
bad place to start thinking about a metal!) If we start with non-interacting fermions, and then
turn on the interactions, the qualitative behavior of the system does not change as long as
the system does not go through (or is close to) a phase transition. Owing to the analyticity,
we can even consider strongly interacting systems—the low-energy excitations in these have
strongly renormalized values of their parameters compared to the non-interacting problem, but
their qualitative behavior is the same as that of the simpler problem.

The heavy fermion problem provides an extreme example of the domain of validity of the
Landau approach. This is illustrated in Fig. 2, which shows the speciAc heat of the heavy fermion
compound CeAl3. As in the Sommerfeld model, the speciAc heat is linear in the temperature at
low T , but if we write Cv ≈ �T at low temperatures, the value of � is about a thousand times
as large as one would estimate from the density of states of a typical metal, using the free
electron mass. For a Fermi gas, the density of states N (0) at the Fermi energy is proportional
to an eKective mass m∗:

N (0) =
m∗kF

�2˝2 ; (1)

with kF the Fermi wavenumber. Then the fact that the density of states at the chemical potential
is a thousand times larger than for normal metals can be expressed by the statement that the
eKective mass m∗ of the quasiparticles is a thousand times larger than the free electron mass m.
Likewise, as Fig. 3 shows, the resistivity of CeAl3 at low temperatures increases as T 2. This
also is a characteristic sign of a Fermi liquid, in which the quasiparticle lifetime � at the Fermi
surface, determined by electron–electron interactions, behaves as � ∼ 1=T 2. 2 However, just as

2 In heavy fermions, at least in the observed range of temperatures, the transport lifetime determining the temper-
ature dependence of resistivity is proportional to the single-particle lifetime.
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Fig. 2. SpeciAc heat of CeAl3 at low temperatures from Andres et al. [28]. The slope of the linear speciAc heat is
about 3000 times that of the linear speciAc heat of, say, Cu. However, the high-temperature cut-oK of this linear
term is smaller than that of Cu by a similar amount. The rise of the speciAc heat in a magnetic Aeld at low
temperatures is the nuclear contribution, irrelevant to our discussion.

Fig. 3. Electrical resistivity of CeAl3 below 100 mK, plotted against T 2. From Andres et al. [28].

the prefactor � of the speciAc heat is a factor thousand times larger than usual, the prefactor of
the T 2 term in the resistivity is a factor 106 larger—while � scales linearly with the eKective
mass ratio m∗=m, the prefactor of the T 2 term in the resistivity increases for this class of Fermi
liquids as (m∗=m)2.
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It should be remarked that the right simple problem is not always easy to guess. The right
simple problem for liquid 4He is not the non-interacting Bose gas but the weakly interacting
Bose gas (i.e., the Bogoliubov problem [45,154]). The right simple problem for the Kondo
problem (a low-temperature local Fermi liquid) was guessed [197] only after the numerical
renormalization group solution was obtained by Wilson [289]. The right simple problem for
two-dimensional interacting disordered electrons in the “metallic” range of densities (Section 8
in this paper) is at present unknown.

For SFLs, the problem is diKerent: usually one is in a regime of parameters where no simple
problem is a starting point—in some cases the Muctuations between solutions to diKerent simple
problems determines the physical properties, while in others even this dubious anchor is lacking.

2.2. Landau Fermi liquid and the wavefunction renormalization Z

Landau theory is the forerunner of our modern way of thinking about low-energy eKective
Hamiltonians in complicated problems and of the renormalization group. The formal statements
of Landau theory in their original form are often somewhat cryptic and mysterious—this reMects
both Landau’s style and his ingenuity. We shall take a more pedestrian approach.

Let us consider the essential diKerence between non-interacting fermions and an interacting
Fermi liquid from a simple microscopic perspective. For free fermions, the momentum states
|k〉 are also eigenstates of the Hamiltonian with eigenvalue

�k =
˝2k2

2m
: (2)

Moreover, the thermal distribution of particles n0
k�, is given by the Fermi–Dirac function where

� denotes the spin label. At T = 0, the distribution jumps from 1 (all states occupied within
the Fermi sphere) to zero (no states occupied within the Fermi sphere) at |k|= kF and energy
equal to the chemical potential �. This is illustrated in Fig. 4.

A good way of probing a system is to investigate the spectral function; the spectral function
A(k; !) gives the distribution of energies ! in the system when a particle with momentum k
is added or removed from it (remember that removing a particle excitation below the Fermi
energy means that we add a hole excitation). As sketched in Fig. 5(a), for the non-interacting
system, A0(k; !) is simply a �-function peak at the energy �k, because all momentum states are
also energy eigenstates

A0(k; !) = �(!− (�k − �)) for !¿� ; (3)

= − 1
�

Im
1

!− (�k − �) + i�
= − 1

�
Im G0(k; !) : (4)

Here, � is small and positive; it reMects that particles or holes are introduced adiabatically, and
it is taken to zero at the end of the calculation for the pure non-interacting problem. The Arst
step of the second line is just a simple mathematical rewriting of the delta function. In the
second line the Green’s function G0 for non-interacting electrons is introduced. More generally
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Fig. 4. Bare-particle distribution at T = 0 for a given spin direction in a translationally invariant Fermi system with
interactions (full line) and without interactions (dashed line). Note that the position of the discontinuity, i.e., the
Fermi wavenumber kF, is not renormalized by interactions.

Fig. 5. (a). The non-interacting spectral function A(k; !) at Axed k as a function of !; (b) the spectral function
of single-electron excitations in a Fermi liquid at Axed k as a function of !. If (1=�)A(k; !) is normalized to 1,
signifying one bare particle, the weight under the Lorentzian, i.e., the quasiparticle part, is Z . As explained in the
text, at the same time Z is the discontinuity in Fig. 4.

the single-particle Green’s function G(k; !) is deAned in terms of the correlation function
of particle creation and annihilation operators in standard textbooks [195,4,222,168]. For our
present purpose, it is suPcient to note that it is related to the spectral function A(k; !), which
has a clear physical meaning and which can be deduced through-angle resolved photoemission
experiments

G(k; !) =
∫ ∞

−∞
dx

A(k; x)
!− � − x + i� sgn(!− �)

: (5)

A(k; !) thus is the spectral representation of the complex function G(k; !). Here we have deAned
the so-called retarded Green’s function which is especially useful since its real and imaginary
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Fig. 6. Schematic illustration of the perturbative expansion (8) of the change of wavefunction as a result of the
addition of an electron to the Fermi sea due to interactions with the particles in the Fermi sea.

parts obey the Kramers–Kronig relations. In the problem with interactions G(k; !) will dif-
fer from G0(k; !). This diKerence can be quite generally deAned through the single-particle
self-energy function �(k; !):

(G(k; !))−1 = (G0(k; !))−1 − �(k; !) : (6)

Eq. (5) ensures the relation between G(k; !) and A(k; !)

A(k; !) = − 1
�

Im G(k; !) : (7)

With these preliminaries out of the way, let us consider the form of A(k; !) when we add a
particle to an interacting system of fermions.

Due to the interaction (assumed repulsive) between the added particle and those already in
the Fermi sea, the added particle will kick particles from below the Fermi surface to above.
The possible terms in a perturbative description of this process are constrained by the conser-
vation laws of charge, particle number, momentum and spin. Those which are allowed by these
conservation laws are indicated pictorially in Fig. 6, and lead to an expression of the type

| N+1
k� 〉= Z1=2

k c†k�| N 〉 +
1

V 3=2

∑
k1;k2;k3

∑
�1;�2;�3

�k1�1k2�2k3�3c
†
k3
ck2c

†
k1

× �k;k1−k2+k3�(�;�1; �2; �3)| N 〉 + : : : : (8)

Here the c†k’s and ck’s are the bare particle creation and annihilation operators, and the dots indi-
cate higher-order terms, for which two or more particle–hole pairs are created and �(�;�1; �2; �3)
expresses conservation of spin under vector addition. The multiple-particle–hole pairs for a Axed
total momentum can be created with a continuum of momentums of the individual bare particles
and holes. Therefore, an added particle with Axed total momentum has a wide distribution of
energies. However, if Zk deAned by Eq. (8) is Anite, there is a well-deAned feature in this dis-
tribution at some energy which is in general diKerent from the non-interacting value ˝2k2=(2m).
The spectral function in such a case will then be as illustrated in Fig. 5(b). It is useful to
separate the well-deAned feature from the broad continuum by writing the spectral function
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as the sum of two terms, A(k; !) =Acoh(k; !) + Aincoh(k; !). The single-particle Green’s func-
tion can similarly be expressed as a sum of two corresponding terms, G(k; !) =Gcoh(k; !) +
Gincoh(k; !). Then

Gcoh(k; !) =
Zk

!− �̃k + i=�k
; (9)

which for large lifetimes �k gives a Lorentzian peak in the spectral density at the quasiparticle
energy �̃k ≡ �k−�. The incoherent Green’s function is smooth and hence for large �k corresponds
to the smooth background in the spectral density.

The condition for the occurrence of the well-deAned feature can be expressed as the condition
that the self-energy �(k; !) has an analytic expansion about != 0 and k=kF and that its real
part is much larger than its imaginary part. One can easily see that were it not so, then expression
(9) for Gcoh could not be obtained. These conditions are necessary for a Landau Fermi liquid.
Upon expanding �(k; !) in (12) for small ! and small deviations of k from kF and writing it
in the form (9), we make the identiAcations

�̃k = �kZkẐk;
1
�k

= − Zk Im �(kF; != 0) ; (10)

where

Zk =
(

1 − 9�
9!

)−1

!=0; k=kF

; Ẑ =
(

1 +
1
vF

9�
9k

)
!=0; k=kF

: (11)

From Eq. (8), we have a more physical deAnition of Zk :Zk is the projection amplitude of
| N+1
k 〉 onto the state with one bare particle added to the ground state, since all other terms

in the expansion vanish in the thermodynamic limit in the perturbative expression embodied
by (8):

Z1=2
k = 〈 N+1

k |c†k| N 〉 : (12)

In other words, Zk is the overlap of the ground state wavefunction of a system of interacting
N ± 1 fermions of total momentum k with the wavefunction of N interacting particles and a
bare particle of momentum k. Zk is called the quasiparticle amplitude.

The Landau theory tacitly assumes that Zk is Anite. Furthermore, it asserts that for small !
and k close to kF, the physical properties can be calculated from quasiparticles which carry the
same quantum numbers as the particles, i.e., charge, spin and momentum and which may be
deAned simply by the creation operator �†k;�:

| N+1
k 〉= �†k;�| N 〉 : (13)

Close to kF, and for T small compared to the Fermi energy, the distribution of the quasiparticles
is assumed to be the Fermi–Dirac distribution in terms of the renormalized quasiparticle en-
ergies. The bare particle distribution is quite diKerent. As is illustrated in Fig. 4, it is depleted
below kF and augmented above kF, with a discontinuity at T = 0 whose value is shown in
microscopic theory to be Zk. A central result of Fermi liquid theory is that close to the Fermi
energy at zero temperature, the width 1=�k of the coherent quasiparticle peak is proportional to
(�̃k − �)2 so that near the Fermi energy the lifetime is long and quasiparticles are well-deAned.
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Likewise, at the Fermi energy 1=�k varies with temperature as T 2. From the microscopic deriva-
tion of this result, it follows that the weight in this peak, Zk, becomes equal to the jump Z
in nk� when we approach the Fermi surface: Zk → Z for k → kF. For heavy fermions, as we
already mentioned, Z can be of the order of 10−3. However, as long as Z is non-zero, one has
Fermi liquid properties for temperatures lower than about ZEF. Degeneracy is eKectively lost
for temperatures much higher than ZEF and classical statistical mechanics prevails. 3

An additional result from microscopic theory is the so-called Luttinger theorem, which states
that the volume enclosed by the Fermi surface does not change due to interactions [195,4].
The mathematics behind this theorem is that with the assumptions of FLT, the number of poles
in the interacting Green’s function below the chemical potential is the same as that for the
non-interacting Green’s function. Recall that the latter is just the number of particles in the
system.

Landau actually started his discussion of the Fermi liquid by writing the equation for the
deviation of the (Gibbs) free energy from its ground state value as a functional of the devia-
tion of the quasiparticle distribution function n(k; �) from the equilibrium distribution function
n0(k; �)

�n(k; �) = n(k; �) − n0(k; �) (14)

as follows:

G =G0 +
1
V

∑
k;�

(�̃k − �)�nk� +
1

2V 2

∑
kk′;��′

fkk′;��′�nk��nk′�′ + · · · (15)

Note that (�̃k − �) is itself a function of �n; so the Arst term contains at least a contribution of
order (�n)2 which makes the second term quite necessary. In principle, the unknown function
fkk′;��′ depends on spin and momenta. However, spin rotation invariance allows one to write
the spin part in terms of two quantities, the symmetric and antisymmetric parts fs and fa.
Moreover, for low energy and long-wavelength phenomena only momenta with k ≈ kF play
a role; if we consider the simple case of 3He where the Fermi surface is spherical, rotation
invariance implies that for momenta near the Fermi momentum f can only depend on the
relative angle between k and k′; this allows one to expand in Legendre polynomials Pl(x) by
writing

N (0)fs;a
kk′;��′

k≈k′≈kF→
∞∑
l=0

F s;a
l Pl(k̂ · k̂′) : (16)

From expression (15) one can then relate the lowest order so-called Landau coePcients F0
and F s

1 and the eKective mass m∗ to thermodynamic quantities like the speciAc heat Cv, the
compressibility %, and the susceptibility &:

Cv

Cv0
=

m∗

m
;

%
%0

= (1 + F s
0)

m∗

m
;

&
&0

= (1 + Fa
0)

m∗

m
: (17)

3 It is an unfortunate common mistake to think of the properties in this regime as SFL behavior.
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Here subscripts 0 refer to the quantities of the non-interacting reference system, and m is the
mass of the fermions. For a Galilean invariant system (like 3He), there is a simple relation
between the mass enhancement and the Landau parameter F s

1, and there is no renormalization
of the particle current j; however, there is a renormalization of the velocity: one has

j=k=m; v=k=m∗ ;
m∗

m
=
(

1 +
F s

1

3

)
: (18)

The transport properties are calculated by deAning a distribution function �n(k�; r; t) which is
slowly varying in space and time and writing a Boltzmann equation for it [208,37].

It is a delightful conceit of the Landau theory that the expressions of the low-energy proper-
ties in terms of the quasiparticles in no place involve the quasiparticle amplitude Zk. In fact in
a translationally invariant problem such as liquid 3He; Zk cannot be measured by any thermo-
dynamic or transport measurements. A masterly use of conservation laws ensures that Z’s cancel
out in all physical properties (one can extract Z from measurement of the momentum distri-
bution. By neutron scattering measurements, it is found that Z ≈ 1=4 [112] for He3 near the
melting line). This is no longer true on a lattice, in the electron–phonon interaction problem
[212] or in heavy fermions [265] or even more generally in any situation where the inter-
acting problem contains more than one type of particle with diKerent characteristic frequency
scales.

2.3. Understanding microscopically why Fermi-liquid theory works

Let us try to understand from a more microscopic approach why the Landau theory works
so well. We present a qualitative discussion in this subsection and outline the principal features
of the formal derivation in the next subsection.

As we already remarked, a crucial element in the approach is to choose the proper non-
interacting reference system. That this is possible at all is due to the fact that the number of
states to which an added particle can scatter due to interactions is severely limited due to the
Pauli principle. As a result, non-interacting fermions are a good stable system to perturb about;
they have a Anite compressibility and susceptibility in the ground state, and so collective modes
and thermodynamic quantities change smoothly when the interactions are turned on. This is not
true for non-interacting bosons which do not support collective modes like sound waves. So
one cannot perturb about the non-interacting bosons as a reference system.

Landau also laid the foundations for the formal justiAcation of Fermi liquid theory in two
and three dimensions. The Murry of activity in this Aeld following the discovery of high-Tc
phenomena has led to new ways of justifying Fermi-liquid theory (and understanding why the
one-dimensional problem is diKerent). However, the principal physical reason, which we now
discuss, remains the phase-space restrictions due to kinematical constraints.

We learned in Section 2.2 that in order to deAne quasiparticles, it was necessary to have
a Anite ZkF , which in turn needed a self-energy function �(kF; !) which is smooth near the
chemical potential, i.e., at != 0. Let us Arst see why a Fermi gas has such properties when
interactions are introduced perturbatively.
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Fig. 7. The three second-order processes in a perturbative calculation of the correction to the bare interaction in
a Fermi liquid.

We will explicitly consider only short-range interactions in this section, so that they can be
characterized at all momentum transfers by a single parameter. Nevertheless, the essential results
of Landau theory remain valid in the presence of Coulomb interactions because screening makes
the interactions essentially short-ranged. The coupling constant g below may then be considered
to parametrize the screened interaction.

In Fig. 7, we show the three possible processes that arise in second-order perturbation theory
for the scattering of two particles with Axed initial energy ! and momentum q. Note that in
two of the diagrams, Fig. 7(a) and (b) the intermediate state has a particle and a hole while
the intermediate state in diagram 7(c) has a pair of particles.

We will And that, for our present purpose, the contribution of diagram 7(a) is more important
than the other two. It gives a contribution

g2
∑
k

fk+q − fk
!− (Ek+q − Ek) + i�

: (19)

Here, g is a measure of the strength of the scattering potential (the vertex in the diagram) in the
limit of small q. The denominator ensures that the largest contribution to the scattering comes
from small scattering momenta q: for these the energy diKerence is linear in q; Ek+q−Ek ≈ q·vk,
where vk is a vector of length vF in the direction of k. Moreover, the term in the numerator
is non-zero only in the area contained between two circles (for d= 2) or spheres (for d= 3)
with their centers displaced by q—here the phase-space restriction is due to the Pauli principle.
This area is also proportional to q · vk, and so in the small q approximation from diagram 7(a)
we get a term proportional to

g2 q · vk
!− q · vk + i�

df
d�k

: (20)

Now we see why diagram 7(a) is special. There is a singularity at != q · vk and its value
for small ! and q depends on which of the two is smaller. This singularity is responsible for
the low-energy long-wavelength collective modes of the Fermi liquid in Landau theory. At low
temperatures, df=d�k = − �(�k − �), so the summation is restricted to the Fermi surface. The
real part of (19) therefore vanishes in the limit qvF=! → 0, while it approaches a =nite limit
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Fig. 8. (a) Restriction on allowed particle–hole excitations in a Fermi sea due to kinematics. The plasmon mode
has been drawn for the case d= 3; (b) the absorptive part of the particle–hole susceptibility (in the charge, current
and spin channels) for !¡qvF in the Fermi gas.

for ! → 0. The imaginary part in this limit is proportional to 4 !:

Im &(q; !) = g2�N (0)
!
qvF

for !¡qvF ; (21)

while Im &(q; !) = 0 for !¿vFq. This behavior is sketched in Fig. 8(b). An explicit evaluation
for the real part yields

Re &(q; !) = g2N (0)
[
1 +

!
qvF

ln
∣∣∣∣!− qvF

! + qvF

∣∣∣∣
]

; (22)

which gives a constant (leading to a Anite compressibility and spin susceptibility) at ! small
compared to qvF. For diagram 7(b), we get a term ! − (Ep1−p2+k+q − Ek) in the denominator.
This term is always Anite for general momenta p1 and p2, and hence the contribution from
this diagram can always be neglected relative to the one from 7(a). Along similar lines, one
Ands that diagram 7(c), which describes scattering in the particle–particle channel, is irrelevant
except when p1 = − p2, when it diverges as ln !.

Of course, this scattering process is the one which gives superconductivity. Landau noticed
this singularity but ignored its implication. 5 Indeed, as long as the eKective interactions do not
favor superconductivity or as long as we are at temperatures much higher than the supercon-
ducting transition temperature, it is not important for Fermi-liquid theory.

Let us now look further at the absorptive spectrum of particle–hole excitations in two and
three dimensions, i.e., we examine the imaginary part of Eq. (19). When the total energy !
of the pair is small, both the particle and the hole have to live close to the Fermi surface. In

4 This behavior implies that this scattering contribution is a marginal term in the renormalization group sense,
which means that it aKects the numerical factors, but not the qualitative behavior.

5 Attractive interactions in any angular momentum channel (leading to superconductivity) are therefore marginally
relevant operators.
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Fig. 9. The single-particle self-energy diagram in second order.

this limit, we can make any excitation with momentum q6 2kF. For Axed but small values of
q, the maximum excitation energy is ! ≈ qvF; this occurs when q is in the same direction as
the main momentum k of each quasiparticle. For q near 2kF, the maximum possible energy is
!= vF|q−2kF|. Combining these results, we obtain the sketch in Fig. 8(a), in which the shaded
area in the !–q space is the region of allowed particle–hole excitations. 6 From this spectrum,
one can calculate the polarizability, or the magnetic susceptibility.

The behavior sketched above is valid generally in two and three dimensions (but as we will
see in Section 4, not in one dimension). The important point to remember is that the density
of particle–hole excitations decreases linearly with ! for ! small compared to qvF. We shall
see later that one way of undoing Fermi-liquid theory is to have ! ∼ k2 in two dimensions or
! ∼ k3 in three dimensions.

We can now use Im &(q; !) to calculate the single-particle self-energy to second order in the
interactions. This is shown in Fig. 9 where the wiggly line denotes &(q; �) which in the present
approximation is just given by the diagram of Fig. 7(a).

For the perturbative evaluation of this process, the intermediate particle with energy–
momentum (! + �); (k + q) is a free particle. Second-order perturbation theory then yields
an imaginary part, or a decay rate,

Im �(k; !) =
1

�(k; !)
= g2N (0)

(
!
EF

)2

(23)

in three dimensions for k ≈ kF. In two dimensions, the same process yields Im �(kF; !) ∼
!2 ln(EF=!).

The !2 decay rate is intimately related to the analytic result (22) for Im &(q;!) exhibited in
Fig. (8). As may be found in textbooks, the same calculation for electron–phonon interactions
or for interaction with spin waves in an antiferromagnetic metal gives Im �(kF; !) ∼ (!=!c)3,
where !c is the phonon Debye frequency in the former and the characteristic zone-boundary
spin-wave frequency in the latter.

The real part of the self-energy may be obtained directly or by Kramers–Kronig transforma-
tion of (23). It is proportional to !. Therefore, if the quasiparticle amplitude ZkF is evaluated

6 In the presence of long-range Coulomb interactions, in addition to the particle–hole excitation spectrum associated
with the screened (and hence eKectively short-ranged) interactions one gets a collective mode with a =nite plasma
frequency as q → 0 in d= 3 and a ! ∼ √

q behavior in d= 2. The plasma mode is a high-frequency mode in
which the motion of the light electrons cannot be followed by the heavy ions: screening is absent in this regime
and the long-range Coulomb interactions then give rise to a Anite plasma frequency in d= 3.
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Fig. 10. Single-particle energy �k in one dimension, in the approximation that the dispersion relation is linearized
about kF. Note that the Fermi surface consists of just two points. The spectrum of particle–hole excitations is given
by !(q) = �(k + q) − �(k) = kFq=m. Low-energy particle–hole excitations are only possible for q small or for q
near 2kF.

Fig. 11. Phase space for particle–hole excitation spectrum in one dimension compared with the same in higher
dimensions, Fig. 8. For linearized single-particle kinetic energy �k =± vF(k − kF), particle–hole excitations are only
possible on lines going through k = 0 and k = 2kF.

perturbatively 7

ZkF ≈ 1 − 2g2N (0)=EF : (24)

Thus in a perturbative calculation of the eKect of interactions the basic analytic structure of
the Green’s function is left the same as for non-interacting fermions. The general proof of the
validity of Landau theory consists in showing that what we have obtained to second order in
g remains valid to all orders in g. The original proofs [4] are self-consistency arguments—we
will consider them brieMy in Section 2.4. They assume a Anite Z in the exact single-particle
Green’s functions and eKectively show that to any order in perturbation theory, the polarizabil-
ity functions retain the analytic structure of the non-interacting theory, which in turn ensures
a Anite Z .

In one dimension, phase-space restrictions on the possible excitations are crucially diKerent. 8

Here the Fermi surface consists of just two points in the one-dimensional space of momenta—
see Fig. 10. As a result, whereas in d= 2 and 3 a continuum of low-energy excitations with
Anite q is possible, in one dimension at low-energy only excitations with small k or k ≈ 2kF are
possible. The subsequent equivalent of Fig. 8 for the one-dimensional case is the one shown in
Fig. 11. Upon integrating over the momentum k with a cut-oK of O(kF) the contribution from

7 This quantity has been precisely evaluated by Galitski [104] for the model of a dilute Fermi gas characterized
by a scattering length.

8 It might appear surprising that they are not diKerent in any essential way between higher dimensions.
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Fig. 12. (a) The nested Fermi surface obtained in a tight binding model on a square lattice with nearest-neighbor
hopping; (b) a partially nested Fermi surface which leads to charge-density wave or antiferromagnetic instabilities.

this particle–hole scattering channel to Re &(q;!) is∫ kF

0
dk

1
! + (2k + q)vF

∼ ln[(! + qvF)=EF] : (25)

(Note that (25) is true for both q�kF and |q − 2kF|�kF.) This in turn leads to a single-
particle self-energy calculated by the process in Fig. 9 to be Re�(kF; !) ∼ ! ln ! and so
Z ∼ ln ! giving a hint of trouble. The Cooper (particle–particle) channel has the same phase-
space restrictions, and gives a contribution to Re�(kF; !) proportional to ! ln ! too. The
fact that these singular contributions are of the same order, leads to a competition between
charge=spin Muctuations and Cooper pairing Muctuations, and in the exact calculation to power-
law singularities. The fact that instead of the continuum of low-energy excitations present in
higher dimensions, the width of the band of allowed particle–hole excitations vanishes as ! →
0, is the reason that the properties of one-dimensional interacting metals can be understood in
terms of bosonic modes. We will present a brief summary of the results for the single-particle
Green’s function and correlation functions in Section 4.9.

In special cases of nesting in two or three dimensions, one can have situations that resemble
the one-dimensional case. When the non-interacting Fermi surface in a tight binding model
has the square shape sketched in Fig. 12(a) (which occurs for a tight-binding model with the
nearest neighbor hopping on a square lattice at half-Alling) a continuous range of momenta on
opposite sides of the Fermi surface can be transformed into each other by one and the same
wavenumber. This so-called nesting leads to log and log2 singularities for a continuous range
of k in the perturbation theory for the self-energy �(k; !). Likewise, the partially nested Fermi
surface of Fig. 12(b) leads to charge density wave and antiferromagnetic instabilities. We will
come back to these issues in Sections 2.6 and 6.
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2.4. Principles of the microscopic derivation of Landau theory

In this section, we will sketch how the conclusions in the previous section based on second-
order perturbation calculation are generalized to all orders in perturbation theory. This section
is slightly more technical than the rest; the reader may choose to skip to Section 2.6.

We follow the microscopic approach whose foundations were laid by Landau himself and
which is discussed in detail in excellent textbooks [197,208,37,4]. For more recent methods with
the same conclusions, see [237,128]. Our emphasis will be on highlighting the assumptions in
the theory so that in the next section we can summarize the routes by which the Fermi-liquid
theory may break down. These assumptions are usually not stated explicitly.

The basic idea is that due to kinematic constraints, any perturbative process with n particle–
hole pairs in the intermediate state provides contributions to the polarizability proportional
to (!=EF)n. Therefore, the low-energy properties can be calculated with processes with the
same “skeletal” structure as those in Fig. 7, which have only one particle–hole pair in the
intermediate state. So one may concentrate on the modiAcation of the four-legged vertices
and the single-particle propagators due to interactions to all orders. Accordingly, the theory is
formulated in terms of the single-particle Green’s function G(p) and the two-body scattering
vertex

-(p1; p2; p1 + k; p2 − k) =-(p1; p2; k) : (26)

Here and below we use, for the sake of brevity, p, etc. to denote the energy–momentum four
vector (p; !) and we suppress the spin labels. The equation for - is expanded in one of the
two particle–hole channels as 9

-(p1; p2; k) =-(1)(p1; p2; k) − i
∫

-(1)(p1; q; k)G(q)G(q + k)-(q; p2; k)
d4q

(2�)4 ; (27)

where -(1) is the irreducible part in the particle–hole channel in which Eq. (27) is expressed.
In other words, -(1) cannot be split into two parts by cutting two Green’s function lines with
total momentum k. So -(1) includes the complete vertex in the other (often called cross-)
particle–hole channel. The diagrammatic representation of Eq. (27) is shown in Fig. 13. In the
simplest approximation -(1) is just the bare two-body interaction. Landau theory assumes that
-(1) has no singularities. 10 An assumption is now further made that G(p) does have a coherent
quasiparticle part at |p| 
 pF and ! 
 0:

G(p) =
Z

!− �̃p + i� sgn(�p)
+ Ginc ; (28)

9 To second order in the interactions the correction to the vertex in the two possible particle–hole channels has
been exhibited in the Arst two parts of Fig. 7.
10 The theory has been generalized for Coulomb interactions [208,197,4].The general results remain unchanged
because a screened short-range interaction takes the place of -(1).This is unlikely to be true in the critical region
of a metal–insulator transition, because on the insulating side, the Coulomb interaction is unscreened.
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Fig. 13. Diagrammatic representation of Eq. (27).

where �̃p is to be identiAed as the excitation energy of the quasiparticle, Z its weight, and Ginc
the incoherent non-singular part of G. (The latter provides the smooth background part of the
spectral function in Fig. 5(b) and the former the sharp peak, which is proportional to the �
function for �̃p= �p − �.) It follows [195,4] from (28) that

G(q)G(q + k) =
2i�z2

vF

vq · k
!− vq · k�(�)�(|q| − pF) + .(q) (29)

for small k and !, and where � and (�+!) are frequencies of the two Green’s functions. Note
the crucial role of kinematics in the form of the Arst term which comes from the product of
the quasiparticle parts of G; .(q) comes from the scattering of the incoherent part with itself
and with the coherent part and is assumed smooth and featureless (as it is indeed, given that
Ginc is smooth and featureless and the scattering does not produce an infrared singularity at
least perturbatively in the interaction). The vertex - in regions close to k ≈ kF and ! ≈ 0 is
therefore dominated by the Arst term. The derivation of Fermi-liquid theory consists in proving
that Eqs. (27) for the vertex and (28) for the Green’s function are mutually consistent.

The proof proceeds by deAning a quantity -!(p1; p2; k) through

-!(p1; p2; k) =-(1)(p1; p2; k) − i
∫

-(1)(p1; q; k).(q)-!(q; p2; k)
d4q

(2�)4 : (30)

-! contains repeated scattering of the incoherent part of the particle–hole pairs among itself
and with the coherent part, but no scattering of the coherent part with itself. Then, provided
the irreducible part of -(1) is smooth and not too large, -! is smooth in k because .(q) is by
construction quite smooth.

Using the fact that the Arst part of (29) vanishes for vF|k|=! → 0, and comparing (27) and
(30) one can write the forward scattering amplitude

lim
!→0

[
lim
k→0

-(p1; p2; k)
]

=-!(p1; p2) : (31)
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Fig. 14. Diagram for the exact single-particle self-energy in terms of the exact vertex - and the exact single-particle
Green’s function.

This is now used to write the equation for the complete vertex - in terms of -!:

-(p1; p2; k) =-!(p1; p2) +
Z2p2

F

(2�)3vF

∫
-!(p1; q)-(q; p2; k)

vq · k
!− vq · k d/q ; (32)

where in the above |q|=pF and one integrates only over the solid angle /q.
Given a non-singular -!, a non-singular - is produced (unless the denominator in Eq. (32)

produces singularities after the indicated integration—the Landau–Pomeranchuk singularities dis-
cussed below). The one-particle Green’s function G can be expressed exactly in terms of -—see
Fig. 14. This leads to Eq. (28) proving the self-consistency of the ansatz with a Anite quasipar-
ticle weight Z . The quantity Z2-! is then a smooth function and goes into the determination
of the Landau parameters.

The Landau parameters can be written in terms of the forward scattering amplitude. In ef-
fect, they parametrize the momentum and frequency independent scattering of the incoherent
parts among themselves and with the coherent parts so that the end result of the theory is
that the physical properties can be expressed purely in terms of the quasiparticle part of the
single-particle Green’s function and the Landau parameters. No reference to the incoherent
parts needs to be made for low-energy properties. For single-component translational invariant
fermions (like liquid 3He) even the quasiparticle amplitude Z disappears from all physical prop-
erties. This last part is not true for renormalization due to electron–phonon interactions and in
multicomponent systems such as heavy fermions. Special simpliAcations of the Landau theory
occur in such problems and in other problems where the single-particle self-energy is nearly
momentum independent [180,280,105,265,187].

As we also mentioned, the single-particle self-energy � can be written exactly in terms of the
vertex -: the relation between the two is represented diagrammatically in Fig. 14. The relations
between � and - are due to conservation laws which Landau theory, of course, obeys. However,
the conservation laws are more general than Landau theory. It is often more convenient to
express these conservation laws as relations between the self-energy and the three-point vertices,
0�(p�; q!) which couple external perturbations to either the density (the fourth component,
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Fig. 15. Vertex for coupling to external perturbations at energy-momentum (!; q); 1 is the bare vertex.

�= 4) or the current density in the �= (1; 2; 3) direction. The diagrammatic representation of
the equation for 0 is shown in Fig. 15. The following relations (Ward identities) have been
proven for translationally invariant problems:

lim
(
!
q

→ 0; q → 0
)
0�(p�; q!) =

p�

m
− 9
9p�

�(p; �) (�= 1; 2; 3) ; (33)

lim
(
!
q

→ 0; q → 0
)
04(p�; q!) = 1 +

9�(p; �)
9� ; (34)

lim
( q
!

→ 0; ! → 0
)
0�(p�; q!) =

p�

m
− d

dp�
�(p; �) (�= 1; 2; 3) ; (35)

lim
( q
!

→ 0; ! → 0
)
04(p�; q!) = 1 +

d�(p; �)
d�

: (36)

A relation analogous to (34) is derived for Aelds coupling to spin for the case that interactions
conserve spin. The total derivative in (35) and (36) [rather than the partial derivative in (33)
and (34)] is represented such that d�=d� is the variation in � when � is changed to � + d�
together with � to � + d�, and d�=dp� represents the variation when the momentum p as well
as the Fermi surface is translated by dp�.

Eq. (36) is an expression of energy conservation, and Eq. (34) of particle number conser-
vation. Eqs. (33) and (34) together signify the continuity equation. Eq. (35) represents current
conservation. 11

11 The Ward identity Eq. (35) does not hold for an impure system where the Fermi surface cannot be deAned in
momentum space. Since energy is conserved, a Fermi surface can still be deAned in energy space, and hence the
other Ward identities continue to hold. This point is further discussed in Section 7.
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In Landau theory, the right-hand sides in Eqs. (33)–(36) are expressible in terms of the
Landau parameters. These relations are necessary for the derivation of the renormalization of
the various thermodynamic quantities quoted in Eqs. (17) and (18) as well as the Landau
transport equation. Needless to say, any theory of SFL must also be consistent with the Ward
identities.

2.5. Modern derivations

The modern derivations of Fermi-liquid theory similarly start by assuming the existence of
a Fermi surface. Kinematics then inevitably leads to similar considerations as above. Instead
of the division into coherent and incoherent parts made in Eq. (28), the renormalization group
procedures are used to systematically generate successively lower energy and small momentum
Hamiltonians with excitations of particle ever closer to the Fermi surface. The calculations are
carried out either in terms of fermions [237] or newly developed bosonization methods in arbi-
trary dimensions [128]. The end result is equivalent to Eqs. (28), (30) and (32). These methods
may well turn out to be very important in Anding the structure of SFLs and in systematizing
them.

These derivations carry out the calculation in an arbitrary dimension d and conclude that the
forward scattering amplitude is

-!(p1; p2; k) ∼
(

k
kF

)d−1

f(p1; p2; k) ; (37)

where f is a smooth function of all of its arguments. In one-dimension, the forward scattering
amplitude has a logarithmic singularity, as we noted earlier.

We can rephrase the conceptual framework of Landau Fermi-liquid theory in the modern
language of renormalization group theory [237]. As we discussed, in Fermi-liquid theory one
treats a complicated strongly interacting fermion problem by writing the Hamiltonian H as

H=Hsimple + Hrest : (38)

In our discussion, Hsimple was the non-interacting Hamiltonian. The non-interacting Hamilto-
nian is actually a member of a “line” of Axed-point Hamiltonians H∗ all of which have the
same symmetries but diKer in their Landau parameters F s;a

l , etc. The Fl’s, obtained from the
forward scattering in Landau theory are associated with marginal operators and distinguish
the properties of the various systems associated with the line of Axed points. Landau Fermi-liquid
theory is primarily a statement regarding the domain of attraction of this line of Axed points.
The theory also establishes the universal low-temperature properties due to the “irrelevant” op-
erators generated by Hrest due to scattering in channels other than the forward channel. Landau
theory does not establish (at least completely) the domain of attraction of the “critical surface”
bounding the domain of attraction of the Fermi liquid Axed line from those of other Axed points
or lines. If Hrest generates a “relevant” operator (i.e., eKective interactions which diverge at
low energies and temperatures) the scheme breaks down. For example, attractive interactions
between fermions generate relevant operators—they presage a transition to superconductivity,
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a state of diKerent symmetry. However, if we stay suPciently above Tc, we can usually continue
using Landau theory. 12

2.6. Routes to breakdown of Landau theory

From Landau’s phenomenological theory, one can only say that the theory breaks down
when the physical properties—speciAc heat divided by temperature, 13 compressibility, or
the magnetic susceptibility—diverge or when the collective modes representing oscillations of
the Fermi surface in any harmonic and singlet or triplet spin combinations become unstable.
The latter, called the Landau–Pomeranchuk singularities, are indeed one route to the breakdown
of Landau theory and occur when the Landau parameters F s;a

l reach the critical value −(2l+1).
A phase transition to a state of lower symmetry is then indicated. The new phase can again be
described in Landau theory by deAning distribution functions consistent with the symmetry of
the new ground state.

The discussion following Eq. (8) in Section 2.2 allows us to make a more general statement.
Landau theory breaks down when the quasiparticle amplitude Zk becomes zero; i.e., when the
states c†k| N 〉 and | N+1

k 〉 are orthogonal. This can happen if the series expansion in Eq. (8)
in terms of the number of particle–hole pairs is divergent. In other words, the addition of
a particle or a hole to the system creates a divergent number of particle–hole pairs in the
system so that the leading term does not have a Anite weight in the thermodynamic limit. From
Eq. (11), which links the Z’s to �’s, this requires that the single-particle self-energy be singular
as a function of ! at k 
 kF. This in turn means that the Green’s functions of SFLs contain
branch cuts rather than the poles unlike Landau Fermi liquids. The weakest singularity of this
kind is encountered in the borderline “marginal Fermi liquids” where 14

�(kF; !) 
 1
[
! ln

!c

!
+ i|!|

]
: (39)

If a divergent number of low-energy particle–hole pairs is created upon the addition of a bare
particle, it means that the low-energy response functions (which all involve creating particle–
hole pairs) of SFLs are also divergent. Actually, the single-particle self-energy can be written
in terms of integrals over the complete particle–hole interaction vertex as in Fig. 14. The
implication is that the interaction vertices are actually more divergent than the single-particle
self-energy.

12 We note that in a renormalization group terminology, all Landau parameters fkk′ ; ��′ originating from forward
scattering (i.e., zero momentum transfer), are “marginal operators” [151,237]. All other operators that determine
Anite temperature observable properties are “irrelevant”. Thus, in a “universal” sense, condensed matter physics may
be deemed to be an “irrelevant” Aeld. So much for technical terminology!
13 The speciAc heat of a system of fermions can be written in terms of integrals over the phase angle of the exact
single-particle Green’s function [4]. Given any singularity in the self-energy, Cv=T is never more singular than ln T .
This accounts for the numerous experimental examples of such behavior that we will come across.
14 To see why this is the borderline case, note that a requisite for the deAnition of a quasiparticle is that the
quasiparticle peak width �−1

k = 2�′′ should vanish faster than linear in !, the quasiparticle energy. Thus, �′′ ∼ ! is
the Arst power for which this is not true. The ! ln(!c=!) term in Eq. (39) is then dictated by the Kramers–Kroning
relation.
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Yet another route to SFLs is the case in which the interactions generate new quantum numbers
which are not descriptive of the non-interacting problem. This happens in particular in the
Quantum Hall problems and in one-dimensional problems (Section 4) as well as in problems
of impurity scattering with special symmetries (Section 3). In such cases, the new quantum
numbers characterize new low-energy topological excitations. New quantum numbers of course
imply Z = 0, but does Z = 0 imply new quantum numbers? One might wish to conjecture that
this is so. However, no general arguments on this point are available. 15

Ultimately, all breakdowns of Landau theory are due to degeneracies leading to singular
low-energy Muctuations. If the characteristic energy of the Muctuations is lower than the tem-
perature, a quasiclassical statistical mechanical problem results. On the basis of our qualita-
tive discussion in Section 2.3 and the sketch of the microscopic derivation in Section 2.4,
we may divide the various routes to breakdown of Landau theory into the following (not nec-
essarily orthogonal) classes:

(i) Landau–Pomeranchuk singularities: Landau theory points to the possibility of its break-
down through the instability of the collective modes of the Fermi-surface which arise from the
solution of the homogeneous part of Eq. (32). These collective modes can be characterized
by the angular momentum ‘ of oscillation of the Fermi surface and whether the oscillation is
symmetric “s” or antisymmetric “a” in spin. The condition for the instability derived from the
condition of zero frequency of the collective modes are [208,37]

F s
‘6− (2‘ + 1); Fa

‘ 6− (2‘ + 1) : (40)

The ‘= 0 conditions refer to the divergence in the compressibility and the (uniform) spin
susceptibility. The former would in general occur via a Arst-order transition, so is uninteresting to
us. The latter describes the ferromagnetic instability. No other Landau–Pomeranchuk instabilities
have been experimentally identiAed. However, such new and exotic possibilities should be kept
in mind. Thus, for example, an F s

1-instability corresponds to the Fermi velocity → 0, a F s
2

instability to a “d-wave-like” instability of the particle–hole excitations on the Fermi surface
etc. Presumably, these instabilities are resolved by reconstruction of the Fermi surface. The
microscopic interactions necessary for the Landau–Pomeranchuk instabilities and the critical
properties near such instabilities have not been well investigated, especially for fermions with
a lattice potential. 16

It is also worth noting that some of the instabilities are disallowed in the limit of translational
invariance. Thus, for example, time-reversal breaking states, such as the “anyon-state” [156,60]
cannot be realized because in a translationally invariant problem the current operator cannot be
renormalized by the interactions, as we have learnt from Eqs. (18), (33).

15 It would indeed be a signiAcant step forward if such a conjecture could be proven to be true or if the conditions
in which it is true were known. One might think that this should be obvious in any given case. However, it is not
so. In the SFL problems of magnetic impurities (Section 3) and in the SFL behavior of one-dimensional fermions
(Section 4), a complete description of the solution was given without introducing new quantum numbers. That
these problems may be discussed in such terms was only realized later, lending to the solutions additional elegance
besides insight.
16 See, however, two recent papers [116,200]. In [273] the pseudogap in the underdoped cuprates arises as a
consequence of a Landau–Pomeranchuk instability.
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(ii) Critical regions of large Q-singularities: Landau theory concerns itself only with long-
wavelength response and correlations. A Fermi liquid may have instabilities at a non-zero
wavevector, for example a charge-density wave (CDW) or spin-density wave (SDW) instability.
Only a microscopic calculation can provide the conditions for such instabilities and therefore
such conditions can only be approximately derived. An important point to note is that they arise
perturbatively from repeated scattering between the quasiparticle parts of G while the scattering
vertices (irreducible interactions) are regular. The superconductive instability for any angular
momentum is also an instability of this kind. In general, such instabilities are easily seen in
RPA and=or t-matrix calculations.

Singular Fermi liquid behavior is generally expected to occur only in the critical regime
of such instabilities [117,164]. If the transition temperature Tc is Anite then there is usually
a stable low-temperature phase in which unstable modes are condensed to an order parame-
ter, translational symmetry is broken, and gaps arise in part or all of the Fermi surface. For
excitations on the surviving part of the Fermi surface, Fermi-liquid theory is usually again
valid. The Muctuations in the critical regime are classical, i.e., with characteristics frequency
!f‘�kBTc.

If the transition is tuned by some external parameter so that it occurs at zero temper-
ature, one obtains, as illustrated already in Fig. 1, a quantum critical point (QCP). If the
transition is approached at T = 0 as a function of the external parameter, the Muctuations are
quantum-mechanical, while if it is approached as a function of temperature for the external
parameter at its critical value, the Muctuations have a characteristic energy proportional to the
temperature. A large region of the phase diagram near QCPs often carries SFL properties. We
shall discuss such phenomena in detail in Section 6.

(iii) Special symmetries: The Cooper instability at q= 0, Fig. 7(c), is due to the “nesting” of
the Fermi surface in the particle–particle channel. Usually, indications of Anite-q CDW or SDW
singularities are evident pertubatively from Fig. 7(a) or (b) for special Fermi surfaces, nested
in some q-direction in particle–hole channels. One-dimensional fermions are perfectly nested in
both particle–hole channels and particle–particle channels (Fig. 7(a)–(c)) and hence they are
both logarithmically singular. Pure one-dimensional fermions also have the extra conservation
law that right going and left going momenta are separately conserved. These introduce special
features to the SFL of one-dimensional fermions such as the introduction of extra quantum
numbers. These issues are discussed in Section 4.9. Several soluble impurity problems with
special symmetries have SFL properties. Their study can be illuminating and we discuss them
in Section 3.

(iv) Long-range interactions: The breakdown of Landau Fermi liquid may come about
through long-range interactions, either in the bare Hamiltonian through the irreducible inter-
action or through a generated eKective interaction. The latter, of course, occurs in the critical
regime of phase transitions such as discussed above. Coulomb interactions will not do for the
former because of screening of charge Muctuations. The fancy way of saying this is that the
longitudinal electromagnetic mode acquires mass in a metal. The latter is not true for cur-
rent Muctuations or transverse electromagnetic modes which must remain massless due to gauge
invariance. This is discussed in Section 5.1, where it is shown that no metal at low enough tem-
perature is a Fermi liquid. However, the cross-over temperature is too low to be of experimental
interest.
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An oK-shoot of an SFL through current Muctuations is the search for extra (induced) conser-
vation laws for some quantities to keep their Muctuations massless. This line of investigation
may be referred to generically as gauge theories. Extra conservation laws imply extra quantum
numbers and associated orthogonality. We discuss these in Section 5.2. The one-dimensional
interacting electron problem and the Quantum Hall eKect problems may be usefully thought of
in these terms.

(v) Singularities in the irreducible interactions: In all the possibilities discussed in (i)–(iii)
above, the irreducible interactions -(1) deAned after Eq. (27) are regular and not too large. As
noted after Eq. (30), this is necessary to obtain a regular -!. When these conditions are satisAed
the conceivable singularities arise only from the repeated scattering of low-energy particle–hole
(or particle–particle pairs) as in Eq. (32) or its equivalent for large momentum transfers.

A singularity in the irreducible interaction of course invalidates the basis of Landau theory.
Such singularities imply that the parts of the problem considered harmless perturbatively because
they involve the incoherent and high-energy parts of the single-particle spectral weight as in
Eq. (30) are, in fact, not so. This is also true if -(1) is large enough such that the solution of
Eq. (30) is singular. Very few investigations of such processes exist.

How can an irreducible interaction be singular when the bare interaction is perfectly regular?
We know of two examples:

In disordered metals, the density correlations are diKusive with the characteristic frequency !
scaling with q2. The irreducible interactions made from the diKusive Muctuations and interactions
are singular in d= 2. This gives rise to a new class of SFLs which are discussed in Section 8.
One Ands that in this case, the singularity in the cross-particle–hole channel (the channel diKerent
from the one through which the irreducibility of -(1) is deAned) feeds back into a singularity
in -(1). This is very special because the cross-channel is integrated over and the singularity in
it must be very strong for this to be possible.

The second case concerns the particle singularities in the irreducible interactions because of
excitonic singularities. Usually, the excitonic singularities due to particle–hole between diKerent
bands occur at a Anite energy and do not introduce low-energy singularities. However, if the in-
teractions are strong enough, these singularities occur near zero frequency. In eKect, eliminating
high-energy degrees of freedom generates low-energy irreducible singular vertices. This only
requires that the appropriate bare interactions are large compared to characteristic inter-band
energies.

Consider, for example, the band structure of a solid with more than one atom per unit cell
with (degenerate) valence band maxima and minima at the same points in the Brillouin zone,
as in Fig. 16.

Let the conduction band be partially Alled, and the energy diKerence between � and the
valence band below E0 in Fig. 16 be much smaller than the attractive particle–hole interactions
V between states in the valence (v) band and the conduction band (c). For any Anite V ,
excitonic resonances form from scattering between v and c states, as in the X-ray edge problem
to be discussed in Section 3.5. For large enough V , such resonances occur at asymptotically
low energy so that the Fermi liquid description of states near the chemical potential in terms of
irreducible interaction among the c states is invalid. The eKective irreducible interactions among
the low-energy states integrate over the excitonic resonance and will in general be singular if
the resonance is near zero energy.
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Fig. 16. A model band structure for a solid with more than one atom per unit cell. Actually in CaB6 where
excitonic singularities have been invoked to produce a ferromagnetic state [295] there are three equivalent points
in the Brillouin zone where the conduction band minima and the valence band maxima occur.

Such singularities require interactions above a critical magnitude and are physically and math-
ematically of an unfamiliar nature. In a two-band one-dimensional model, exact numerical cal-
culations have established the importance of such singularities [252,249].

Recently, it has been found that CaB6 or SrB6 with low densities of trivalent Eu or quadri-
valent Ce ions substituting for (Ca;Sr) are ferromagnets [295]. The most plausible explanation
[303,34,36] is that this is a realization of the excitonic ferromagnetism predicted by Volkov
et al. [279]. The instability to such a state occurs because the energy to create a hole in the
valence band and a particle in the conduction band above the Fermi energy goes to zero if
the attractive particle–hole (interband) interactions are large enough. This problem has been
investigated only in the mean Aeld approximation. Fluctuations in the critical regime of such a
transition are well worth studying.

Excitonically induced singularities in the irreducible interactions are also responsible for the
Marginal Fermi-liquid state of Cu–O metals in a theory to be discussed in Section 7.

3. Local Fermi liquids and local singular Fermi liquids

In this section, we discuss a particular simple form of Fermi liquid formed by electrons inter-
acting with a dilute concentration of magnetic impurity. Many of the concepts of Fermi-liquid
theory are revisited in this problem. Variants of the problem provide an interesting array of
soluble problems of SFL behavior and illustrate some of the principal themes of this article.
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3.1. The Kondo problem

The Kondo problem is at the same time one of the simplest and one of the most subtle
examples of the eKects of strong correlation eKects in electronic systems. The experiments
concern metals with a dilute concentration of magnetic impurities. In the Kondo model, one
considers only a single impurity; the Hamiltonian then is

H= t
∑
〈ij〉;�

c†i�cj� + JS · c†0�c0 ; (41)

where (ci�; c
†
i�) denote the annihilation and creation operators of a conduction electron at site

i with projection � in the z-direction of spin �. The second term is the exchange interaction
between a single magnetic impurity at the origin (with spin S = 1

2) and a conduction electron
spin.

When the exchange constant J ¿ 0, the system is a Fermi liquid. Although not often dis-
cussed, the ferromagnetic (J ¡ 0) variant of this problem is one of the simplest examples of a
singular Fermi liquid.

There are two simple starting points for the problem: (i) J = 0: This turns out to describe
the unstable high-temperature Axed point. 17 The term proportional to J is a marginal op-
erator about the high-temperature Axed point because, as discovered by Kondo [146], in a
third-order perturbation calculation the eKective interaction acquires a singularity ∼ J 3=t2 ln(t=!).
(ii) t = 0: The perturbative expansion about this point is well behaved. This turns out to describe
the low-temperature Fermi liquid Axed point. One might be surprised by this, considering that
typically the bare t=J is of order 10+3. But such is the power of singular renormalizations. 18

17 For the reader unfamiliar with reading a renormalization group diagram like that of Fig. 17(b) or Fig. 18, the
following explanation might be helpful. The Mow in a renormalization group diagram signiAes the following. The
original problem, with bare parameters, corresponds to the starting point in the parameter space in which we plot
the Mow. Then we imagine “integrating out” the high-energy scales (e.g. virtual excitations to high-energy states);
eKectively, this means that we consider the system at lower-energy (and temperature) scales by generating eKective
Hamiltonians with new parameters so that the low-energy properties remain invariant. The “length” along the Mow
direction is essentially a measure of how many energy scales have been integrated out—typically, as in the Kondo
problem, this decrease is logarithmic along the trajectory. Thus, the regions towards which the Mow points signify the
eKective parameters of the model at lower and lower temperatures. Fixed points towards which all trajectories Mow
in a neighborhood describe the universal low-temperature asymptotic behavior of the class of models to which the
model under consideration belongs. When a Axed point of the Mow is unstable, it means that a model whose bare pa-
rameters initially lie close to it Mows away from this point towards a stable Axed point; hence it has a low-temperature
behavior which does not correspond to the model described by the unstable Axed point. A Axed line usually cor-
responds to a class of models which have some asymptotic behavior, e.g. an exponent, which varies continuously.
18 A particularly lucid discussion of the renormalization procedure may be found in [151]. BrieMy, the proce-
dure consists in generating a sequence of Hamiltonians with successively lower-energy cut-oKs that reproduce the
low-energy spectrum. All terms allowed by symmetry besides those in the bare Hamiltonian are retained. The co-
ePcients of these terms scale with the cut-oK. Those that decrease proportionately to the cut-oK or change only
logarithmically, are coePcients of marginal operators, those that grow=decrease (algebraically) are coePcients of
relevant=irrelevant operators. Marginal operators are marginally relevant or marginally irrelevant. Upon renormal-
ization, the Mow is towards the strong coupling J =∞ Axed point, see Fig. 17. The terms generated from t 
= 0
serve as irrelevant operators at this Axed point; this means that they do not aKect the ground state but determine
the measurable low-energy properties.



C.M. Varma et al. / Physics Reports 361 (2002) 267–417 297

Fig. 17. (a) Hartree–Fock excitation spectrum of the Anderson model in the two limits of zero hybridization, V = 0
and zero interaction, U = 0; (b) renormalization group Mow of the Kondo problem.

The interaction between conduction electrons and the localized electronic level is not a di-
rect spin interaction. It originates from quantum-mechanical charge Muctuations that (through
the Pauli principle) depend on the relative spin orientation. To see this explicitly, it is more
instructive to consider the Anderson model [19] in which

H= t
∑
〈ij〉

c†i�cj� + �d
∑
�

c†0� c0� + Uc†0;↑c0;↑c
†
0;↓c0;↓ +

∑
k;�

(Vkc
†
k;�c0;� + h:c:) : (42)

The last term in this Hamiltonian is the hybridization between the localized impurity state
and the conduction electrons, in which spin is conserved. In the particle–hole symmetric case,
�d =−U=2 is the one-hole state on the impurity site in the Hartree–Fock approximation and the
one-particle state has the energy U=2.

Following a perturbative treatment in the limit t=V;U=V�1 the Anderson model reduces to
the Kondo Hamiltonian with an eKective exchange constant JeK ∼ (V 2=t)2=U .

The Anderson model has two simple limits, which are illustrated in Fig. 17:
(i) V = 0: This describes a local moment with Curie susceptibility & ∼ �2

B=T . This limit is
the correct point of departure for an investigation of the high-temperature regime. As noted one
soon encounters the Kondo divergences.
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Fig. 18. Renormalization group Mows for the Kondo problem, displaying the line of critical points for the “ferro-
magnetic” problem and the Mow towards the Axed point J ∗± = J ∗

z → ∞ for the “antiferromagnetic” problem.

(ii) U = 0: In this limit, the impurity forms a resonance of width - ∼ V 2=t at the chemical
potential which in the particle–hole symmetric case is half-occupied. The ground state is a
spin singlet. This limit is the correct starting point for an examination of the low-temperature
properties (T�TK). A temperature independent contribution to the susceptibility and a linear
contribution to the speciAc heat (∼ N (0)T=-) are contributed by the resonant state. Hence the
name local Fermi liquid.

The conceptually tough part of the problem was to realize that (ii) is the correct stable
low-temperature Axed point and the technically tough problem is to derive the passage from the
high-temperature regime to the low-temperature regime. This was Arst done correctly by Wilson
[289] through the invention of the numerical renormalization group (and almost correctly by
Anderson and Yuval [22,23] by analytic methods). The analysis showed that under renormal-
ization group scaling transformations, the ratio (J=t) increases monotonically as illustrated in
Fig. 17(b)—continuous RG Mows are observed from the high-temperature extreme (i) to the
low-temperature extreme (ii) and a smooth crossover between the two regimes occurs at the
Kondo temperature

TK ∼ t exp(−t=2J ) : (43)

Since all Mow is towards the strong-coupling Axed point, universal forms for the thermodynamic
functions are found. For example, the speciAc heat Cv and the susceptibility & scale as

Cv =Tfc(T=TK); &=�2
Bf&(T=TK) ; (44)

where the f’s are universal scaling functions.
An important theoretical result is that compared to a non-interacting resonant level at the

chemical potential, the ratio of the magnetic susceptibility enhancement to the speciAc heat
enhancement

RW =
�&=&

�Cv=Cv
(45)
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for spin 1=2 impurities at T�TK is precisely 2 [289,197]. In a non-interacting model, this ratio,
nowadays called the Wilson ratio, is equal to 1, since both & and Cv are proportional to the
density of states N (0). Thus, the Wilson ratio is a measure of the importance of correlation
eKects. It is in fact the analogue of the Landau parameter Fa

0 of Eq. (18).

3.2. Fermi-liquid phenomenology for the Kondo problem

Following Wilson’s solution [289], NoziZeres [197] showed that the low-temperature properties
of the Kondo problem can be understood simply through a (local) Fermi-liquid framework. This
is a beautiful example of the application of the concept of analyticity and of symmetry principles
about a Axed point. We present the key arguments below. For the application of this line of
approach to the calculation of a variety of properties, we refer the reader to papers by NoziZeres
and Blandin [197,198].

The properties of a local impurity can be characterized by the energy-dependent s-wave phase
shift ��(�), which in general also depends on the spin of the conduction electron being scattered.
In the spirit of Fermi-liquid theory the phase shift may be written in terms of the deviation of
the distribution function �n(�) of conduction electrons from the equilibrium distribution

��(�) = �0(�) +
∑
�′�′

���′(�; �′)�n�′(�′) + · · · : (46)

About a stable Axed point, the energy dependence is analytic near the chemical potential (�= 0),
so that we may expand

�0(�) = �0 + �� + · · · ; ���′(�; �′) =.��′ + · · · : (47)

Just as the Landau parameters are expressed in terms of symmetric and antisymmetric parts,
we can write

.↑↑ =.↓↓ =.s + .a ; .↓↑ =.↑↓ =.s − .a : (48)

Taken together, this leaves three parameters �, .s and .a to determine the low-energy properties.
NoziZeres [197] showed that in fact there is only one independent parameter (say � which is of
O(1=TK), with a prefactor which can be obtained by comparing with Wilson’s detailed numerical
solution). To show this, note that by the Pauli principle same spin states do not interact, therefore
[197]

.↑↑ =.s + .a = 0 : (49)

Secondly, a shift of the chemical potential by �� and a simultaneous increase in �n by N (0)��
should have no eKect on the phase shift, since the Kondo eKect is tied to the chemical potential.
Therefore according to (46) and (47)

[� + N (0).s]��= 0 ; ⇒ .s = − �=N (0) : (50)

Thirdly, one may borrow from Wilson’s solution that the Axed point has �0 =�=2. This expresses
that the tightly bound spin singlet state formed of the impurity spin and conduction electron spin
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completely blocks the impurity site to other conduction electrons; this in turn implies maximal
scattering and therefore phase shift of �=2 for the eKective scattering potential [197]. In other
words, it is a strong-coupling Axed-point where one conduction electron state is pushed below
the chemical potential in the vicinity of the impurity to form a singlet resonance with the
impurity spin. One may now calculate all physical properties in terms of �. In particular, one
Ands �Cv=Cv = 2�=(�VN (0)) and a similar expression for the enhancement of &, such that the
Wilson ratio is 2.

3.3. Ferromagnetic Kondo problem and the anisotropic Kondo problem

The ferromagnetic Kondo problem provides us with the simplest example of SFL behavior.
We will discuss this below after relating the problem to a general X-ray edge problem in which
the connection to the so-called orthogonality catastrophe is clearer. As discussed in Section 2,
orthogonality generally plays an important role in SFLs.

We start with the anisotropic generalization of the Kondo Hamiltonian, which is the proper
starting model for a perturbative scaling analysis [21,100],

H = t
∑
〈ij〉;�

c†i�cj� +
∑
k;k′

[J±(S+c†k↓ck′↑ + S−c†k↑ck′↓) + JzSz(c†k;↑ck′;↑ − c†k;↓ck′;↓)] : (51)

Long before the solution of the Kondo problem, perturbative renormalization group for the ef-
fective vertex coupling constants J± and Jz as a function of temperature were obtained [21,100].
The scaling relation between them is found to be exact to all orders in the J ′s:

(J 2
z − J 2

±) = const (J+ = J−) : (52)

In the Mow diagram of Fig. 18, we show the scaling trajectories for the anisotropic problem.
In the antiferromagnetic regime, the Mows continuously veer towards larger and larger (J±; Jz)
values; at the attracting Axed point (J∗±; J∗z) = (∞;∞) singlets form between the local moment
and the conduction electrons.

The “ferromagnetic” regime spans the region satisfying the inequalities Jz ¡ 0 and |Jz|¿ J±.
Upon reducing the bandwidth the coupling parameters Mow towards negative Jz values. Ob-
serve the line of =xed points on the negative Jz axis. Such a continuous line is also seen in
the Kosterlitz–Thouless transition [147] of the two-dimensional XY model. Moreover, in both
problems continuously varying exponents in physical properties are obtained along these lines
(in fact, the renormalization group Mow equations of the Kondo model for small coupling are
mathematically identical to those for the XY model). This is an instance of a zero temperature
quantum critical line. The physics of the quantum critical line has to do with an “orthogonality
catastrophe” which we describe next. Such orthogonalities are generally an important part of
the physics of SFLs.

3.4. Orthogonality catastrophe

As we saw in Section 2, a Fermi-liquid description is appropriate so long as the spec-
trum retains a coherent single-particle piece of Anite weight Z ¿ 0. So if by some miracle the
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evaluation of Z reduces to an overlap integral between two orthogonal wavefunctions then the
system is an SFL.

In the thermodynamic (N → ∞) limit, such a miracle is more generic than might appear
at Arst sight. In fact, such an orthogonality catastrophe arises if the injection of an in=nitely
massive particle produces an eKective Anite range scattering potential for the remaining N
electrons [20] (see Section 4.9). Such an orthogonality is exact only in the thermodynamic
limit: The single-particle wavefunctions are not orthogonal. It is only the overlap between the
ground state formed by their Slater determinants 19 which vanishes as N tends to inAnity.

More quantitatively, if the injection of the additional particle produces an s-wave phase shift
�0 for the single-particle wavefunctions (all N of them)

.(kr) =
sin kr
kr

→ sin(kr + �0)
kr

(53)

then an explicit computation of the Slater determinants reveals that their overlap diminishes as

〈 N | ′
N 〉 ∼ N−�2

0=�
2
: (54)

Here, | N 〉 is the determinant Fermi sea wavefunction for N particles and | ′
N 〉 is the wave-

function of the system after undergoing a phase shift by the local perturbation produced by the
injected electron. 20

Quite generally such an orthogonality (Z = 0) arises also if two N -particle states of a system
possess diKerent quantum numbers and almost the same energy. These new quantum numbers
might be associated with novel topological excitations. This is indeed the case in the quantum
Hall liquid where new quantum numbers are associated with fractional charge excitations. The
SFL properties of the interacting one-dimensional fermions (Section 4) may also be looked at as
being due to orthogonality. Often orthogonality has the eKect of making a quantum many-body
problem approach the behavior of a classical problem. This will be one of the leitmotifs in
this review. We turn Arst to a problem where this orthogonality is well understood to lead to
experimental consequences, although not at low energies.

3.5. X-ray edge singularities

The term X-ray edge singularity is used for the line shape for absorption in metals by creating
a hole in an atomic core level and a particle in the conduction band above the chemical potential.
In the non-interacting particle description of this process, the absorption starts at the threshold
frequency !D, as sketched in Fig. 19. In this case, a Fermi edge reMecting the density of
unoccupied states in the conduction band is expected to be visible in the spectrum.

19 The results also hold true for interacting fermions, at least when a Fermi-liquid description is valid for both of
the states.
20 Through the Friedel sum rule, �0=� has a physical meaning; it is the charge that needs to be transported from
inAnity to the vicinity of the impurity in order to screen the local potential [80].
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Fig. 19. Absorption line shape for transitions between a lower dispersionless level and a conduction band, (a) for
zero interaction between the conduction electrons and local level, and (b) for small interaction.

However, when a hole is generated in the lower level, the potential that the conduction
electrons see is diKerent. The relevant Hamiltonian is now

H= �d

(
d†d− 1

2

)
+
∑
k

�kc
†
kck +

1
L

∑
k;k′

V (k; k ′)
(
c†kck′ −

1
2

)(
d†d− 1

2

)
; (55)

where spin indices have been suppressed. The operators (d; d†) annihilate or create holes in
the core level, which is taken to be dispersionless. The Arst two terms in the Hamiltonian
represent the unperturbed energies of the core hole and the free electrons. The last term depicts
the screened Coulomb interaction between the conduction electrons and the hole in the core
level.

As a consequence of the interactions, the line shape is quite diKerent. This is actually an
exactly solvable problem [196]. There are two kinds of eKects, (a) excitonic—the particle and
the hole attract, leading to a shift of the edge and a sharpening of the edge singularity—and (b)
an orthogonality eKect of the type just discussed above, which smoothens the edge irrespective
of the sign of the interaction. This changes the absorption spectrum to that of Fig. 19(b) in the
presence of interactions. The form of the singularity is [167,196]

A(!) ∼ (!− !̃D)−2�0=�+�2
0=�

2
: (56)

The exponent �2
0=�

2 is a consequence of the orthogonality catastrophe overlap integral; the
exponent (−2�0=�) is due to the excitonic particle–hole interactions. If the hole has Anite mass,
we have a problem with recoil which is not exactly solvable. Notwithstanding this, we do know
the essential features of the problem. As we will discuss later in Section 4.9, recoil removes
the singularity in two and three dimensions and the absorption edge acquires a characteristic
width of the order of the dispersion of the hole band. If the hole moves only in one dimension,
the singularity is not removed.

3.6. A spinless model with =nite range interactions

A model which is a generalization of the ferromagnetic Kondo problem and in which the
low-energy physics is dominated by the orthogonality catastrophe, is given by the following
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Hamiltonian:

H=
∑
k;l

�k�
†
k; l�k; l +

t√
L

∑
k

(�†k;0d + h:c:) +
1
L

∑
k;k′

Vl

(
�†k; l�k′; l −

1
2

)(
d†d− 1

2

)
: (57)

The operators (�; �†) are the annihilation and creation operators of spinless conduction electrons
with kinetic energy �k , while as before d+ and d create or annihilate electrons in the localized
level. The local chemical potential has been set to zero (�d = 0) and the Hamiltonian is particle–
hole symmetric. The new index l is an orbital angular momentum index (or a channel index).
Hybridization conserves point-group symmetry, so the localized orbital hybridizes with only one
channel (l= 0). By contrast, the impurity couples to all channels via the interaction Vl. As we
are summing over all moments (k; k ′) this interaction is local.

This problem may be mapped onto the anisotropic Kondo model [107]. Indeed, the transfor-
mation

d† → S† ; d†d− 1
2
→ Sz ;

t → J⊥; 0√
2�a

; 2Vl →
√

2Jz; l − 2�vF(
√

2 − 1)�l;0 (58)

produces

H=
∑
k;�;l

�kc
†
k;�; lck;�; l +

1
2
J⊥;0(S†s−l + h:c:) +

∑
l

Jz; lSzsz; l : (59)

Here, a is short distance cutoK. In the resulting (anisotropic multichannel) Kondo Hamilto-
nian, the spin operators S and sl portray charge excitations of the local orbital and conduction
band. The spin index in the resulting Kondo Hamiltonian should now be regarded as a charge
label. Physically, this mapping is quite natural. The impurity may or may not have an elec-
tron, this is akin to having spin up or spin down. Similarly, the kinetic hybridization term
transforms into a spin Mip interaction term of the form (S†d− + h:c:). As Vl couples to the oc-
cupancy of the impurity site, we might anticipate Jz to scale with Vl. The additional correction
(−2�vF(

√
2 − 1)�l;0) originates from the subtle transformation taking the original fermionic

system into an eKective spin model.
This problem has been solved by renormalization group methods (see Fig. 20). But simple

arguments based on the X-ray edge singularity, orthogonality and recoil give the correct qual-
itative physics. When t = 0, the problem is that of the X-ray edge Hamiltonian (with �d = 0).
When t is Anite, the charge at the impurity orbital Muctuates (the impurity site alternately emp-
ties and Alls). This generates, in turn, a Muctuating potential. The X-ray absorption spectrum is
the Fourier transform of the particle–hole pair correlator

@(!) ∼ 〈�†(t)d(t)d†(0)�(0)〉! : (60)

This quantity, which is none other than the hybridization correlation function, should display
the X-ray edge characteristics for large frequencies (!¿@eK ) where the eKect of recoil is
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Fig. 20. The renormalization Mow diagram for the model with Anite range interactions according to [107]. The
initial values are Jx;0 = 0; J⊥;0 = 0:5, and Jx; l varies from 0 to 1 in increments of 0.05. When Jz; l becomes large
enough (i.e., when V is large enough), the Mow veers from the usual Kondo Axed point to a zero-hybridization
(J⊥;0 = 0) singular Fermi liquid.

unimportant

@(!) ≈ @0(!=W )�; �= − 2�0

�
+
∑
l

�2
l

�2 : (61)

The threshold frequency @eK is determined by the recoil energy. W is the bandwidth. The
bare hybridization width @0 ∼ t2=W . The exponent in the singularity contains an excitonic shift
(−2�0=�) as well as an orthogonality contribution (

∑
l �

2
l =�

2). The recoil is cut oK by @eK . For
frequencies !¡@eK the electron gas becomes insensitive to the change in the potential. As the
X-ray edge singularity is cut oK at !=O(@eK ), self-consistency implies that

@eK =@(!=@eK ) : (62)

This leads to the identiAcation

@eK =W (@0=W )B ; B= 1=(1 − �) (63)

so that for

�¡ 1 ; @eK → 0 as W → ∞ : (64)

For �¡ 1, a singular Fermi liquid emerges in which the hybridization of the localized d-orbital
with the electron gas scales to zero at zero frequency. The actual value of � determines the
singular properties at low energy or temperature. In the single channel problem, such a scenario
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occurs if the potential V0 is suPciently attractive. On mapping to the spin problem we And that
this region corresponds to the singular Fermi liquid ferromagnetic Kondo problem. The scaling
of the hybridization to zero corresponds, in the spin model, to J± → 0. In a renormalization
group language, the Mows impinge on the line of Axed points (J⊥ = 0; Jz ¡ 0). In this regime,
we recover, once again, a continuous set of exponents.

If the number of channels is large enough, the orthogonality catastrophe associated with
the change in the number of particles on the impurity site is suPciently strong to drive the
hybridization to zero even for the case of repulsive interactions V or antiferromagnetic Jz; l.

In the singular regime various correlation functions may be evaluated [107]. For instance, the
Green’s function of the localized impurity

Gd(�) = − 〈T�d(�)d†(0)〉 →
�→0

e−
∑

l (Vl=�vF)2 ln(|�|+a) : (65)

The orthogonality induced by the Muctuation in the occupation number of the impurity site
leads to the decay of the correlation function with a non-universal exponent. Owing to this
orthogonality catastrophe the system behaves as a singular Fermi liquid. In the vicinity of the
t = 0 Axed point, the self-energy due to hybridization

� ∼ !1−� : (66)

A line of critical points for �¡ 1 is found. This bears a resemblance to the Kosterlitz–Thouless
phenomenon [147]. The analogue to the emergence of vortices in the Kosterlitz–Thouless tran-
sition are instantons—topological excitations which are built of a succession of spin Mips in
time on the impurity site.

3.7. A model for mixed-valence impurities

We next consider a slightly more realistic model [204,240,245]

H=
∑
k;�;l

�klc
†
k�lck�l + �dnd;↑nd;↓ + t

∑
�

(d†
�ck�0 + h:c:)

+
∑
k;k′;l

Vkk′l

(
nd − 1

2

)[∑
�

c†k�lck′�l − 1

]
: (67)

In this model, both spin and charge may be altered on the impurity site. This enhanced number
of degrees of freedom implies that the states need to be speciAed by more quantum numbers.
This also allows, a priori, for higher degeneracy. In the following, N screening channels, all of
equal strength V , will be assumed. In the U → ∞ limit, the spectrum of the impurity site may
be diagonalized. The two lowest states are

C†|0〉= |0; 1〉 with energy EC = − V
√
N

4
− �d

2
;

D†�|0〉= |�; 0〉 with energy ED = −

(�d

2
− V

√
N

4

)2

+ t2




1=2

; (68)
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where in the brackets, the Arst entry is the charge and spin of the impurity spin and the second
one is the compensating charge in the screening channels. Other states are elevated by energies
O(V=

√
N ). The states satisfy the Friedel screening sum rule by having a small phase shift �=2N

in each of the N channels. The parameter V can be tuned to produce a degeneracy between the
two states (EC =ED)—the mixed valence condition. The enhanced degeneracy produces singular
Fermi liquid like behavior. 21 A perturbative calculation for small ! yields a self-energy

� ∼ [! ln ! + i! sgn(!)] + O[(! ln !)2] : (69)

As a speculative note, we remark that this physics might be of relevance to quantum dot
problems. Quantum dots are usually described in terms of the Anderson model. However, there
are certainly other angular momentum channels whereby the local charge on the dot and the
external environment can interact. As the external potential in the leads is varied, one is forced
to pass through a potential in which this mixed valence condition must be satisAed. At this
potential, the aforementioned singular behavior should be observed.

3.8. Multichannel Kondo problem

Blandin and NoziZeres [198] invented the multichannel Kondo problem and gave convincing
arguments for its local singular Fermi liquid behavior. Since then, it has been solved by a multi-
tude of sophisticated methods. For an overview of these and of applications of the multichannel
Kondo problem, we refer to [227].

The multichannel Kondo problem is the generalization of the Kondo problem to the case
in which the impurity spin has arbitrary spin S and is coupled to n “channels” of conduction
electrons. The Hamiltonian is

HmcK = t
n∑

‘=1

∑
i¡j;�

c(‘)†
i� c(‘)

j� + h:c: + JS · c(‘)†
0 �c(‘)

0 : (70)

Here ‘ is the channel index. Degeneracy, the key to SFL behavior, is enforced through having an
equal antiferromagnetic coupling J ¿ 0 in all the channels. When the couplings to the various
channels are not all the same, at low enough temperatures a crossover to local Fermi-liquid
behavior in the channel with the largest J‘ always occurs [7]. This crossover temperature is
in general quite large compared to TK because channel asymmetry is a relevant perturbation
about the symmetric Axed point. Therefore, in comparing this theory with SFL behavior in
experiments, one should ensure that one is above the crossover temperature.

The simple Kondo problem is the case 2S = 1 = n. In this case, at low temperatures a singlet
state of the impurity state and the conduction electron electrons in the appropriate channel is
formed. In the general multichannel case in which 2S = n, the physics is essentially the same,
since there are exactly the right number of conduction electron channels to compensate the
impurity spin at low temperatures. Thus, at low temperatures an eKective spin 0 state is formed

21 There is a singularity only in the local charge response at the impurity, not in the magnetic response. In this
respect, the results of [244] are not completely correct.
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Fig. 21. In a multichannel problem, a (Hund’s rule coupled) spin S is compensated by total spin s1 (= n=2) in n
diKerent conduction electron channels leaving a net uncompensated spin as shown. Alternatively exact compensation
or over-compensation with special properties may arise, as discussed in the text.

again, and the properties of the compensated Kondo problem 2S = n at Anite temperature is that
of crossover from a weakly interacting problem above the Kondo temperature TK to a strongly
interacting problem below TK.

The physics of the underscreened Kondo problem 2S ¿n is diKerent. 22 In this case, there
are not enough conduction electron spins to compensate the impurity spin. As a result, when
the temperature is lowered and the eKective coupling increases, only a partial compensation
of the impurity spin occurs by conduction electrons with spin opposite to it. As depicted in
Fig. 21, a net spin in the same direction as the impurity spin then remains at the impurity site.
Since the conduction electrons with their spin in the same directions as the impurity spin can
then still make virtual excitations by hopping on that site while the site is completely blocked
for conduction electrons with opposite spin, a net ferromagnetic coupling remains between the
remaining eKective spin and the conduction electrons. As a result, the low-temperature physics
of the underscreened Kondo problem is that of the ordinary ferromagnetic Kondo problem.
To be more precise, the approach to the Axed point is analogous to that in the ferromagnetic
Kondo problem along the boundary Jz = − J±, because the impurity must decouple (become
pseudo-classical) at the Axed point.

In the overscreened Kondo problem 2S ¡n, there are more channels than necessary to com-
pensate the impurity spin. At low temperatures, all n channels tend to compensate the impurity
spin due to the Kondo eKect. Channel democracy now causes an interesting problem. As the
eKective interaction J scales to stronger values, a local eKective spin with direction opposite
to the impurity spin results. This eKective spin must have an eKective antiferromagnetic inter-
action with the conduction electrons, since now the virtual excitations of conduction electrons
with spins opposite to the eCective local spin lower their energy. This then gives a new Kondo
problem with a new eKective interaction, and so on. Of course, in reality one does not get a
succession of antiferromagnetic Kondo problems—the net eKect is that a new stable Anite-J
Axed point appears. As sketched in Fig. 22, the renormalized eKective interaction Mows to this

22 Since it is hard to imagine that the angular momentum states of the impurity are larger than that of the conduction
electron states about the impurity, such models may be regarded to be of purely theoretical interest. See, however,
Section 6.5.
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Fig. 22. Flow diagram for the degenerate over screened Kondo problem exhibiting a critical point.

Fig. 23. EKective shells in energy space in Wilson’s method. The Arst shell integrates over a fraction 1 of the
top of the band, the next shell 1 of the rest, and so on. In the two-channel S = 1=2 problem, an S = 1=2 eKective
impurity is left at every stage of interpretation.

Axed point both from the strong-coupling as well as from the weak-coupling side. One can
understand this intuitively from the above picture: if one starts with a large initial value of
J , then in the next order of perturbation theory about it, the interaction is smaller, since in
perturbation theory the eKective interaction due to virtual excitations decreases with increasing
J (see also Fig. 23). This means that J scales to smaller values. Likewise, if we start from
small J , then initially J increases due to the Kondo scaling, but once J becomes suPciently
large, the Arst eKect which tends to decrease J becomes more and more important. The Anite-J
Axed point leads to non-trivial exponents for the low-temperature behavior of quantities like the
speciAc heat

Cv

T
˙
(

T
TK

)(n−2)=(n+2)

: (71)

For n= 2, the power-law behavior on the right-hand side is replaced by a ln T term.
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Fig. 24. Flow in temperature-anisotropy plane for the two-channel Kondo problem with coupling constant J1

and J2.

Another way of thinking about the problem is in the spirit of Wilson’s renormalization group:
Consider the problem of two channels interacting with a S = 1

2 impurity. The conduction states
can be expressed as linear combinations of concentric orbitals of conduction electrons around the
impurity. These successive orbitals peak further and further away from the impurity. Consider
Arst the exchange coupling of the orbitals in each of the two channels peaking at the impurity
site. Each of them has S = 1

2. Only one linear combination of the two channels, call it red, can
couple, while the other (blue) does not. So, after the singlet with the impurity is formed, we
are left with a S = 1

2, color blue problem. We must now consider the interaction of this eKective
impurity with the next orbital and so on. It is obvious that to any order, we will be left with a
spin 1=2 problem in a color. Conformal Aeld theory methods Arst showed that the ground state
is left with 1=2 ln 2 impurity. A nice application of the bosonization method [85] identiAes the
red and blue above as linear combinations of the fermions in the two channels so that one is
purely real, the other purely imaginary. The emergence of new types of particles—the Majorana
fermions in this case—often occurs at singular Fermi liquids.

As a detailed calculation conArms [7], the J1 = J2 Axed point is unstable, and the Mow is like
that sketched in Fig. 24. This means that the J1 = J2 Axed point is a quantum critical point: in
the T − J1=J2 phase diagram, there is a critical point at T = 0; J1=J2 = 1. Moreover, it conArms
that asymmetry in the couplings is a relevant perturbation, so that the SFL behavior is unstable
to any introduction of diKerences between the couplings to the diKerent channels. The crossover
temperature T× below which two-channel behavior is replaced by the approach to the Kondo
Axed point is [7]

T× =O(TK( [J )[(J1 − J2)= [J ]2) ; (72)

where [J = (J1 + J2)=2.
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The overscreened Kondo problem is again an example where that the SFL behavior is as-
sociated with the occurrence of degeneracy; the critical point requires degeneracy of the two
orthogonal channels.

An interesting application of the two-channel Kondo problem is obtained by considering the
spin label to play the role of the channel index, while the Kondo coupling is in the orbital angu-
lar momentum or crystal Aeld states for impurities at symmetry sites in crystals [143,69,70,227].
Another possibility that has been considered is that of scattering of conduction electrons of
two-level tunneling centers with diKerent angular momentum states [302]. In this case, the tun-
neling model translates into a model with x and z coupling only, but this model Mows towards
a Kondo-type model with equal x and y spin coupling. For both types of proposed applications,
one has to worry about the breaking of the symmetry, and about the question of how dilute
the system has to be for a Kondo-type model to be realistic. Interesting results in the tunneling
conductance of two metals through a narrow constriction, shown in Fig. 25 appear to bear
resemblance to the properties expected of a degenerate two-channel Kondo eKect [219,71], but
this interpretation is not undisputed [290,220]. Applications to impurities in heavy fermions will
be brieMy discussed in Section 6.4.

3.9. The two-Kondo-impurities problem

In a metal with a Anite concentration of magnetic impurities, an important question is what the
(weak) interaction between the magnetic impurities does to the Kondo physics—that the eKect
might be substantial is already clear from the fact that the Kondo eKect is seen in logarithmic
corrections about the high-temperature local moment Axed point while the RKKY interaction
between the moments mediated by the conduction electrons occurs as a power law correction. 23

Stated simply, TK ∼ 1=N (0) exp(−1=N (0)J ) while the RKKY interaction I ∼ J 2N (0). The ex-
istence of mixed-valence and heavy fermion metals makes this much more than an academic
question. The question of the competition between these two eKects, and in particular whether
long-range magnetic order can arise, was Arst posed by Varma [263] and by Doniach [78],
who gave the obvious answer that RKKY interactions will be ineKective only when the Kondo
temperature below which the local spin at each impurity is zero is much larger than the RKKY
interaction I. Considering that JN (0) is usually �1, this is unlikely for S = 1=2 problems, but
for large S, as encountered typically in rare earths and actinides, it is possible in some cases.
However, the vast majority of rare earths and actinide compounds show magnetic order and no
heavy fermion magnetic behavior. We will, however, only consider the S = 1=2 problem and
work with unrealistic JN (0) so that the competition between the Kondo eKect and RKKY is
possible.

Heavy-fermion phenomena typically occur in solids with partially Alled inner shells (usually
the f-shells of rare earth and actinide compounds) which hybridize very weakly with conduction
electron bands formed of the outer orbitals (s, p and d) of the atoms [101,102]. They are usually

23 Stated technically, the Kondo Hamiltonian is a marginal operator while the RKKY operator is a relevant operator
about the local moment Axed point: In a perturbation calculation, the interaction produces corrections of O(1=T )
compared to a ln(T ) correction of the Kondo eKect.
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Fig. 25. (a) DiKerential conductance G(V; T ) as a function of voltage V in measurements on metal point contacts
by Ralph et al. [219], for various temperatures ranging from 0:4 K (bottom curve) to 5:6 K (upper curve). Note the√
V type behavior developing as the temperature decreases; (b) the zero bias (V = 0) conductance as a function

of temperature for three diKerent samples shows a G(0; T ) − G(0; 0) ∼ √
T behavior. The scaling behavior as a

function of voltage and temperature is consistent with two-channel Kondo behavior [219].

modelled by a periodic array of magnetic moments interacting locally with AFM exchange
interaction with conduction electrons. The two-Kondo-impurity problem therefore serves as a
Arst step to understanding some of the physics of heavy fermions that is not primarily associated
with the occurrence of a collective phase.

In this subsection, we will summarize the results [136,137,8,9,245] for the two-Kondo-
impurity problem: like the models we discussed above, this system also exhibits a quantum
critical point at which SFL behavior is found. However, as for other impurity problems, an
unrealistic symmetry must be assumed for a QCP and attendant SFL behavior.

The two-Kondo-impurity Hamiltonian is deAned as

H= t
∑
k;�

c†k�ck� + J [S1 · �(r1) + S2 · �(r2)] : (73)
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In this form, the problem has a symmetry with respect to the midpoint between the two impurity
sites r1 and r2, and hence one can deAne even (e) and odd (o) parity states relative to this
point. In the approximation that the k-dependence of the couplings is neglected [136], the
two-Kondo-impurity Hamiltonian can then be transformed to

H=Hnon-interacting +
∑
kk′

(S1 + S2) · [Jec
†
k′e�cke + Joc

†
k′o�cko]

+
∑
kk′

Jm(S1 − S2) · [c†k′e�cko + c†k′o�cke] : (74)

The coupling constants Je; Jo; Jm are proportional to J with diKerent numerical prefactors. The
coupling between the spin and orbital channels generates an eKective RKKY interaction

HRKKY = I0(Je; Jo; Jm)S1 · S2 (75)

between the two impurity spins, with I0 = 2 ln 2(J 2
e +J 2

o −2J 2
m) for t = 1. A very important point

to note is that neglecting the k-dependences of the coupling introduces particle–hole symmetry
in the problem, which is generically absent.

The main results of a numerical Wilson-type renormalization group treatment of this model
are the following:

(i) For ferromagnetic coupling I0 ¿ 0 or for a small antiferromagnetic coupling I0 ¿−2:24TK,
where TK is the Kondo temperature of the single-impurity problem, one Ands that there is a
Kondo eKect with

〈S1 · S2〉 �= 0 ; (76)

unless I0 is very small, |I0=TK|�1. Since for uncorrelated impurity spins 〈S1 · S2〉= 0, (76)
expresses that although in the RG language the RKKY interaction is an irrelevant perturbation,
it is quite important in calculating physical properties due to large “corrections to scaling”.
Another feature of the solution in this regime is the fact that the phase shift is �=2 in both
channels. This means that at the Axed point, the even-parity channel and the odd-parity channel
have independent Kondo eKects, each one having one electron pushed below the chemical
potential in the Kondo resonance. As discussed below, this is due to particle–hole symmetry
assumed in the model—without it, only the sum of the phase shifts in the two-channels is Axed.

(ii) There is no Kondo eKect for I0 ¡ − 2:24TK. In this case, the coupling between the
impurities is so strong that the impurities form a singlet among themselves and decouple from
the conduction electrons. There is no phase shift at the Axed point. Also, in this case, the total
spin Stot = 0, but the impurity spins become only singlet like, 〈S1 · S2〉 ≈ −3=4, for very strong
coupling, I0�− 2:24TK. So again there are important “corrections to scaling”.

(iii) The point I0 = − 2:24TK is a true critical point, at which the staggered susceptibility
〈(S1 − S2)2〉=T diverges. Moreover, at this point the speciAc heat has a logarithmic correction
to the linear T dependence, Cv ∼ T ln T , while the impurity spin correlation function 〈S1 · S2〉
becomes equal to −1=4 at this value.

Although the approximate Hamiltonian (74) has a true quantum critical point with associated
SFL behavior, we stress that the analysis shows that this critical point is destroyed by any
k-dependent c†k′ecko coupling. A coupling of this type is not particle–hole symmetric. As the
approximate Hamiltonian (74) is particle–hole symmetric, these terms are not generated under
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the renormalization group Mow for (74). The physical two-Kondo-impurity problem (73), on the
other hand, is not particle–hole symmetric. Therefore, the physical two-Kondo-impurity problem
does not have a true quantum critical point—in other words, when the two-Kondo-impurity
Hamiltonian (73) is approximated by (74) by ignoring k-independent interactions, relevant terms
which destroy the quantum critical point of the latter Hamiltonian are also dropped. This has
been veriAed by an explicit analysis retaining the symmetry breaking terms [244].

An illuminating way to understand the result for the two-impurity-Kondo problem, is to note
that the Hamiltonian can be written in the following form:

H=




[
Heven

S=0 0

0 Hodd
S=0

] [
0 Hmix

Hmix 0

]
[

0 Hmix

Hmix 0

] [
Heven

S=1 0

0 Hodd
S=1

]

 ; (77)

where S=S1 + S2 is the total impurity spin.
In this representation, the Hamiltonian Hmix couples the S = 0 and 1 state, and the follow-

ing interpretation naturally emerges: for large antiferromagnetic values of I0, HS=0 is lower
in energy than HS=1, while for large ferromagnetic coupling I0, the converse is true. The
two-Kondo-impurity coupling can thus be viewed as one in which by changing I0, we can tune
the relative importance of the upper left block and the lower right block of the Hamiltonian.
In general, the two types of states are mixed by Hmix, but at the Axed point H∗

mix → 0. This
implies that there is a critical value of I0=TK where the S = 0 and 1 states are degenerate, and
where SFL behavior occurs. At this critical value, the impurity spin is a linear combination of
a singlet and triplet state with 〈S1 ·S2〉=− 1=4 (i.e., a value in between the singlet value −3=4
and the triplet value 1=4) and the singular low-energy Muctuations give rise to the anomalous
speciAc heat behavior.

Within this scenario, the fact that the susceptibility & is divergent at the critical point signals
that a term H · (S1 − S2) lifts the spin degeneracy. Moreover, the leading irrelevant operators
about the Axed point are all divergent at the critical point—of course, this just reMects the
breakdown of the Fermi-liquid description.

The reason for Hmix → 0 is as follows. Hmix can only be generated from the last term in
(74) which is particle–hole symmetric because under even–odd interchange, both the spin term
and the fermion terms change sign. At the Kondo-Axed point, the leading operators must all be
biquadratic in fermions. An Hmix in that case would be of the form c†k�eck′�o and such a term
by itself would break particle–hole symmetry, not consistent with the last term in (74).

In the two-Kondo-impurity problem, one again encounters the essentials of degeneracy for
quantum critical points and the need for (unphysical) constraints to preserve the singularity.
Once again, new types of quantum numbers can be invoked in the excitations about the QCP.

From the point of view of understanding actual phenomena for problems with a moderate
concentration of impurities or in reference to heavy fermion compounds, the importance of
the solution to the two-Kondo-impurity problem is the large correction to scaling found in the
Wilson-type solution away from the special symmetries required to have a QCP. These survive
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quite generally and must be taken into account in constructing low-energy eKective Hamiltonians
in physical situations.

4. SFL behavior for interacting fermions in one dimension

We have already noted the unique phase-space restrictions for scattering of fermions in one
dimension. For low-energy processes, one may conAne attention to one-particle states in the
vicinity of the two Fermi-points, ±kF. These two points are always nested for particle–hole
scattering (both in the singlet and the triplet spin-channels) and lead to singularities in the
appropriate correlation functions. The upper cut-oK singularities is the bandwidth, just as the
Cooper singularity in the particle–particle channel. The competition between these singularities
lead to rather unique low-energy correlation functions in one dimension.

The simplicity due to the sharp restriction in phase space allows a thorough analysis of
the one-dimensional problem. A variety of elegant mathematical techniques, including exact
solutions in certain non-trivial limits, have been employed to analyze the problem of interact-
ing electrons in one dimension. There are also various diKerent ways of thinking about the
one-dimensional problem, each of which provides insight into the general problem of singular
Fermi liquids. We shall touch on these diKerent aspects without going into the details of the
technical steps leading to their derivation. To get a Mavor for the mathematical nature of the
results and their diKerences from Fermi liquids, we will present the derivation of the diagonal-
izable form of the Hamiltonian as well as exhibit the principal thermodynamic properties and
correlation functions. Detailed reviews of the technical steps in the various solutions as well as
numerical calculations may be found in [113,246]. We also discuss the special aspects of the
one-dimensional problem and the methods and whether the results can be extended to higher
dimensions.

We Arst present the Hamiltonian and the T = 0 “phase diagram” (obtainable by perturbative
RG) which identiAes the principal singularities for various coupling constants in the problem.
This will be followed by a presentation of some of the results of the exact solution of the
simpliAed model known as the Tomonaga–Luttinger model as well as the more general model
for special values of the coupling constants (along the so-called “Luther–Emery” line [163]).

Since in one dimension, hard core bosons and spinless fermions cannot go around each
other, special features in their statistics may be intuitively expected. A special feature of
one-dimensional physics is that the low-energy excitations can be described by either fermions
or bosons. The bosonic description of the Tomonaga–Luttinger model is especially attractive
and will be presented below.

A related distinctive feature of one-dimensional physics is that single-particle as well as
multiple-particle correlation functions are expressible in terms of independent charge and spin
excitations, which, in general, propagate with diKerent velocities. 24 This feature has been shown

24 Even a Fermi liquid displays distinct energy scales for charge and spin (particle–hole) Muctuations because of the
diKerence in the Landau parameters in the spin-symmetric and spin-antisymmetric channels. The phrase spin–charge
separation should therefore be reserved for situations, as in one dimension, where the single-particle excitations
separate into objects which carry charge alone and which carry spin alone.
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to arise due to extra conservation laws in one dimensions [51,179]. As we shall discuss, an
extension of charge–spin separation to higher dimensions is unlikely because there are no such
conservation laws.

The one-dimensional singularities may also be seen as a manifestation of the orthogonality
catastrophe [20] that we discussed in Section 3.4. We shall see that this feature disappears in
higher dimension due to the eKects of recoil.

Some cases where the one-dimensional models solved are experimentally realized include the
edge states of quantum Hall liquids and quasi-one-dimensional organic and inorganic compounds
[83,84]. In the latter case, the asymptotic low-energy properties are, however, unlikely to be
those of the one-dimensional models because of the inevitable coupling to the other dimensions
which proves to be a relevant perturbation. Nonetheless, data on carbon nanotubes [74] discussed
in Section 4.11 show clear evidence of one-dimensional interacting electron physics. Several
one-dimensional spin chains problems can also be transformed into problems of one-dimensional
fermions [225].

4.1. The one-dimensional electron gas

In this section, we shall outline the special features of the one-dimensional problem which
make it soluble and show its singular properties. As it often happens, solubility implies Anding
the right set of variables in terms of which the Hamiltonian is expressed as a set of harmonic
oscillators.

In one dimension, the “Fermi surface” is reduced to the two Fermi points k =± kF. At low
energies, particles may move only to the right or to the left with momenta of almost Axed
magnitude k 
 rkF (belonging, to either the right (r = 1) or to the left (r = − 1) moving
branch).

Due to the constrained character of one-dimensional motion, the phase space for collisions
between particles is severly limited compared to higher dimensions. Let us start oK by an
inspection of the possible collisions. By energy and lattice momentum conservation alone, all
the low-energy scattering processes may be classiAed into four interactions. These interactions
are schematically illustrated in Fig. 26.

Fig. 26. Pictorial representation of the low-energy interaction terms in the one-dimensional problem. After [181].
The “+” and “−” points are a shorthand for the two Fermi points k = kF and (−kF), respectively.
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By observing this small set of allowed processes we note that the general Hamiltonian de-
scribing the low-energy dynamics may be split into four parts

H=H0 + Hforward + Hbackward + HUmklapp : (78)

In Eq. (78) H0 is the free electron Hamiltonian

H0 =
∑
k

�kc
†
kck : (79)

The other three terms describe the interactions depicted in Fig. 26.
The Umklapp process (HUmklapp), denoted conventionally by H3 as in Fig. 26, describes

interactions in which the lattice momentum is conserved yet plain momentum is not: i.e., k in
1 +

k in
2 = kout

1 + kout
2 + G with G �= 0 a non-vanishing reciprocal lattice “vector” (a scalar in this

one-dimensional case). From Fig. 26, we note that such a process can occur only in the special
case when 4kF is very close to a reciprocal lattice “vector”. It follows that except for half-
Alling of the one-dimensional band, such a process cannot occur. So, in general, one needs to
study only forward (H2 or H4) processes or backwardscattering (H1) processes. Note that
Hforward describes interactions with small momentum transfer and Hbackward momentum transfer
close to 2kF.

We will now introduce a few simplifying assumptions which form the backbone of all
Luttinger liquid treatments of the one-dimensional problem:

(1) In Eq. (79), �k may be expanded about the two Fermi points to produce the linear dispersion

�r(k) = vF(rk − kF) + EF (80)

with vF and EF denoting the Fermi velocity and the Fermi energy, respectively. As before,
r = ± 1 is the right=left branch index.

(2) The band cutoK is taken to be inAnite. These assumptions lead us to focus attention on
a simpliAed system in which there are two independent Mavors of particles (right and left
movers) each of which has a linear dispersion relation with unbounded momentum and
energy. The simpliAed energy spectrum is shown in Fig. 10: an inAnite “sea” of unphysical
(negative energy) states below the usual Fermi sea. The added inAnity of unphysical states
with �k ¡ 0 have a negligible physical eKect (as they are far removed from the chemical
potential, they enable the problem to be tractable mathematically).

First we explain how the one-dimensional Hamiltonian can be expressed equivalently in terms
of Bosonic variables. DeAne the charge-density operators Hr and the spin-density operators Sr
for the two branches, r =±, by

Hr =��=±1 †
r;� r;�; Sz

r = 1
2��;�′ †

r;��
z
�;�′ r;�′ ; (81)

where �z is a Pauli matrix. The Fourier transform of the particle-density operators is

Hr;�(q) =
∑
k

c†r;�;k+qcr;�;k =H†
r;�(−q) : (82)
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A pivotal point is that, within the stated assumptions, these Fermi bilinears may be explicitly
shown to obey Bose commutation relations. 25

We will soon see that these density operators are not merely bosonic but that, in the
linear-band approximation, they may also be viewed as raising and lowering operators which
reduce the Hamiltonian Eq. (78) to a simple quadratic (oscillator) form.

With our Arst assumption, we may linearize �k about the two Fermi points for low-energy
processes; the energy of a particle–hole pair created by Hr;�(q):

�r;k+q − �r;k = rvFq (83)

is independent of k in a Luttinger liquid. (This step cannot be implemented in higher dimen-
sions.) In other words, states created by Hr;�(q) are linear combinations of individual electron–
hole excitations all of which have the same energy and are therefore eigenstates of H0. It
follows that for q¿ 0, the bosonic Hr=+;�(q) [Hr=−;�(q)] is a raising [lowering] operator. The
kinetic energy H0 may be expressed in terms of the density operators

H0 =
2�vF

L

∑
r=±

∑
q¿0

Hr;�(rq)Hr;�(−rq) : (84)

Upon separating the densities on a given branch into charge and spin pieces

Hr�(x) = 1
2[Hr(x) + �Sz

r (x)] ; (85)

the free Hamiltonian may be expressed as a sum in the spin and charge degrees of freedom

H0 =
∑
r

H0[Hr] +
∑
r

H0[Sz
r ] : (86)

It follows that in the non-interacting problem, spin and charge have identical dynamics and
propagate in unison. Once interactions are introduced, the electron will “fractionalize” and spin
and charge dynamics will, in general, diKer.

We now turn to a closer examination of the various interaction terms in the Hamiltonian.
The part describing the forward scattering (small momentum transfer) events → (kF; �; kF; �′)
may be further subdivided (as shown) into the processes (kF; �;−kF; �′) → (kF; �;−kF; �′) and
(kF; �; kF; �′), respectively

Hforward =H2 + H4 (87)

25 Explicitly, for the right movers the only non-vanishing commutation relations read [Hr=+1; �(−q); Hr=+1; �(q)] =∑
k (nk−q − nk). By invoking the last of the stated Luttinger liquid assumptions, we And that

∑
k(nk−q − nk) =∑

k¿k0
(nk−q − nk) =

∑
k0−q6k6k0

nk =Lq=2�. Here, k0 is a high momentum cut-oK which is taken to inAnity at
the end of the calculation. Similar relations are found for the left movers (r = − 1). Taken together, we And the
operators Hr;�(q) to be unnormalized Bose operators: [Hr;�(q); Hr′ ; �′ ] = ��;�′�r; r′�q+q′ ;0(rqL=2�):
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with

H2 =
1
L

∑
q

∑
��′

g��′
2 H+;�(q)H−;�′(−q) ; (88)

H4 =
1

2L

∑
q

∑
��′

g��′
4 [H+;�(q)H+;�′(−q) + H−;�(q)H−;�′(−q)] : (89)

The operators Hr;� involve a creation and annihilation operator on the same branch. Let us
further deAne also operators Hr

� formed from bilinears of fermions on opposite branches

Hr
� =

∑
k

c†r;�;kc−r;�;k+q : (90)

In terms of these, the Hamiltonian describing backscattering interactions (the scattering event
(+kF; �;−kF; �′) → (−kF; �; kF; �′) and its reverse) becomes

Hbackwards =H1 = g1

∑
q

∑
��′

g��′
1 H+

� (q)H−
�′(−q) (91)

and the Umklapp term reads

Humklapp =
1

2L

∑
q

∑
��′

g��′
3 [H+

� (q)H+
�′(−q) + H−

� (q)H−
�′(−q)] : (92)

The behavior of g�;�′
i (q) in momentum space translates into corresponding real-space couplings.

If the couplings {gi(q)} are momentum independent constants, then the corresponding real-space
interactions are local and describe contact collisions. Unless otherwise stated, this is the case
that we shall consider.

In all these expressions, the coupling constants may be spin-dependent

g��′
i = gi‖���′ + gi⊥��−�′ : (93)

As the terms H1‖ and H2‖ describe the same process, we may set g1‖ = 0 with no loss of
generality. As already mentioned, Umklapp processes are important only when 4kF is a reciprocal
lattice vector so that all scattering particles may be near the Fermi points. The condition for spin
rotation invariance [H; S̃] = 0 reduces the number of independent coupling constants further

g2⊥ − g1⊥ = g2‖ − g1‖ : (94)

On examining all four possible interactions, we note that the forward scattering H2 and H4
break no symmetries but that H1 and H3 may; The latter leads to qualitatively new properties.
Backscattering breaks the SU (2)L⊗SU (2)R symmetry of spin currents for each of the individual
left–right moving fronts. Gaps (or condensates) are usually associated with broken symmetries,
and this case is no exception: A spin gap @s ¿ 0 is dynamically generated when these interac-
tions (i.e., an attractive backscattering (H1) process (+kF; �;−kF; �′) → (−kF; �; kF; �′)).

Similarly, the Umklapp process (H3) breaks the conservation of individual charge currents;
a charge gap @c ¿ 0 is associated with this broken Galilean invariance. The gaps open up
only if the interactions are attractive. On a formal level, Umklapp breaks independent right and
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Fig. 27. Phase diagram for one-dimensional interacting fermions in the (Kc; g1) plane with g1‖ = 0 in Eq. (93)
and Kc given by Eq. (103). SDW and (CDW ) in the upper left quadrant indicates that both the spin density
wave susceptibility and the charge-density wave susceptibility diverge as T → 0, but that the spin-density wave
susceptibility diverges a factor ln2 T faster than the charge-density wave susceptibility—see Eq. (112). Other sectors
are labeled accordingly. From [233].

left (U (1)L⊗U (1)R) charge conservation symmetry leaving the system with only a single U (1)
symmetry.

We shall later show in Section 4.7 how unbroken U (1)L ⊗ U (1)R and SU (2)L ⊗ SU (2)R
symmetries (in models without Umklapp or backscattering) allow independent left–right con-
servation laws with interesting consequences.

Before discussing the exact solutions to sub-classes of the above general model, it is good to
obtain physical insight through a “phase diagram” obtained by the perturbative renormalization
group Mow equations [246,233]. Due to the limitation of phase space, the one-dimensional
problem is subject to all manners of competing singularities. In one dimension, there are no
truly ordered phases of course, but at T = 0 correlation functions diverge and one may say that
there is algebraic long-range order. One may thus determine a “phase diagram” according to
which susceptibilities diverge as T → 0: the one associated with singlet superconductivity (SS),
triplet superconductivity (TS), a charge-density wave (CDW ) at 2kF, and a spin-density wave
(SDW ) at 2kF. The expressions for these susceptibilities are given in Eq. (112) below, and the
resulting “phase diagram” is shown in Fig. 27. 26

26 It is a useful exercise (left to the reader) to see how Fig. 27 corresponds to the intuitive notions of what kind of
interaction, short- or long-range, in singlet or triplet channel, favors which instability. These notions are transferrable
to higher dimensions.
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4.2. The Tomonaga–Luttinger model

With forward scattering alone in (78) and after linearizing the kinetic energy, we obtain the
Tomonaga–Luttinger (T–L) model. In terms of fermion Aeld operators  r;�(x) and  †

r;�(x), and
density and spin operators Hr(x) and Sz

r (x) in real space, the T–L model is

HT–L =
∫

dx

[
−vF

∑
r;�=±

r †
r;�i9x r;� +

1
2

∑
r=±

g2; cHr(x)H−r(x)

]

+
∑
r=±

g4; cHr(x)Hr(x) + 2
∑
r=±

g2; sSz
r (x)Sz

−r(x) + g4; sSz
r (x)Sz

r (x) ; (95)

where

gc
i =

gi‖ + gi⊥
2

; gs
i =

gi‖ − gi⊥
2

: (96)

Note that the g2; s term is the only term which breaks SU (2) spin symmetry. The T–L model
is exactly solvable. After all, as previously noted, the (Dirac-like) kinetic energy Hamiltonian
H0 is also quadratic in the density operators. So the Hamiltonian is readily diagonalized by
a Bogoliubov transformation whereupon the Hamiltonian becomes a sum of two independent
(harmonic) parts describing non-interacting charge- and spin-density waves: the charge- and
spin-density waves are the collective eigenmodes of the system.

The simplest way to solve the TL model and to explicitly track down these collective modes
is via the bosonization of the electronic degrees of freedom. 27 The bosonic representation of
the fermionic Aelds proceeds by writing [113,193,225]

 r;�(x) = lim
a→0

exp[ir(kFx + Kr�(x))]√
2�a

Fr� ; (97)

where a is a short distance regulator. Kr�(x) satisAes

[Kr�(x); K†
r′;�′(x

′)] = − i��r;r′��;�′ sign(x − x′) : (98)

The so-called Klein factors 28 Fr� are chosen such that the proper fermionic anticommutation
relations are reproduced. The exponential envelope exp[iKr�(x)] represents the slow bosonic
collective degrees of freedom which dress the rapidly oscillating part Fr� exp[ikFx] describing
the energetic particle excitations near the Fermi points.

27 The reader should be warned that many diKerent conventions abound in the literature.
28 The Klein factors connect states diKering by one electron. When the thermodynamic limit is taken in a gapless
system, there is, for all practical purposes (the computation of correlation functions), no diKerences between states
containing N and N ± 1 particles. However, when gaps open up, giving rise to Anite correlation lengths, caution
must be exercised when dealing with these operators. The literature contains several examples of calculations which
were later discovered to be incorrect, precisely due to this subtlety.
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The slowly varying Aelds K may be written in terms of the bosonic Aelds .c;s and their
conjugate momenta 9xLc; s

Kr;� =
√

�=2[(Lc − r.c) + �(Ls − r.s)] : (99)

In terms of the new variables, the familiar charge and spin densities are

H(x) =
∑
r

Hr(x) =

√
2
�
9x.c; Sz(x) =

∑
r

Sz
r (x) =

√
1

2�
9x.s : (100)

In the (Lc;s; .c;s) representation, the Tomonaga–Luttinger Hamiltonian becomes a sum of two
decoupled sets of oscillators describing the gapless charge and spin density wave eigenmodes

HT–L =
∫

dx
∑
�=c; s

v�
2

[
K�(9xL�)2 +

(9x.�)2

K�

]
≡ HT–L

s + HT–L
c : (101)

The velocities of the collective charge and spin modes are easily read oK by analogy to a
harmonic string

vc;s =

√(
vF +

gc;s
4

�

)2

−
(
gc;s

2

�

)2

: (102)

Likewise, the moduli determining the power-law decay of the correlations are

Kc;s =

√
�vF + gc;s

4 − gc;s
2

�vF + gc;s
4 + gc;s

2
: (103)

In Section 4.7, we shall show how the above expressions for the spin and charge density wave
velocities simply follow from the conservation of left and right moving particles in the T–L
model.

As previously noted, the charge and spin velocities are degenerate in the non-interacting
model. When interactions are introduced, the charge and spin velocities (vc and vs) as well as
the energy to create spin and charge excitations (vs=Ks and vc=Kc, respectively) become diKerent.
The charge constant Kc is less than 1 for repulsive interactions, which elevates the energy of
the charge excitations, while Kc is greater than 1 for attractive interactions.

4.3. Thermodynamics

As evident from (101) the contributions of the independent charge and spin modes must
appear independently in most physical quantities.

The speciAc heat coePcient is found to be

�=�0 =
vF

2

(
1
vc

+
1
vs

)
; (104)

where �= �0 for the non-interacting system.
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Fig. 28. The zero-temperature spectral function A(k; !) = Im{G¡
r=+1(k; !)} as a function of ! for the case

(g2 = 0; g4 
= 0)—the “one-branch Luttinger liquid” in which the spin and charge velocities diKer but for which
the correlation exponents retain their canonical value Kc = 1 according to (103). In the Agure vc ¿vs and k ¿ 0
are assumed. Note the inverse square root singularities. This is a consequence of Kc = 1 which makes �c = 0. After
Voit [278].

The spin susceptibility and the compressibility are also readily computed from (101)

&0 = vF=vs; %=%0 = vFKc=vc ; (105)

where &0 and %0 are the susceptibility and compressibility of the non-interacting gas. The Wilson
ratio, already encountered in our discussion of the Kondo problem in Section 3.2,

RW =
&=&0

�=�0
=

2vc
vc + vs

(106)

deviates from its Fermi-liquid value of unity by an amount dependent on the relative separation
between the spin and charge velocities.

4.4. One-particle spectral functions

We display the calculated zero temperature spectral functions of the T–L model [278] in
order to point out the diKerences from the Landau Fermi-liquid discussed in Section 2

A(k; !) ≈ (!− vc(k − kF))2�c−1=2|!− vc(k − kF)|�c−1=2 (vc ¿vs) ;

A(k; !) ≈ (!− vs(k − kF))�c−1=2|!− vs(k − kF)|2�c−1=2 (vc ¡vs) : (107)

These spectral functions are sketched in Fig. 28 for the case g2 = 0 and in Fig. 29 for the general
case. Note that unlike the single quasiparticle pole in A(k; !) in a Landau Fermi liquid, A(k; !)
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Fig. 29. The generic (g2 
= 0; g4 
= 0) zero-temperature spectral function. Note the broader range of non-trivial
singularities near vsk and ±vck. Here both the eKect of spin–charge velocity diKerence and the emergence of
non-trivial exponents is visible. After Voit [277,278].

in a Lutinger liquid is smeared with a branch cut extending from the spin mode excitation
energy to the charge mode excitation energy. These branch cuts split into two in an applied
magnetic Aeld, see Fig. 30. Note also the important diKerence for the case shown in Fig. 28,
that g2 = 0, when the left and right branches are orthogonal, from the general case shown in
Fig. 29. These results are exact for small ! and small |k − kF|.

Another manifestation of the SFL behavior is the behavior of the momentum distribution
function derived from A(k; !) by integrating over !:

nk ∼ nkF − const × sign(k − kF)|k − kF|2�c ; (108)

where

�c;s = 1
8(Kc;s + K−1

c; s − 2) : (109)

In contrast to a Fermi liquid, the expression for nk does not exhibit a step-like discontinuity at
the Fermi points. The exponent 2�c is non-universal (as usual, an outcome of a line of critical
points).

The single-particle density of states obtained from A(k; !) by integrating over k:

N (!) ≈ |!|2�c (110)

vanishes at the Fermi surface.
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Fig. 30. The energy distribution curve (the spectrum A(k; !) at Axed k) as a function of ! in the presence of
a magnetic Aeld. The dashed line is the zero-Aeld result of Fig. 28. The magnitude of the Zeeman splitting is
enhanced with respect to (vc − vs)k for clarity. From Rabello and Si [218].

The spectral function A(k; 0), at the chemical potential, has also been calculated as a function
of temperature. Representative plots are shown in Fig. 31. These are to be contrasted with the
delta-function in a Landau Fermi liquid.

The reader will further note that in Fig. 31, the energy distribution curves are much broader
than the momentum distribution curves. This is a general occurrence in one-dimensional systems
and is a consequence of the fact that an injected electron of momentum and energy (k; !)
disintegrates (while conserving energy and momentum) into two independent spin and charge
excitations having energies !c;s = vc;s|k|.

4.5. Correlation functions

Since the Hamiltonian is separable in charge and spin and as  is a product of indepen-
dent charge and spin degree of freedom, all real-space correlation functions are products of
independent charge and spin factors. We show the most important correlation functions in the
illustrative examples below, and refer for a summary of the various exact expressions to [202].
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Fig. 31. (Left panel) Momentum distribution curves at != 0 (i.e., the spectrum at Axed != 0 as a function of k)
for a spin rotationally invariant Tomonaga–Luttinger liquid, plotted as a function of vsk=T ; (right panels) energy
distribution curves at k = 0 (the spectrum at Axed k = 0) as a function of !=T . In both panels, vc=vs = 3 and �c = 0
in (a), �c = 0:25 in (b), and �c = 0:5 in (c). From Orgad [202].

Sometimes, the Bosonization method in its elegance obscures the underlying physics of these
correlation functions. The genesis of the power-law dependence of the correlations exhibited
below is the nesting in both charge and spin particle–hole channels and the Cooper channel.
The logarithmic singularities evident in the simplest calculation turn into power laws on sum-
ming the singularities exactly. To obtain the exact values of the exponents one requires an exact
method, for example Bosonization.
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The most important feature of the large distance behavior of the charge and spin correlators
is their algebraic decay at zero temperature

〈H(x)H(x′)〉 
 Kc

(�(x − x′))2 + B1; c
cos(2kF(x − x′))

|x − x′|1+Kc
ln−3=2|x − x′|

+B2; c
cos(4kF(x − x′))

|x − x′|4Kc
+ · · ·

〈S̃(x) · S̃(x′)〉 
 1
(�(x − x′))2 + B1; s

cos(2kF(x − x′))
|x − x′|1+Kc

ln1=2|x − x′| + · · · (111)

at asymptotically long distances and Ks = 1. For not very repulsive interactions, so that Kc ¡ 1,
the 2kF Muctuations are dominant. We have previously seen that such a CDW=SDW instability
may arise due to the special 2kF nesting wavevector in one dimension. 29 The amplitudes {Bi;c}
and {Bi;s} are non-universal while the exponents are determined by the stiKness of the free
charge and spin Aelds.

While the above expressions are for Ks = 1, in the general case Ks �= 1, the spin correlator
decays asymptotically with the exponent (Ks + Kc).

At non-zero temperatures, it is found that the Fourier transforms of these correlation functions
scale as

&CDW ≈ TKc−1|ln T |−3=2; &SDW ≈ TKc−1|ln T |1=2 ;

&SS ≈ TKc−1|ln T |−3=2; &TS ≈ TKc−1|ln T |1=2 : (112)

The “phase diagram” shown in Fig. 27 is of course consistent with the dominant singularities
of (112). The reader will note that the quantities on the left-hand side of Eq. (112) diKer from
those on the right-hand side by a factor of |ln T |−2, but that if any quantity on the right-hand
side diverges, then so does its counterpart (with the same power of T ). The dominant and the
subdominant divergences are marked in each sector of the phase diagram depicted in Fig. 27,
with the subdominant behavior indicated between brackets.

These results also lead, in principle, to clear experimental signatures. X-rays, which couple
to the charge density waves, should peak at low temperatures with intensities given by

I2kF ∼ TKc ; I4kF ∼ T 2Kc−1 : (113)

The NMR probe couples to the spin degrees of freedom and the theoretically computed nuclear
relaxation time scales as

T1 ∼ T−Kc : (114)

29 We also show a 4kF modulation of the charge-density correlation which arises due to Umklapp scattering near
half-Alling, i.e, 4kF = a reciprocal vector. If instead of point contact interactions (q independent couplings gi) we
augment the system by additional long-range Coulomb interactions via

∫
dx dx′V (x− x′)9x.c9′x.c with a Coulomb

like kernel V (x) ∼ [x2 + d2]−1=2 then singular density correlations at 4kF are triggered. This is of course related
to the physics of Wigner crystallization. Owing to the one-dimensional character of the system no true long-range
order can be found; however, the 4kF component of the charge–charge correlations decays in an extremely slow
fashion ∼ (exp[ − A

√
ln x]) (slower than algebraic).
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4.6. The Luther–Emery model

The Luther–Emery model extends the Tomonaga–Luttinger Hamiltonian by including the
backscattering interactions parametrized by H1, which scatter from (+kF; �;−kF; �′) to
(−kF; �; kF; �′) and vice versa. The Umklapp processes (H3) continue to be discarded.

The backscattering term

H1 =
∫

dx g1

∑
r=±1

 †
r;�=+1 

†
−r;�=−1 r;�=−1 −r;�=1 (115)

written in terms of the bosonic variables introduces a non-trivial sine-Gordon like interaction
[113]

Hs =
∫

dx
vs
2

[
Ks(9xLs)2 +

(9x.s)2

Ks

]
+

2g1

(2�a)2 cos(
√

8�.s) (116)

with rescaled values of the spin and charge velocities and stiKness constants. 30 When g1 ¿ 0
(repulsive interactions), g1 is renormalized to zero in the long wavelength limit. Since along
the RG Mow trajectories Ks − 1 ≈ g1=(�vs), this means that Ks renormalizes to 1. The physics
corresponding to this case is in the Tomonaga–Luttinger model that we just discussed.

When symmetry breaking backscattering interactions are attractive and favorable (g1 ¡ 0) the
Tomonaga–Luttinger SU (2)L⊗SU (2)R symmetry is broken and an associated spin gap opens up.
On a more formal level, the non-trivial cosine term in Eq. (116) leads to diKerent minimizing
values of the spin Aeld .s dependent on the sign of g1. Consequently, when the backscattering
interactions are attractive, a spin gap of magnitude

@s ∼ vs
a

[
g1

2�2vs

]1=(2−2Ks)

(117)

opens up. The attractive backscattering leads to the formation of bound particle–hole pairs which
form a CDW. The spin correlation length is then Anite

Os =
vs
@s

: (118)

In the spin gapped phase, 31 the Hamiltonian can be conveniently expressed in terms of new
refermionized spin Aelds Pr(x).

Pr =Fr exp[ − i
√

�=2(Ls − 2r.s)] : (119)

Luther and Emery observed that at the point Ks = 1=2, the Hamiltonian in terms of these new
spin Aelds becomes that of non-interacting free fermions having a mass gap @s = g1=(2�a).

Hs =
∫

dx
∑
r=±1

[ − ivsrP†
r9xPr + @sP†

rP−r] (120)

30 If Umklapp scattering were included (it is not in the present section), then an analogous term
2g3=(2�a)2cos(

√
8�.c) would be generated. The spin and charge Aelds then take similar roles for the backscattering

(H1) and Umklapp (H3) interactions.
31 Gaps in the charge spectrum also develop when Umklapp scattering is relevant.



328 C.M. Varma et al. / Physics Reports 361 (2002) 267–417

leading to the spin excitation spectrum

Es =
√

@2
s + v2

s (k − kF)2 : (121)

We will now discuss how the spin gap may fortify both superconductivity and the 2kF charge-
density wave order.

When expressed in terms of Bose operators, the superconducting gap operator

@SC =  †
r=−1;�=+1 

†
r=1;�=−1 +  †

r=1;�=+1 
†
r=−1;�=−1 (122)

turns, as all correlators do, into a product of the spin and charge degrees of freedom. For
@SC, the relevant product is amongst the cosine of the spin Aeld .s and an exponential of the
Lc operator (i.e., the Aeld dual to the charge =eld). Thus the cosine of the spin Aeld plays
the role of the amplitude. It follows that when spin Muctuations are frozen (by opening a gap),
superconducting correlations may be consequently enhanced. The appearance of the dual Aeld Lc
in an expression for the superconducting gap @SC should come as no surprise as superconducting
(phase) and charge (number operator) order are conjugate and dual to each other.

According to Eq. (112), in the presence of a spin gap, the superconducting susceptibility
scales as

&SC ∼ @sT (1=Kc)−2 : (123)

The 2kF charge density wave order

Hr2kF =
∑
�

 †
r;� −r;� (124)

is associated, as it must, with the charge Aeld .c (in lieu of its dual Lc). Consequently, a
computation shows that

&CDW ∼ @sTKc−2 : (125)

Note that the appearance of Kc in the exponent by contrast to the appearance of 1=Kc in &SC
associated with the dual charge Aeld Lc. This is once again a part of the old maxim that “CDW
(or number) ordering is conjugate and dual to superconducting (or phase) order” in action.

In conclusion: The charge Aeld or its dual (the phase Aeld) may condense, under the umbrella
of the spin gap, to a 2kF charge density wave or to a superconducting gap.

This completes our compendium of the essential properties of one-dimensional interacting
fermions. We will now critically examine the results from several diKerent points of views.

4.7. Spin–charge separation

As in many other physical problems, the availability of an exact solution to the one-
dimensional electron gas problem is intimately linked to the existence of additional conser-
vation laws or symmetries. One may attack the Luttinger liquid problem by looking for its
symmetries.
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The U (1)L⊗U (1)R symmetry present in the absence of Umklapp scattering may be exhibited
by considering the eKect of the separate left and right rotations by angles -L;R on the fermion
variables

 L�(x; t) → ei-L L�(x; t);  R�(x; t) → ei-R R�(x; t) : (126)

All of the currents are trivially invariant under this transformation as the  † Aelds transform
with opposite phases. Physically, this corresponds to the conservation of the number and net
spin of left and right moving particles.

As discussed by Metzner and Di Castro [179], these separate conservation laws for the left
and right moving charge and spin currents lead to Ward identities which enable the computation
of the single-particle correlation functions.

In the absence of Umklapp scattering, charge is conserved about each individual Fermi point.
The net total charge density H ≡ H+ + H− and charge density asymmetry H̃ ≡ H+ − H− in the
Tomonaga–Luttinger Hamiltonian satisfy the continuity equations

9�H= [H; H] = − qj; 9�H̃= [H; H̃] = − qj̃ ; (127)

where

j(q) = uc[H+ − H−]; j̃ = ũ c[H+ + H−] (128)

and where the velocities are given by

uc = vF +
gc

4 − gc
2

�
; ũ c = vF +

gc
4 + gc

2

�
: (129)

These results follow straightforwardly from the form of HT−L in combination with the fact that
the only non-zero commutator is

[Hr;�(q); Hr′;�′(−q′)] = �qq′�rr′���′

(
qL
2�

)
: (130)

Let us illustrate simply how many of the results derived via bosonization may also be directly
computed by employing these conservation laws. The existence of gapless charge modes is a
direct consequence of the right–left charge conservation laws. The two Arst-order continuity
equations given above lead to

[92
� + ucũ cq2]H= 0 (131)

from which we can read oK a linear charge dispersion mode

!= vc|q| (132)

with velocity vc =
√
ucũ c, in agreement with the earlier result (102). Thus, collective charge

excitations propagate with a velocity vc. A similar relation may be found for the spin velocity
vs which in general is diKerent from vc. This spin–charge separation also becomes clear from
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the explicit form of the expectation values of the charge and spin densities

〈0| r(x0)Hr(x; t) †
r (x0)|0〉= �(x − x0 − rvct) ;

〈0| r(x0)Sz
r (x; t) 

†
r (x0)|0〉= �(x − x0 − rvst) ; (133)

where |0〉 denotes the ground state.
The separate right–left conservation laws cease to hold if (backscattering) impurities are

present. Accordingly, as shown by Giamarchi and Schulz, [108] spin–charge separation then no
longer holds.

4.8. Spin–charge separation in more than one dimension?

Spin–charge separation in one dimension requires extra conservation laws. Can something
analogous occur in more than one dimension? No extra conservation laws are discernible in
the generic Hamiltonians in two dimension, although such Hamiltonians can doubtless be con-
structed. Are there conditions in which generic Hamiltonians become dynamically equivalent
to such special Hamiltonians (because the unwelcome operators are “irrelevant”)? No deAnite
answers to these questions are known. In Section 5.2 and later in this section we shall brieMy
review some interesting attempts towards spin–charge separation in higher dimensions. First we
present qualitative arguments pointing out the diPculty in this quest.

There is a simple caricature given by Schulz [233] for qualitatively visualizing charge–spin
separation for a special one-dimensional case: the U → ∞ Hubbard model. This model is
characterized (at half-Alling) by the algebraic decay of spin-density correlations, which at short
distances appear as almost antiferromagnetic alignments of spins. Let us track the motion of
a hole introduced into an antiferromagnetically ordered chain. The hole is subject to only the
lattice kinetic term which enables it to move by swapping with a nearby spin.

An initial conAguration will be

: : : ⇓⇑⇓⇑⇓ O ⇓⇑⇓⇑⇓ : : : (134)

After one move the conAguration is

: : : ⇓⇑⇓⇑ O ⇓⇓⇑⇓⇑⇓ : : : (135)

After two additional moves to the left the conAguration reads

: : : ⇓⇑ O ⇓⇑⇓⇓⇑⇓⇑⇓ : : : (136)

Thus the initial hole surrounded by two spins of the same polarization has broken into a charge
excitation (“holon” or “chargon” — a hole surrounded by antiferromagnetically aligned spins)
and a spin excitation (“spinon”) composed of two consecutive parallel spins in an antiferro-
magnetic environment. The statistics of the localized spinons and holons in this model must be
such that their product is fermionic.

The feasibility of well-deAned spin and charge excitations hinges on the commuting nature
of the right and left kinetic (hopping) operators TRight; TLeft which are the inverse of each other.
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Any general term of the form

(TLeft)n
Left
1 (TRight)n

Right
1 (TLeft)n

Left
2 (TRight)n

Right
2 : : := (TLeftTRight)NRTNL−NR

Left = I × TNL−NR
Left ; (137)

where NR;L =
∑

i n
R;L
i . We have just shown that terms of the form TnL

L lead to a representation of
the sort depicted above which gives rise to spin–charge separation and therefore our result holds
for the general perturbative term. The proof of spin–charge separation for the one-dimensional
electron gas rests on the existence of separate conservation laws for the left and right moving
domain walls, as a result of the fact that the operators TRight and TLeft commute.

Such a simple “proof ” cannot be extended to higher dimensions. In higher dimensions this
suggestive illustration for spin–charge separation is made impossible by the non-commuting
(frustrating) nature of the permutation operators TUp; TDown; TRight; TLeft; : : : Moreover, even if the
exchange operators commuted we would be left with terms of the form TnLeft

Left T
nUp

Up which when
acting on the single hole state will no longer give rise to states that may be seen as a direct
product of localized holon and spinon like entities.

Let us simply illustrate this by applying a sequence of various exchanges on the planar
state | 〉:

− + − + − + − +
+ − + − + − + −
− + − + − + − +
+ − + 0 + − + −
− + − + − + − +

; (138)

where + and − denote up and down spins, respectively. By applying TDownT 2
RightTUpT 2

Left we
arrive at | ′〉

− + − + − + − +
+ − + − + − + −
− − + + − + − +
+ + − 0 + − + −
− + − + − + − +

(139)

a state which obviously diKers from TDownTupT 2
RightT

2
Left| 〉= | 〉. Unlike the one-dimensional

case, damage is not kept under check. Note the extended domain wall neighboring the hole, en-
closing a 2×2 region of spins of the incorrect registry. Note also that the hole is now surrounded
by a pair of antiferromagnetically aligned spins along one axis and ferro-
magnetically aligned spins along the other. A path closing on itself does not lead to the
fusion of the “holon” and “spinon” like entities back into a simple hole. As the hole con-
tinues to further explore both dimensions, damage is continuously compounded. The state
T 2

DownTRightTDownTRightT 3
UpT

2
Left| 〉= | ̃ 〉 contains a string of eight spins of incorrect orientation

surrounded by a domain wall whose perimeter is 16 lattice units long
− − + + − + − +
+ + − + + − + −
− − − + − + − +
+ + − 0 + − + −
− + − + − + − +

: (140)
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As seen, the moving electron leaves a string of bad magnetic bonds in its wake. The energy
penalty of such a string is linear in its extent. It is therefore expected that this (magnetic string)
potential leads, in more than one dimension, to a conAning force amongst the spin and charge
degrees of freedom. As this caricature for the single hole makes clear, the notion of localized
“spinons” and “holons” is unlikely to hold water for the U → ∞ Hubbard model in more than
one dimension. The well-deAned SFL solutions for special models with nested Fermi-surface in
two dimensions should, however, be noted [96].

A certain form of spin–charge separation in two dimensions may be sought in the very
special hole aggregates (or stripes) that have been detected in some of the cuprates [257]
and the nickelates [59]. Here, holes arrange themselves along lines which concurrently act as
antiferromagnetic domain walls (i.e., behave like holons) in the background spin texture. Charge
and spin literally separate and occupy diKerent regions of space. In eKect, the two-dimensional
material breaks up into one-dimensional lines with weak inter-connections. 32 Related behavior
is also found in numerical work [174] in the so-called, t′–t–J model. 33 An important question
for such models is the extent to which the interconnections between stripes are “irrelevant”—i.e.,
the coupled chains problem, which we brieMy allude to in Section 4.10.

4.9. Recoil and the orthogonality catastrophe in one dimension and higher

Here we show how the SFL behavior in one dimension is intimately tied to the issue of
orthogonality which we discussed in Sections 2.2 and 3.4. This line of thinking is emphasized
by Anderson [20,24] who has also argued that this line of reasoning gives SFL behavior in two
dimensions for arbitrary small interactions.

We consider the eKect of interactions through the explicit computation of our old friend from
Section 2.2, the quasiparticle weight

Z1=2
k = 〈 N+1

k |c†k | N 〉 : (141)

As we have seen, this indeed vanishes in all canonical one-dimensional models. Consider the
model [50] of a Hamiltonian describing N fermions interacting with an injected particle via a
delta function potential

H = − 1
2m

N∑
i=1

92

9x2
i
− 1

2m
92

9x2
0

+ U
N∑
i=1

�(xi − x0) : (142)

32 This observation has led to a line of thought which is of some interest in the context of the issues discussed here.
If one focusses on the quantum mechanics of a single line of holes by formulating it as a quantum-mechanical lattice
string model [87], the string traces out a two-dimensional world sheet in space–time. Quantum-mechanical particles
in one dimension, on the other hand, trace out world lines in space–time. It is claimed that one can recover most of
the power-law correlation functions of one-dimensional interacting fermions from the classical statistical mechanics
of Muctuating lines, and along these lines approach stripe formation as some form of spin–charge separation in two
dimensions [300].
33 In this paper it was further observed that the kinetic motion of single holes may scramble the background spin
environment in such a way that, on average, the holes may become surrounded by antiferromagnetically ordered
spins on all sides (i.e., both along the horizontal and along vertical axis)—this is claimed to be a higher dimensional
generalization of the holons encountered so far.
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The calculation for the small s-wave phase shifts for all single-particle states {.i(xi)} is rela-
tively straightforward. The quasiparticle weight Z reduces to an overlap integral between two
(N + 1)-particle Slater determinants, and one Ands

Z ∼ N−2(�F=�)2
(143)

with

�F = − tan−1[UkF=2] : (144)

In the thermodynamic limit Z = 0 and no quasiparticles exist. As we see, the scattering phase
shifts must conspire to give rise to anomalous behavior (exponents) for the electronic correlation
function in such a way that they lead to a vanishing density of states at the Fermi level. We
have already given explicit expressions for the anomalous exponent(s) under the presence of
general scattering terms.

As indicated in Sections 2 and 3, an identically vanishing overlap integral between two (N+1)
particle states could be a natural outcome of the emergence of additional quantum numbers la-
beling orthogonal states. These states could correspond to diKerent topological excitation sectors
(e.g. solitons). Each quantum number corresponds to some conserved quantity in the system. In
the one-dimensional electron gas this may be derived as we saw as a consequence of separate
conservation law for left and right movers.

An illustrative example of how singular Fermi liquid behavior due to orthogonality of the
wavefunction is robust in one dimension but easily destroyed in higher dimensions, is pro-
vided by the X-ray edge singularity problem, already discussed in Section 3.5. As sketched in
Fig. 19, we consider the transition of an electron from a deep core level to the conduction
band through absorption of a photon. This problem is essentially the same as that of optical
absorption in degenerate semiconductors, and from this point of view it is natural to analyze,
following NoziZeres [199], the eKect of dispersion in the hole band, the analogue of the deep
level state. For optical absorption in a semiconductor, the transition conserves momentum; hence
in the absence of Anal state interactions, the threshold absorption is associated with the transi-
tion indicated with the arrowed line in Fig. 19, and absorption starts discontinuously above the
threshold energy !D provided that the hole mass is inAnite. For Anite hole mass, the threshold
gets rounded on the scale of the dispersion of the hole band. However, in one dimension, the
edge singularity does survive because low-energy electron–hole excitations in one dimension
have momenta only near 0 and near 2kF (see Fig. 10); electron–hole pairs cannot carry away
arbitrary momenta. This is seen in the following calculation [199].

Assume a simple featureless Anal state potential V , and consider Arst the case without recoil.
The relevant quantity to calculate is the transient propagator for the scatterer

G(t) = 〈0|deiHtd†|0〉 (145)

as the spectrum is the Fourier transform of G(t). In (145), the potential V is turned on at time
0 and turned oK at time t. In a linked cluster expansion, we may write G(t) = eC(t), where C(t)
is the contribution of a single closed loop. In lowest order perturbation theory, C(t) becomes

C(t) =
∫ t

0
d�
∫ t

0
d�′V 2g(0; �− �′)g(0; �′ − �) ; (146)
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where g(0; �) is the free conduction electron propagator at the origin. For large times, one
has g(0; �) ≈ −iN (0)=�, and when this is used in (146) one immediately And that for large
times

C(t) =V 2N (0)2 ln t; ⇒ G(t) ˙ 1=tn ; (147)

where

n=V 2N (0)2 = �2=�2 + 1 (148)

is the phase shift exponent due to the orthogonality eKect, compare Eq. (56). A power-law decay
of G(t) ∼ 1=tn at long times corresponds to power-law dependence ∼ (!−!D)n−1 = (!−!D)�

2=�2

just above the absorption edge.
If we now take into account the recoil eKect, then the dispersion of the lower band implies

that the hole in this band can hop from site to site. The propagator G(t) is then obtained as a
sum over all trajectories R(�) of the scattering hole which begin and end at R= 0. For a given
history, we can extend the above analysis to lowest order by replacing the propagator g(0; �)
by g(H; �), where H(�) =R(�) − R(�′). For positive time diKerence, we can then write

g(H; �) =
∑
k¿kF

ei�k�−ik·H : (149)

For small hopping rates and large times, the integration over the modulus is dominated by
the energy term, and this yields a term proportional to −1=� as in the recoilless case. The
trajectory of the hole enters through the average exp(−ik · H)

FS
over the Fermi sphere. A

simple calculation yields

exp(−ik · H)
FS

=




cos(kFH); d= 1 ;

J0(kFH); d= 2 ;

sin(kFH)
kFH

; d= 3 :

(150)

In order to calculate the large time behavior of the Green’s function, we Anally have to average
the square of this result over the distribution function of the trajectories H for large times.
Using the large-H behavior of the expressions found above, one then Ands [199] that for large
times

g2(H; �) ≈ N 2(0)�−2
〈(

exp(−ik · H)
FS
)2〉

H
=




1
2N

2(0)=�2; d= 1 ;

˙ ln Htyp(�)=(Htyp(�)�2); d= 2 ;

˙ 1=(H2
typ(�)�2); d= 3 ;

(151)

where Htyp is the typical distance the hole trajectory moves away from the origin in time �.
In one dimension, we see that g2 still falls oK as 1=�2 and hence in analogy to (147) that
G(t) has power-law long time behavior: in the presence of recoil, an edge singularity persists
but the exponent n is now only half of that in the absence of dispersion of the lower state
(a consequence of the averaging over H).
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Since Htyp(�) grows diKusively as �1=2 for large �, the integrand in the expression (146) for
C(t) converges faster than 1=t2, and hence C(t) converges to a Anite limit for large times. The
singular X-ray edge eKect is washed out in two and three dimensions due to the recoil.

If the above argument is extended to arbitrary dimension by analytically continuing the an-
gular average over the Fermi surface to continuous dimensions, one Ands that the orthogonality
and concomitant singular behavior is destroyed for any dimension d¿ 1. Nevertheless, the sub-
dominant behavior of the integrals will contain non-integer powers of time, and this gives rise to
subdominant non-analytic terms in the spectrum for non-integer d. This behavior is completely
in agreement with an analysis of the dimensional crossover from Luttinger liquid behavior to
Fermi-liquid behavior as a function of dimension [51].

4.10. Coupled one-dimensional chains

The two coupled chain problem has been thoroughly considered [90,95,159,232,33,194] fol-
lowing earlier perturbative RG calculations [264] on a related model. The two-chain or ladder
is especially interesting both theoretically and experimentally. In general inter-chain coupling
is a relevant parameter, changing the behavior qualitatively. In the model of coupled Luttinger
chains, the weight of the massless bosons characteristic of one dimension goes down with
the number of chains. The general lesson to be drawn is that inter-chain coupling is always
a relevant parameter, but that for a small number of coupled chains special features of the
one-dimensional problem persist. In the passage to two dimension by increasing the number of
chains to thermodyanmic values, features of the one-dimensional problem such as charge–spin
separation are lost. SpeciAcally for models in which the one-chain problem can be bosonized,
the approach to two dimension by increasing the number of chains appears to lead to a Fermi
liquid in two dimensions.

The two-chain problem presents some interesting new features. One of them is the “d-wave”
type superconductivity and the other is the presence of phases of “orbital antiferromagnetism”
for some range of parameters [203,173].

4.11. Experimental observations of one-dimensional Luttinger liquid behavior

There has, of course, been a long-standing interest to observe the fascinating one-dimensional
Luttinger liquid-type SFL behavior experimentally, but the possibility of clear signatures has
arisen only in the last few years. The clearest way to probe for Luttinger liquid behavior
is to measure the tunneling into the one-dimensional system. Associated with the power-law
behavior (110) in one dimension, one has a power-law behavior for the single-electron tunneling
amplitude into the wire. For Axed voltage, this leads to a diKerential conductance dI=dV ∼ V�,
with the exponent � determined by the charge stiKness Kc, the geometry, and the band structure.
Hence, from the measurement of the tunneling as a function of temperature or voltage, � and thus
Kc can be extracted. Recent experiments on resonant tunneling [32] of small islands embedded
in one-dimensional quantum wires in semiconductors, grown with a so-called cleaved edge
overgrowth method, do indeed yield a power-law temperature behavior of the conductance [106]
which is consistent with Luttinger liquid behavior, but the value of the exponent is substantially
diKerent from the one expected theoretically.
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It has recently also been realized that nature has been kind enough to give us an almost ideal
one-dimensional wire to study one-dimensional electron physics: the wavefunctions of carbon
nanotubes turn out to be coherent over very large distances [74]. Although the circumference
of the nanotubes is rather large, due to the band structure of the graphite-like structure the
conduction in nanotubes can be described in terms of two gapless one-dimensional bands.
Moreover, it was realized by Kane et al. [141] that due to the special geometry the backscattering
in nanotubes is strongly suppressed, so that they are very good realizations of the Tomonaga–
Luttinger model of Section 4.2, with an interaction constant Kc which is determined by the
Coulomb energy on a cylinder. Their calculation based on this idea gives a value Kc ≈ 0:2.

Fig. 32 shows recent nanotube data [211] which conArm the predictions by Kane et al. [141]:
the diKerential conductance dI=dV is found to vary as V� as a function of the bias voltage at
low but Axed temperatures, or as T� as a function of temperature at Axed bias. For tunneling
into the bulk of a carbon nanotube, the relevant density of states

Nbulk(!) ∼ !�bulk with �bulk = �c : (152)

The fact that the exponent here is only half the value attained in the simple Luttinger Liquid—
see Eq. (110)—is due to the fact that there are two Luttinger Liquid-like bands present in the
carbon nanotubes. 34 Only one linear combination of the two associated charge modes attains a
non-trivial stiKness Kc �= 1 [141].

By contrast, at the tips of the nanotubes, surplus electronic charge can propagate in only one
direction and, as a consequence, the tunneling is more restricted

Ntip(!) ∼ !�tip with �tip = (Kc − 1)=4 : (153)

By Fermi’s golden rule, the relevant exponents for (tip–tip) or (bulk–bulk) tunneling are
�t−t = (Kc − 1)=2 and �b−b = 2�c, respectively. Bulk–bulk tunneling is achieved by arranging
the nanotubes according to the crossing geometry depicted in the inset of Fig. 32 above. By

34 The electrostatic charging energy depends only on the symmetrized band mode, which in bosonic variables
can be written as Lc;+ = (Lc;band=1 + Lc;band=2)=

√
2. The essential reason that exponents can change depending on

the number of bands is that the normalization factor 1=
√

2 in this bosonic variable enters in the exponent when
the electron variables are written in terms of the bosonic modes, as discussed in Section 4.2. A simple way to
illustrate the halving of the exponents in the context of the various results we have discussed is by consider-
ing the diKerence between the spinful Luttinger liquid that we have discussed and the spinless Luttinger liquid
(a system only having charge degrees of freedom): the spinful model has a density of states exponent which
is half of the spinless one. A calculation proceeds along the following lines: for the spinful case, the relevant
Green’s function is GR�=+1(x; t) = 〈ei(KcR(x; t)+KsR(x; t))=

√
2)e−i(KcR(0;0)+KsR(0;0))=

√
2)〉. Note the factor 1=

√
2 in the ex-

ponent, coming from the projection onto the proper bosonic variables. This expected value can be written as
GR�=+1(x; t) = 〈eiKcR(x; t)=

√
2e−iKcR(0;0)=

√
2〉〈eiKsR(x; t)=

√
2e−iKsR (0;0)=

√
2〉, which with the aid of the results of Section 4.4

becomes GR�=+1(x; t) = 1
|x−vct|1=2

1
|x2−v2

c t
2|�c × 1

|x−vst|1=2
1

|x2−v2
s t

2|�s . From this result, one immediately obtains the den-

sity of states N (!) =
∫

dtG(x = 0; t)ei!t : A simple integration then yields N (!) = [v−2�c
c v−2�s

s ]
∫

dt t−1t−2(�c+�s)ei!t ∼
!2(�c+�s): Since Ks renormalizes to 1 for repulsive interactions (see the remark just after (116)), one usually has
�s = 0 and so in this case, the density of states exponent is simply 2�s. This is precisely (110). Now consider what
one gets for the spinless Luttinger liquid. In this case, neither the bosonic spin modes nor the projection factor
1=
√

2 are present in the above expression for G. This results in a spatial decay with an exponent 2�c instead of �c,
and hence an exponent 4�c in the density of states. In other words, for �s = 0 the density of states exponent in the
spinful case is half of what it is in the spinless case. The same mechanism is at work in the nanotubes.
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Fig. 32. DiKerential conduction dI=dV measured by Postma et al. [211] for carbon nanotubes. At low voltages
or temperatures, Coulomb blockade eKects dominate, but at higher temperatures or bias voltages, one probes the
one-dimensional SFL behavior. Panel (a) shows the diKerential conductance as a function of bias voltage for various
temperatures (note that these temperatures are relatively high, reMecting the fact that the electronic energy scales of
the nanotubes is high). The eKective exponent � for the large V behavior is 0.48; since these data are for tunneling
between two nanotubes, �= 2�c, so �c ≈ 0:24 and Kc ≈ 0:27. The predicted value is Kc ≈ 0:2 [141]. The data
in panel (b) show the diKerential conductance as a function of temperature at Axed bias for two nanotubes which
cross, as well as for a single nanotube with a bend.

extracting the value of the charge stiKness Kc from each of the independent measurements of
�t−t; �b−b for the two diKerent geometries, a single consistent stiKness Kc ≈ 0:27 was found
[211], in good agreement with theoretical prediction.

The data shown in Fig. 32 corroborate the predicted scaling dI=dV ∼ V� over about one
decade at voltages larger than a few kBT . The problem in obtaining data over a larger range is
that at a Axed temperature one has a crossover to linear behavior at small voltages due to thermal
eKects, while when performing measurements at Axed voltage as a function of temperature,
Coulomb blockade eKects reduce the conductance at low T to a value where they beset probing
the intrinsic Luttinger liquid eKects. Nevertheless, other datasets exhibit scaling over a range
of up to three decades in V , and moreover, all experiments in diKerent sample layouts with
a variety of contact and defect structures yield a similar Luttinger stiKness around 0.23. In
conclusion, therefore, taken together experiments on nanotubes yield very good experimental
evidence for Luttinger liquid behavior.

Other, older, canonical realizations of Luttinger liquids include the Quantum Hall edge states.
These represent a chiral spinless Luttinger liquid. Here, low-lying energy states can only prevail
at the edge of the sample, and, concurrently, disperse linearly about the Fermi energy. Edge
states can attain macroscopic linear (perimeter) extent, and the tunneling experiments between
such states [182,114] have observed several features predicted theoretically [287,140]. We refer
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the interested reader to the review articles by Schulz et al. [233] and Fisher and Glazman [98]
for further details.

We note here recent ingenious experiments [76] which demonstrate, in eKect (among other
things) the separate conservation of left and right going electrons in a one-dimensional wire by
showing that a separate chemical potential can be ascribed to the left-going electrons and to
the right-going electrons. These may set the stage for the observation of spin–charge separation
as well.

5. Singular Fermi-liquid behavior due to gauge &elds

5.1. SFL behavior due to coupling to the electromagnetic =eld

Almost 30 years ago, Holstein et al. [127] (see also Reizer [221]) showed that the coupling of
electrons to the electromagnetic Aelds gives rise to SFL behavior. Since the typical temperatures
where the eKects become important are of the order of 10−15 K, the eKect is not important in
practice. However, the theory is of considerable general interest.

If we work in the Coulomb gauge in which ∇ · A= 0 for the electromagnetic A Aeld, then
the transverse propagator D0

ij in free space is given by

D0
ij(k; !) = 〈AiAj〉(k; !) =

�ij − k̂ ik̂ j

c2k2 −!2 − i�
; (154)

where � is an inAnitesimal positive number. The interaction of the electrons with the electro-
magnetic Aeld is described by the coupling term

j ·A+ HA2 ; (155)

where j is the electron current operator and H the density operator.
Quite generally in the Coulomb gauge, one Ands from perturbation theory, or phenomeno-

logically from the Maxwell equations, that the electromagnetic propagator in a metal can be
written as

D−1
ij = (D0

ij)
−1 −M (�ij − k̂ ik̂ j)−1 : (156)

The perturbative diagrammatic expansion of M is indicated in Fig. 33. The Arst term leads to a
term proportional to the density while the second term is the Arst correction due to particle–hole
excitations. In formulas, these terms yield

M (k; !) =
4��
m

(
n +

1
m

∫
ddp

(2�)d
[p2 − (p · k̂)2][fp−k=2 − fp+k=2]

!− (�p−k=2 − �p+k=2)

)
: (157)

Here n is the electron density, and �= 1=137 is the Ane structure constant. For !=k → 0, the
two terms combined yield

M (k; !) ≈ 3��n
m

[
4
(

!
kvF

)2

+ 2i
!
kvF

]
: (158)
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Fig. 33. (a) The diagrams for M; (b) the diagram for the self-energy from the discussion of the SFL eKect arising
from the coupling of the electrons to the electromagnetic gauge Aelds; (c) anharmonic interaction of Muctuations
such as (c) are non-singular in the SFL problem of coupling of the electrons in metals to electromagnetic Aelds.

At small frequencies, for the propagator D this yields

Dij(k; !) ≈ �ij − k̂ ik̂ j

i6��n
!

mkvF
+ c2k2 − i�

; (159)

which corresponds to an overdamped mode with dispersion ! ∼ k3.
Before discussing how such a dispersion gives SFL behavior in three dimensions, it is instruc-

tive to point out that although (159) was obtained perturbatively, Maxwell’s equations ensure
that the Aeld propagator must generally be of this form at low frequencies and momenta. Indeed,
for a metal we can write the current j as j=�(k; !)E; if we combine this with the Maxwell
equation ∇×H= j+ 9E=9t we easily And that the general form of the propagator is

Dij(k; !) =
�ij − k̂ ik̂ j

4i��!�(k; !) + c2k2 : (160)
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Here, � is the diamagnetic permeability. For pure metals, the low-frequency limit is determined
by the anomalous skin eKect [5] and �(k; 0) ∼ k−1. According to expression (160), this 1=k
behavior then implies that the dispersion at small frequencies generally goes as ! ∼ k3 for a
pure metal. For dirty metals, considering the fact that �(k; 0) approaches a Anite limit �0 at
small wavenumbers, according to (160), there is a crossover to a behavior ! ∼ k2 at small
wavenumbers.

Gauge invariance of the theory requires that the photon cannot acquire a mass (a Anite energy
in the limit k → 0) in the interaction process with the electrons, and hence the form of Eq. (159)
remains unchanged. Thus the anharmonic corrections to the photon propagator due to processes
such as those shown in Fig. 33(c) do not change the form of Eq. (159). The self-energy of the
electrons due to photon exchange, Fig. 33(b), may now be calculated with conAdence given the
small coupling constant in lowest order. The leading contribution in d= 3 is

�(kF; !) ∼ �(! ln ! + i! sgn !) : (161)

The momentum dependence, on the other hand, is non-singular as a function of k − kF.
The non-analytic behavior of the self-energy as a function of frequency implies that the

resistivity of a pure metal in d= 3 is proportional to T 5=3 at low temperatures. 35

The simplicity and strength of the above example lies in the fact that the theory has no un-
controlled approximations, and the gauge-invariance of the photon Aeld dictates the low-energy
low-momentum behavior of the photon propagator Dij(k; !). Moreover, vertex corrections are
not important because the Migdal theorem is valid [209] when the frequency of Muctuations is
very small compared to their momenta, as in ! ∼ q3.

However, the SFL behavior as a result of the coupling to the electromagnetic Aeld is not
relevant in practice. This can most easily be argued as follows. For a Fermi gas, the entropy
per particle is

S
N

=
�2mk2

BT
˝2k2

F
; (163)

while for the entropy for the electrons interacting with the electromagnetic Aeld one Ands from
the above results [127]

S
N

≈ 2�2��
3

k2
BT
˝ckF

ln
(!0

T

)
(164)

with

!0 =
c�F

��vF
: (165)

35 This follows from the fact that in the quasielastic approximation, the transport relaxation rate �−1
tr is related to

the single-particle relaxation rate �−1(L) due to scattering through an angle L near the Fermi surface

�−1
tr =

∫
d/(1 − cos(L))�−1(L) : (162)

For small T , ! ∼ k3 ∼ T , and hence the characteristic angle of scattering, L ∼ (k=kF) ∼ (T=EF)1=3 is small. Upon
expanding (1 − cos L) � L 2=2, one Ands that the eKective transport scattering rate goes as

∫
d3k k2f(k3=T ) ∼ T 5=3.
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Upon comparing these two results, one concludes that the SFL eKects start to become important
for temperatures

kBT . !0e−3m∗c=2��˝2kF : (166)

Since the numerical factor in the exponent is typically of order 105 �−1 for ordinary metals,
the temperature range one Ands from this is of order 10−15 K for values of � of order unity,
according to this estimate. Note, however, that for pure ferromagnetic metals � can be as large
as 104. Possibly, in some ferromagnets, the eKects can become real.

5.2. Generalized gauge theories

The example of coupling to the electromagnetic Aeld identiAes one possible theoretical route
to SFL behavior, but as we have seen that the crossover temperatures that one estimates for
this scenario are too small for observable physical properties. The smallness of the estimated
crossover temperature is essentially due to the fact that the coupling to the electromagnetic Aeld
is determined by the product �vF=c, where �= 1=137 and typically vF=c=O(10−2). Motivated
by this observation, many researchers have been led to explore the possibility of obtaining
SFL eKects from coupling to diKerent, more general gauge bosons which might be generated
dynamically in strongly correlated fermions. For a recent review with references to the literature,
see [158,192,193]. The hope is that if one could consistently And such a theory in which the
small factor �vF=c arising in the electromagnetic theory is replaced by a term of order unity,
realistic crossover temperatures might arise. Much of the motivation in this direction comes
from Anderson’s proposal [24] of spin–charge separation and resonating valence bonds in the
high-temperature superconductivity problem which we discuss in Section 7.

The essence of approaches along these lines is most easily illustrated by considering electrons
on a lattice in the case in which strong on-site (Hubbard-type) repulsions forbid two electrons
to occupy the same site. Then, each site is either occupied by an electron with an up or down
spin, or by a hole. If we introduce Actitious fermionic creation and annihilation operators f†
and f for the electrons and Actitious bosonic hole creation and annihilation operators b† and b
for the holes, we can express the constraint that there can only be one electron or one hole on
each lattice site by

2∑
�=1

f†
i�fi� + b†i bi = 1 for each i : (167)

With this convention, the real electron Aeld  i� can be written as a product of these fermion
and boson operators

 i� =fi�b
†
i : (168)

This expresses the fact that given constraint (167), a real fermion annihilation at a site cre-
ates a hole. This way of writing the electron Aeld may be motivated by the physics of the
one-dimensional Hubbard model: there a local excitation may indeed be expressed in terms of
a charged spinless holon and an uncharged spinon. In general, in a transformation to boson and
fermion operators as in (168) there is some freedom as to with which operator we associate
the charge and with which the spin.
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Whenever we split a single electron operator into two, as in (168), then there is a gauge
invariance, as the product is unchanged by the transformation

fi�(t) → ei1(t)fi�(t); bi(t) → ei1(t)bi(t) : (169)

We can promote this invariance to a dynamical gauge symmetry by introducing a gauge Aeld
a and writing the Hamiltonian in the continuum limit as

H=
∫

dr
∑
�

f†
�

(
− i∇ + a

2mf

)2

f� + (.− �f)f†
�f

+
∫

dr b†
(
− i∇ + a

2mb

)2

b + (.− �b)b†�b : (170)

Here, . is a Lagrange multiplier Aeld which is introduced to implement constraint (167). Note
that the a Aeld enters in much the same way in the Hamiltonian as the electromagnetic Aeld
usually does—indeed, a change in the individual f’s and b’s by a space-dependent phase factor
as in (169) can be reabsorbed into a change of a. Note also the presence of the chemical
potentials �f and �b to enforce that for a deviation of the (average) density n from one per
site, the density of holes is 1 − n and of fermions is n.

The next step in the theory is to And the Muctuation propagator for the a Aeld, as a function
of �f and �b. For Anite �f and negative �b (bosons uncondensed), the Muctuation propagator
is similar to that of the previous section but with (�vF=c) replaced by a term of O(1). Spinon
and holon self-energies can now be calculated and composition laws [134] are derived to relate
physical correlation functions to correlation functions of spinons and holons.

Unfortunately, this very attractive route has turned out to be less viable than had been hoped.
It is not clear whether the diPculties are purely technical; they are certainly formidable. The
essential reason is that while photons have no mass and are not conserved, and hence can-
not Bose condense, in a gauge theory obtained by introducing additional bosons, the bosons
generally can and will Bose condense because they do have a chemical potential. Bose con-
densation leads to a mass term in the propagator for the gauge Aelds. The singularities in the
fermions due to the gauge Aelds then disappear. It is the analogue of the fact that supercon-
ductivity leads to the Meissner eKect—there the emergence of the superconducting Aeld breaks
gauge invariance and leads to the expulsion of the magnetic Aeld from the superconductor.
The latter eKect can also be thought of as being due to the generation of a mass term for the
gauge Aelds.

Several variants of these ideas have been proposed with and without attempts to suppress
the unphysical condensation through Muctuations [188]. The trouble is that such Muctuations
tend to bind the spinons and holons and the happy situation in one dimension where they
exist independently—being protected by (extra) conservation laws, see Section 4.9—is hard
to realize. As usual, it appears that the introduction of new quantum numbers requires new
symmetries.

Interesting variants using the idea of spin–charge separation have recently appeared [235,188].
In passing, we note that the idea to split an electron operator into a boson and fermion

operator, as in (167), is not limited to gauge theories like the ones discussed in this section.
In the form used here, where the boson is carrying the hole charge, such theories are usually
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known as slave-boson approaches. Now, the Heisenberg spin one-half problem can also be
formulated as a hard-core boson problem, and higher-order spins can be formulated in terms of
so-called Schwinger bosons [31]. However, since one generally has some freedom in introducing
slave variables for interacting electron problems, mixed variants also exist. For example, the
t–J -model can be rewritten in terms of a model with Schwinger bosons carrying the spins and
spinless slave fermions carrying the charge [31].

6. Quantum critical points in fermionic systems

As mentioned in Section 1, quantum critical behavior is associated with the existence of a
T = 0 phase transition; of course, in practice one can only experimentally study the behavior
at non-zero temperatures, but in this sense, the situation is no diKerent from ordinary critical
phenomena: one never accesses the critical point itself, but observes the critical scaling of
various experimentally accessible quantities in its neighborhood.

In practice, the most common situation in which one observes a quantum critical point is
the one sketched in Fig. 1, in which there is a low-temperature ordered state—a ferromagnetic
state, antiferromagnetic state or charge-density wave-ordered state, for instance—whose transi-
tion temperature to the disordered state or some other ordered state goes to zero upon varying
some parameter. In this case, the quantum critical point is then also the end point of a T = 0
ordered state. However, sometimes the “ordered” state really only exists at T = 0, for example
in metal–insulator transitions and in quantum Hall eKect transitions [247,212]. A well-known ex-
ample of this case in spin models is in two-dimensional antiferromagnetic quantum Heisenberg
models with “quantumness” as a parameter g [56], which do not order at any Anite temperature,
but which show genuine ordered phases at T = 0 below some value g¡gc.

Although the question concerning the origin of the behavior of high-temperature supercon-
ductors is not settled yet, there are strong indications, discussed in the next section, that much
of their behavior is governed by the proximity to a quantum critical point.

One of the Arst formulations of what we now refer to as quantum critical behavior was
due to Moriya [189,190] and Ramakrishnan [186] who did an RPA calculation for a model of
itinerant fermions with a Stoner-type instability to a ferromagnetic state. In modern language,
their approach amounts to a 1=N expansion. Various other important contributions were made
[38,79]. The standard more modern formulation now, which we will follow, is due to Hertz
[123]. A nice introduction can be found in the article by Sondhi et al. [247], and for a detailed
expose, we refer to the book by Sachdev [225]. See also the review by Continento [67].

6.1. Quantum critical points in ferromagnets, antiferromagnets, and charge-density waves

A clear example of quantum critical behavior, and actually one for which one can compare
with theoretical predictions, is summarized in Figs. 34–37. The Agures show various data from
[254] on the magnetic compound MnSi [205,206,160,170,254]. Fig. 34 shows that for low pres-
sures and temperatures, this compound exhibits a magnetic phase whose transition temperature
Tc vanishes as the pressure is increased up to pc = 14:8 kbar. This value of the pressure then
identiAes the quantum critical point. Fig. 35 shows that when the same data are plotted as T 4=3

c
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Fig. 34. Magnetic phase diagram as a function of pressure of MnSi [205,206,254]. From [254].

versus pressure, the data fall nicely on a straight line except close to the critical pressure. This
observed scaling of T 4=3

c with p − pc away from pc is in accord with the behavior predicted
by the theory discussed below. Actually, the transition is weakly Arst order near pc; so a very
detailed veriAcation of the theory is not possible.

Fig. 36 shows data for the temperature dependence of H−H0 near pc, where H0 is the residual
low-temperature resistivity. In the presence of a Aeld of 3 T, one observes the usual H−H0 ∼ T 2

Fermi-liquid scaling, but at zero Aeld the results are consistent with H − H0 ∼ T 5=3 behavior
predicted by the theory. However, if we write the low-temperature resistivity behavior as

H=H0 + ATL (171)

then both the residual resistivity H0 and the amplitude A are found to show a sharp peak at pc
as a function of pressure — see Fig. 37. This behavior is not understood nor is the fact that
the exponent L does not appear to regain the Fermi-liquid value of 2 for signiAcant values of
p¿pc (at H = 0) and in a temperature regime where the theory would put the material in the
quantum-disordered Fermi-liquid regime.

6.2. Quantum critical scaling

Before discussing other experimental examples of quantum critical behavior, it is expedient
to summarize some of the essential quantum critical scaling ideas.

As is well known, at a Anite temperature transition, the critical behavior is classical and
we can use classical statistical mechanics to calculate the correlation functions. This is so
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Fig. 35. Power-law dependence of the Curie temperature as a function of pressure for MnSi. From [254].

because due to critical slowing down, the characteristic time scale � diverges with the correlation
length,

� ∼ Oz : (172)

Near a critical point the correlation length O diverges as

O ∼ |T − Tc|−� : (173)

The combination of these two results shows that critical slowing down implies that near any
Anite temperature critical point the characteristic frequency scale !c goes to zero as

!c ∼ |T − Tc|�z : (174)

Therefore, near any phase transition !c�Tc, and as a result the phase transition is governed
by classical statistical physics; the Matsubara frequencies are closely spaced relative to the
temperature, the thermal occupation of bosonic modes is large and hence classical, etc.

In classical statistical mechanics, the dynamics is slaved to the statics; usually, the dynami-
cal behavior is adequately described by time-dependent Landau-Ginzburg type of equations or
Langevin equations which are obtained by building in the appropriate conservation laws and
equilibrium scaling behavior [117]. At a quantum critical point, on the other hand, the dynamics
must be determined a priori from the quantum-mechanical equations of motion.
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Fig. 36. T -dependence of (H(T ) − HT=0) near the critical pressure pc with and without an external magnetic Aeld.
From [254].

The general scaling behavior near a T = 0 quantum critical point can, however, be discussed
within the formalism of dynamical scaling [117,164], just as near classical critical points. Con-
sider for example the susceptibility for the case of MnSi that we considered above. The scaling
ansatz for the singular part of the susceptibility

&(k; !; p) = 〈MM 〉(k; !; p) (175)

implies that near the critical point where the correlation length and time-scale diverge, the
zero-temperature susceptibility & is a universal function of the scaled momentum and frequency

&(k; !; p) = O−dMT(kO;!Ot) ; (176)

where now

O ∼ |p− pc|−�; Ot ≡ �= Oz : (177)

This is just like the classical scaling with T − Tc replaced by p − pc. The reason for writing
Ot instead of � is that in quantum statistical calculations, the “timewise” direction becomes like
an additional dimension, so that Ot plays the role of a correlation “length” in this direction.
However, the time-direction has both a long-time cutoK given by 1=kBT and a short-time cutoK
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Fig. 37. Evolution of H0 and A under pressure, when the temperature dependence of the resistivity is Atted to
(H=H0 + AT 2). From [254].

given by the high-energy cutoK in the problem—exchange energy or Fermi energy, whichever
is smaller in the ferromagnetic problem. The short-time cutoK has its analog in the spatial scale.
The long-time cutoK, which determines the crossover from classical to quantum behavior, plays
a crucial role in the properties discussed below. The crucial point is that when z �= 1, there is an
anisotropic scaling between the spatial and time-wise directions, and as we shall discuss below,
this implies that as far as the critical behavior is concerned, the eKective dimensionality of the
problem is d + z, not d + 1.

The exponent dM in (176) reMects that a correlation function like & has some physical
dimension which often is inevitably related to the spatial dimension. The dependence of critical
properties on spatial dimensions must be expressible purely in terms of the divergent correlation
length O. Often, dM is Axed by dimensional considerations (in the language of Aeld theory, it
is then given by the “engineering dimension” of the Aeld), but this may not be true in general.
It must be so, however, if & is a correlation function of a conserved quantity. 36

Let us now address the Anite temperature scaling, taking again the case of MnSi as an
example. The various regimes in the T–p diagram discussed below are indicated in Fig. 38.

36 E.g. if we consider the free energy per unit volume at a classical transition, the energy scale is set by kBT , and
dM =d; likewise, if we consider the surface tension of an interface, whose physical dimension is energy per unit
surface area, dM =d− 1.
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Fig. 38. Generic phase diagram and crossovers for quantum critical points with the various regimes indicated. O is
the correlation length at T = 0; LT is the “thermal length” given in Eq. (178).

To distinguish these regimes it is necessary to deAne an additional quantity, the thermal length

LT ≡ ˝
kBT

: (178)

LT corresponds dimensionally to a time-scale. It marks the crossover between phenomena at long
time scales which can be treated essentially classically from those on a shorter scale which are
inherently quantum mechanical. Whenever Ot ¡LT , the correlation length and time are Anite
and quantum mechanics begins to dominate. This is the regime on the right in the Agure.
Fermi-liquid behavior is expected in this regime. However, if one approaches the critical point
(T = 0; p=pc) from above along the vertical line, then  LT diverges but so does Ot . Moreover,
Ot diverges faster than LT since z is usually larger than 1. This means that the characteristic
Muctuation energy and temperature are similar. So the behavior is quasiclassical throughout
each correlated region down to zero temperature (In a path integral formulation [247,225] one
considers the model on a inAnite strip whose width is Anite in the timewise direction and equal
to LT . Hence, for Ot ¿LT the model is fully correlated across the strip in this direction). This
regime is therefore characterized by anomalous T dependence in the physical quantities up to
some ultra-violet cutoK. It is important to stress that this so-called “quantum critical scaling
behavior” 37 is expected in the observable properties in the complete region between the dashed

37 The term is somewhat problematic; it refers to the quasiclassical Muctuation regime around a quantum critical
point.
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lines joining together at T = 0; p=pc up to the high temperature scale in the problem, which
is usually several times larger than the highest transition temperature to the ordered phase as
a function of p. So SFL is observable over a whole range of parameter p for temperatures
between the left and right crossover lines.

If one approaches the line of phase transitions to the ordered phase, which is marked with a
solid line in the Agure, one has a region with SFL properties dominated by classical Muctuations
close to the transition. Millis [183] has corrected Hertz’s results [123] on this point, and has
found that the critical temperature of the phase transition scales as Tc ∼ |p − pc|z=(d+z−2).
Estimates of the classical critical region are also given. Results along similar lines may also be
found in [66,67].

If we include both the temperature and the parameter p, the scaling ansatz for the imaginary
part of & becomes

&′′(k; !; p; T ) ∼ O−dMT1

(
kO;!Oz;

!
T

)
: (179)

This can be rewritten in other forms depending on which experiment is being analyzed. For
example, the above form is especially suitable for analysis as a function of (p − pc). For
analyzing data as a function of temperature, we may instead rewrite

&′′(k; !; p; T ) =L−dM =z
T T2

(
kL1=z

T ; !LT ;
LT

Ot

)
(180)

and for analyzing data as a function of frequency

&′′(k; !; p; T ) =T−dM =zT3

(
k

T 1=z ;
!
T
;

1
TOt

)
: (181)

Moreover, the scaling of the free energy F can be obtained from the argument that it is of
the order of the thermal energy kBT per correlated volume Od. Moreover, since LT acts as a
Anite cutoK for Ot in the timewise direction, we then get the scaling

F ∼ TO−d ∼ T (Ot)−d=z ∼ T 1+d=z : (182)

By diKerentiating twice, this also immediately gives the speciAc heat behavior at low temper-
atures. In writing the above scaling forms, we have assumed that no “dangerously irrelevant
variables” exist, as these could change !=T scaling to !=T@ scaling. 38

In order to get the critical exponents and the crossover scales, one has to turn to a microscopic
theory. The theory for this particular case of the quantum critical point in MnSi is essentially

38 “Dangerously irrelevant variables” are irrelevant variables which come in as prefactors of scaling behavior of
quantities like the free energy [97]. Within the renormalization group scenario, the hyperscaling relation d�= 2−� is
violated above the upper critical dimension because of the presence of dangerously irrelevant variables. Presumably,
dangerously irrelevant variables are more important than usually at QCPs, since the eKective Muctuation dimension
is above the upper critical dimension for d= 3 and z¿ 1. Some examples are discussed in [225].
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a random phase approximation and proceeds along the following lines: (i) one starts with a
model of interacting fermions; (ii) an ordering Aeld M (k; !) is introduced; (iii) one assumes
that the fermions can be eliminated near the critical point to get a free energy in terms of M
of the form

F=
∫

d!
∫

ddk&−1(k; !)|M (k; !)|2

+
∫

d{!}
∫

d{k}VM (k1; !1)M (k2; !2)M (k3; !3)M (k4; !4)

×�(!1 + !2 + !3 + !4)�(k1 + k2 + k3 + k4) + · · · : (183)

Note that this is essentially an extension of the usual Landau–Ginzburg–Wilson free energy
to the frequency domain. Indeed, from here on one can follow the usual analysis of critical
phenomena, treating the frequency ! on an equal footing with the momentum k.

The important result of such an analysis is that the eKective dimension as far as the critical
behavior is d + z, not d + 1 as one might naively expect. Since z¿ 1 in all known examples,
the fact that the eKective dimension is larger or equal than d + 1 reMects the fact that the
correlation “length” Ot in the timewise direction grows as Oz, i.e., at least as fast as the spatial
correlation length. 39 Moreover, the fact that z¿ 1 implies that the eKective dimension of a
d= 3 dimensional problem is always larger or equal than four. Since the upper critical dimen-
sion above which mean Aeld behavior is observed equals four for most critical phenomena, one
thus arrives immediately at the important conclusion that most quantum critical points in three
dimensions should exhibit classical Muctuations with mean Aeld scaling exponents! It also im-
plies that the critical behavior can typically be seen over a large parameter or temperature
range—the question of the width of the critical region, which normally is determined by
the Ginzburg criterion, does not arise. On the other hand, questions concerning the existence
of dangerously irrelevant variables, due for example to the scaling of the parameters V in
Eq. (183), do arise.

In order to judge the validity and generality of these results, it is important to keep in mind
that they are derived assuming that the coePcients of the M 2; M 4 terms are analytic functions of
k; ! and the pressure p, etc. This is completely in line with the usual assumption of analyticity
of the bare coupling parameters in a renormalization group approach. This assumption may
well be violated—in fact none of the impurity models discussed earlier can be treated along
these lines: the fermions cannot be integrated out there, and if one attempts to apply the above
procedure, one Ands singular contributions to the bare coupling parameters. Later on we shall
discuss a three-dimensional experimental example where this assumption appears to be invalid.
Secondly, it is inherently an expansion about the non-magnetic state, which cannot apply in
the ordered phase: In the ordered phase with non-zero magnetization, M �= 0, there is a gap for
some momenta in the fermionic spectra. This gap cannot be removed perturbatively.

39 This has important consequences for a scaling analysis of numerical data, aimed at determining the critical
behavior. For it implies that the Anite size scaling has to be done anisotropically, with the anisotropy depending
on the exponent z which itself is one of the exponents to be determined from the analysis.
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In a ferromagnet, the ground state susceptibility on the disordered side is given by

&−1(k; !) =
[
(p− pc) + k2 +

i!
kvF

]
: (184)

In the Arst two terms, we recognize the usual mean Aeld type behavior with a correlation
length that diverges as O ∼ (p − pc)1=2, hence the critical exponent �= 1=2. The last term,
which describes Landau damping of the spin wave modes, is very special here as it arises from
Muctuations of magnetization, a quantity which is conserved (commutes with the Hamiltonian).
Therefore, the characteristic damping rate must approach zero as k → 0. Since at the critical
point (184) leads to a damping ! ∼ k3, the critical exponent z = 3. According to the theory
described above, the critical behavior at the quantum critical point (T = 0; p=pc) is therefore
of the mean Aeld type for any physical dimension d¿ 1, since the eKective dimension d+z¿ 4
(with only logarithmic corrections to mean Aeld theory when d= 1).

The scattering of electrons oK the long-wavelength spin waves is dominated by small angle
scattering, and it is easy to calculate the resulting dominant behavior of the self-energy of
the electrons. Near the critical point, the behavior of & is very similar to the electromagnetic
problem that we discussed in Section 5. Analogously, one also Ands SFL behavior here: in d= 3,
�(kF; !) ∼ ! ln ! + i|!| while in d= 2 one obtains �(kF; !) ∼ !2=3 + i|!|2=3. Furthermore, for
the resistivity one Ands in three dimensions H ∼ T 5=3—this is consistent with the behavior found
in MnSi in the absence of a Aeld, see Fig. 36. Moreover, as we mentioned earlier, according
to the theory, near the critical point Tc should vanish as |p − pc|z=(d+z−2); with d= z = 3 this
yields Tc ∼ |p − pc|3=4. As we saw in Fig. 35, this is the scaling observed over a large
range of pressures, except very near pc. ZrZn2 [115] is an example in which the ferromagnetic
transition is shifted to T = 0 under pressure continuously. The properties are again consistent
with the simple theory outlined. There is, however, trouble on the horizon [161]. The asymptotic
temperature dependence for p¿pc is not proportional to T 2, as expected. We will return to
this point in Sections 6.4.

For antiferromagnets or charge density waves the critical exponents are diKerent. In these
cases, the order parameter is not conserved, and the inverse susceptibility in these cases is of
the form

&−1(k; !) =
[
(p− pc) + (k − k0)2 +

i!
-

]
; (185)

where k0 is the wavenumber of the antiferromagnetic or charge-density wave order. From this
expression we immediately read oK the mean Aeld exponents z = 2 and �= 1=2. Since the eKec-
tive dimension d+ z is above the upper critical dimension for d= 3, the mean Aeld behavior is
robust in three dimensions. In d= 2, on the other hand, the eKective dimension d+z = 4 is equal
to the upper critical dimension, and hence one expects logarithmic corrections to the mean Aeld
behavior. Indeed, in two dimensions one Ands for the self-energy [126] �(k̂F; !) ∼ ! ln !+i|!|
(only) for those k̂F from which spanning vectors to other regions of the Fermi surface separated
by k0 can be found; the resistivity goes as H(T ) ∼ T 2 ln T in this case. However, if several
bands cross the Fermi surface, as often happens in heavy fermions, Umklapp-type scattering may
enforce the same temperature dependence in the resistivity as in the single-particle self-energy,
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Fig. 39. (Left panel) Temperature–pressure phase diagram of high-purity single-crystal CeIn3. A sharp drop in the
resistivity consistent with the onset of superconductivity below Tc is observed in a narrow window near pc the
pressure at which the N]eel temperature TN tends to absolute zero. (upper inset) This transition is complete even
below pc itself. (lower inset). Just above pc, where there is no N]eel transition, a plot of the temperature dependence
of d(ln ^H)=d(ln T ) is best able to demonstrate that the normal state resistivity varies as T 1:6±0:2 below about 3 K.
^H is the diKerence between the normal state resistivity and its residual value (which is calculated by extrapolating
the normal state resistivity to absolute zero). For clarity, the values of Tc have been scaled by a factor of ten.
(right panel) Temperature–pressure phase diagram of high-purity single-crystal CePd2Si2. Superconductivity appears
below Tc in a narrow window where the N]eel temperature TN tends to absolute zero. The inset shows that the
normal state a-axis resistivity above the superconducting transition varies as T 1:2±0:1 over nearly two decades in
temperature. The upper critical Aeld Bc2 at the maximum value of Tc varies near Tc at a rate of approximately
−6T=K . For clarity, the values of Tc have been scaled by a factor of three, and the origin of the inset has been set
at 5 K below absolute zero. Both plots are from Mathur et al. [170].

except at some very low crossover temperature. The physical reason for this dependence despite
the fact that the soft modes are at large momentums (and therefore vertex corrections do not
change the temperature dependence of transport relaxation rates) is that the set of k̂F usually
covers a small portion of the Fermi surface.

Fig. 39 shows the phase diagram of two compounds that order antiferromagnetically at low
temperatures. The Arst one, CeIn3, is a three-dimensional antiferromagnet. A superconducting
phase intervenes at very low temperatures (note the diKerent scale on which the transition to
the superconducting phase is drawn), covering the region around the quantum critical point at
a pressure of about 26 kbar. At this pressure, the normal state resistivity is found to vary as
H(T ) ∼ T 1:6±0:2 which is consistent with the theoretical prediction that at a quantum critical
point dominated by antiferromagnetic Muctuations the resistivity should scale as H ∼ T 1:5. The
right panel in Fig. 39 shows the phase diagram and resistivity data of the three-dimensional
antiferromagnet CePd2Si2; the data in this case are best Atted by H ∼ T 1:2; this is consistent
with the theoretical prediction H ∼ T 1:25 which results if one has a (k− k0)4 dispersion around
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the AFM vector k0 in one direction and the usual (k− k0)2 dispersion in the other two. How-
ever, no independent evidence for such dispersion is available yet. In both these cases, part of
the region of superconductivity, in a region bounded by a line emanating from the QCP and
going on to the transition line from the antiferromagnetic to the normal state, is expected to be
antiferromagnetic as well.

These two compounds are also of interest because the phase diagram bears a resemblance
to the phase diagram of the high-Tc copper-oxide based superconductors in which the con-
duction electron density is the parameter varied—see Fig. 49. Unlike the heavy fermion com-
pounds where the ordered phase is antiferromagnetic, the order in copper-oxides near the QCP
is not AFM. Its nature is in fact unknown. In the heavy fermion compounds, superconductivity
promoted by antiferromagnetic Muctuations is expected to be of the d-wave variety [187] as it
is in the high-Tc copper-oxide compounds.

6.3. Experimental examples of SFL due to quantum criticality: open theoretical problems

We have discussed the observed quantum critical behavior in some system which is largely
consistent with the simple RPA-like theoretical predictions. There are, however, quite a few
experimentally observed signatures of singularities near QCPs, especially in heavy fermion
compounds, which are not understood theoretically by the simple RPA theory of the previ-
ous subsection. In this section, we present some prominent examples of these.

RPA-type theories work when the dissipation of Muctuations is given very simply. The failures
below show that dissipation in the quantum to classical crossover regime in actual physical
systems is quite often much more interesting; it has singularities not anticipated in RPA. The
diPculties are almost certainly not just mathematical. While dissipation in classical mechanics
is intoduced ex cathedra, in quantum problems we need to understand it in a fundamental way.

The experimental observations fall into two general categories, in both of which the low-
temperature resistivity does not obey the power laws expected of Fermi liquids: Compounds in
which resistivity decreases from its limit at T = 0 and those in which it increases. In both cases,
the Cv=T is singular for T → 0. It is reasonable to associate the former with the behavior due to
impurities and the latter with the QCP properties of the pure system. However, as we discussed
in Section 3.9, the QCP due to impurities requires tuning to special symmetries unlikely to
be realized experimentally. As we will discuss, the eKect of impurities without any special
symmetries but coupling to the order parameter is expected to be quite diKerent near the QCP
of the pure system compared to far from it. Under some circumstances, it is expected to be
singular and may dominate the observations.

We start with experiments in the second category. Figs. 40–42 show several datasets for the
heavy fermion compound CeCu6−xAux for various amounts of gold. This compound exhibits a
low-temperature paramagnetic phase for x¡ 0:1 and a low-temperature antiferromagnetic phase
for x¿ 0:1. The speciAc heat data of Fig. 40 and the resistivity data of Fig. 42 show that while
without Au, i.e., in the paramagnetic regime, the behavior is that of a heavy Fermi-liquid metal,
the alloy near the quantum critical composition CeCu5:9Au0:1 exhibits a speciAc heat with an
anomalous

Cv ∼ T ln T (186)
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Fig. 40. The speciAc heat C=T of CeCu6−xAux versus log T . From L_ohneysen et al. [282–284].

Fig. 41. Susceptibility data for CeCu5:9Au0:1. From L_ohneysen et al. [285].

over a temperature range of almost two decades. At the same composition, the resistivity shows
a linear temperature dependence, and the susceptibility data in Fig. 41 which have been Atted
to a deviation from a constant as T → 0 varying as a

√
T cusp. The anomalous behavior is

replaced by Fermi-liquid properties by both a magnetic Aeld and increasing the substitution
of copper by gold or by application of pressure [44,281]. The compound YbRh2S2 seems to
have similar properties [258]. Related properties have also been found in U2Pt2In [88,89] and
in UPt3−xPdx [75], UBe13, CeCu2Si2, CeNi2Ge2 [250]. The SFL properties observed at the
Mott insulator-to-metal transition in BaVS3 [99] are also of related interest. A good example
of an antiferromagnetic QCP in itinerant electrons is in the alloy series Cr1−xVx for which the
magnetic correlations have been measured [122].

None of the quantum critical properties of the CeCuAu compounds is consistent with any
of the models that we have discussed. Information on the magnetic Muctuation spectra for
CeCu5:9Au0:1 is available through neutron scattering experiments [229,251]. The data shown in
Fig. 43 show rod-like peaks, indicating that the spin Muctuations are almost two-dimensional
at this composition. The neutron scattering data can be Atted by an expression for the spin
susceptibility of the form

&−1(k; !) =C[f(�k) + (−i! + aT )�] (187)

with a function f which is consistent with an eKectively two-dimensional scattering

f(�k) = b(�k⊥)2 + c(�k‖)4 : (188)
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Fig. 42. Resistivity data for CeCu5:9Au0:1. From L_ohneysen et al. [285].

�k‖ and �k⊥ are the deviations from the AFM Bragg vector parallel and perpendicular to the
c-axis in these (nearly) orthorhombic crystals. Further

a ≈ 1; �= 0:74 ± 0:1 : (189)

At present, there is no natural leeway for this anomalous exponent � within known theoretical
frameworks. However, if one accepts this particular form of & as giving an adequate At, then
the observed speciAc heat follows: at the critical composition, we expect the scaling relation

F ∼ TO−(d−1)
⊥ O−1

‖ ∼ TT (d−1)�=2T�=4 ∼ T 1+(d−1=2)�=2 ; (190)

which immediately gives CV ∼ d2F=dT 2 ∼ T for �= 4=5. A better calculation [229,230]
provides the logarithmic multiplicative factor. Even the measured uniform magnetic susceptibility
is consistent with the above form of &(q;!).

The observed resistivity does not follow directly from the measured &; a further assumption
is required. The assumption that works is that fermions couple to the Muctuations locally, as in



356 C.M. Varma et al. / Physics Reports 361 (2002) 267–417

Fig. 43. Neutron scattering data for CeCu5:9Au0:1, a compound which is close to a QCP. The Agure shows q-scans
along three diKerent crystallographic directions, from top to bottom in the a, b and c directions for ˝!= 0:1 meV.
The Agures show that there is only a weak q-dependence along the rods (q⊥), while transverse scans (q‖) show
well-deAned peaks with nearly the same line width. From Stockert et al. [251].

an eKective Hamiltonian ∼ c†i;�′ci;�Si;�;�′ . Then if the measured Muctuation spectra are that of
some localized spins Si, the single-particle self-energy is that due to the exchange of bosons
with propagator proportional to

∑
k

&(k; !) ∼ ln(!) + i sgn(!) : (191)
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Fig. 44. The phase diagram of UCu5−xPdx. At low dopings and temperatures, the system is in an antiferromagnetic
phase. In the undoped sample (x = 0): TN = 15 K with a magnetization � � 1�B. For doping x = 1 and 1.5 the
speciAc heat Cv=T ∼ T (for x = 1) while displaying weak logarithmic characteristics for x = 1:5. Similarly, the
susceptibility &(T ) ∼ ln T and & ∼ T−0:25 (for x = 1; 1:5, respectively). Courtesy of M. C. Aronson.

This ensures that the single-particle relaxation rate as well as the transport relaxation rate 40 is
proportional to T . A major theoretical problem is why the non-local or “recoil” terms in the
interaction of itinerant fermions are irrelevant — i.e., why is the eKective Hamiltonian not

�k;qc
†
k+q;�ck;�′(Sq + S†

−q)�′;� ; (192)

or, in other words, why has momentum conservation been legislated away?
The singularity of & also raises the question whether the anharmonic processes,

Fig. 33(c), which are benign and allow the elimination of fermions in the RPA theory, give
singular contributions to &. Also, can fermions really be eliminated in calculating the critical
behavior? At a more mundane level, what is the form of the microscopic magnetic interactions
in the problem which lead to the observed two-dimensional nature of the correlations?

As an example in the second category, in Fig. 44 we show the phase diagram of some of the
resistivity data of the heavy fermion compound UCu5−xPdx. There are several other compounds
in this category also; for a review we refer to [169,171]. For a theoretical discussion of the
scaling properties of some of this class of problems see [27].

For x¡ 1, there is an (antiferromagnetic) ordered state at low temperatures, while for x¿ 2,
a spin-glass phase appears. At Arst sight, one would therefore expect possible SFL behavior
only near the critical composition x = 1 and near x = 2. The remarkable observation, however,

40 In this calculation, the �k4
‖ dispersion is neglected entirely, so that the problem is two dimensional. The inclusion

of this term changes the result to T 5=4.
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Fig. 45. The temperature dependence of the static susceptibility of &(T ) for both UCu4Pd and UCu3:5Pd1:5, showing
that for both compounds, &(T ) has a low temperature divergence as T−1=3. The measuring Aeld is 1 T. From
Aronson et al. [29,30].

is that over a whole range of intermediate compositions, one observes anomalous behavior of
the type [29,30]

H=H0 − BT 1=3; & ∼ T−1=3 : (193)

The data for & that show this power-law behavior for UCu3:5Pd1:5 and UCu1Pd are shown in
Fig. 45. Note that the anomalous scaling is observed over a very large temperature range, and
that it is essentially the same for the compound with x = 1 which as Fig. 44 shows is a good
candidate for a composition close to a QCP, and the compound with x = 1:5 which is right
in the middle of the range where there is no phase transition. The fact that this is genuine
scaling behavior is independently conArmed [29,30] from the fact that the frequency-dependent
susceptibility, measured by neutron scattering, shows a very good collapse of the data with the
scaling assumption 41

&′′(!; T ) =T−1=3T
(!
T

)
: (194)

Again, none of this behavior Ands a clear explanation in any of the well-studied models. One
is tempted to use the critical points of impurity models (see for example [70] and references
therein), but runs into the diPculty of having to tune to special symmetries. The ideas of critical

41 We note that this as well as the result for & in CeCuAu are examples of an anomalous dimension, as the
engineering dimension of the susceptibility & is 1=energy—see the remark made just after Eq. (177).
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Fig. 46. Schematic occupation number function nk for UPt3 and for UPd3.

points of metallic spin-glasses (see for example [224,234]), although theoretically appealing,
are also not obviously applicable over such a wide range of composition. It must be mentioned
however, that NMR does show clear evidence of the inhomogeneity in the singular part of the
magnetic Muctuations in several heavy fermion compounds [42]. This has inspired models of
varying sophistication (see [185] and references therein, and also [55]) in which the Kondo
temperature itself has an inhomogeneous distribution. It is possible to At the properties with
reasonable distributions but there is room for a deeper examination of the theoretical issues
related to competition of disorder, Kondo eKects and magnetic interactions between the magnetic
moments.This point is reinforced by recent measurements of local magnetic Muctuation spectra
through �-relaxation measurements [165]. Singular Muctuations are observed with a power law
in agreement with (194). What is new is that the Muctuations are deduced to be independent
of spatial location, indicating that they are a collective property and cannot be attributed to
inhomogeneous local scales such as the Kondo temperatures.

6.4. Special complications in heavy fermion physics

In heavy fermion compounds, there is often an additional complication that besets treating a
QCP as a simple antiferromagnetic transition coupled to itinerant electrons. Often, such materials
exhibit magnetic order of the f-electrons (with magnetic moments of O(1�B) per f-electron).
Thus, such materials have local moments in the ordered phase; so the disappearance of the
(anti)ferromagnetic order at a quantum critical point is accompanied by a metal–insulator tran-
sition of the f-electrons. This means that the volume of the Fermi surface changes in the
transition.

We may illustrate the above scenario by comparing U Pt3, a heavy fermion compound with
eKective mass of the order of 100, with UPd3, an “ordinary” metal with eKective mass of O(1)
in which the f-electrons are localized. A schematic summary of the momentum occupation nk
for the two cases is shown in Fig. 46: in the former nk is shown with two discontinuities,
one small O(10−2) representing the large renormalization in the eKective mass of “f-electrons”
while the other is close to 1 representing the modest renormalization of s- and d-electrons.
The other case, representative of UPd3 has just one Fermi surface with a jump in nk close
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to 1. The Fermi surface in the former encloses the number of electrons equal to the sum of
the f and s–d electrons while the latter includes only the s–d electrons. This is consistent
with de Haas-van Alphen measurements as well as the band structure calculations of the two
compounds; but the band structure calculation must be carried out with the f-electrons assumed
as being itinerant in the former and as part of the localized core in the latter. The magnetic
transitions in heavy fermion compounds (with ordered moment of O(1�B)) occurs through the
conversion of itinerant f-electrons to localized electrons. So the Fermi surface on the two sides
of the transition must switch between the two schematic representations in Fig. 46. The problem
couples the “metal–insulator transition” of the f-electrons to the magnetic Muctuations—those
of itinerant electrons on one side and of interacting local moments on the other. The Muctuations
of the metal–insulator transition and the Fermi surfaces is an important part of the problem.
Some theoretical work with these ideas in mind is available [242]. Another possible approach
is to generate an eKective Hamiltonian for the heavy fermion lattice from a pairwise sum of the
eKective Hamiltonian deduced from the two Kondo impurity problems discussed in Section 3.9
and study its instabilities. The two impurity problems contain the rudiments of some of the
essential physics.

In connection with the data in CeCu6−xAux, we have discussed two important puzzles: the
non-trivial exponent dM=z measured by &(k; !), and the coupling of fermions to the local Muctu-
ations alone for transport properties. In the other category (impurity-dominated), the Arst puzzle
reoccurs; the second puzzle may be explained more easily since the measured Muctuation spec-
trum &(k; !) is in fact k-independent. Both puzzles reoccur in the SFL phenomena in the cuprate
compounds to be discussed in Section 7.

6.5. ECects of impurities on quantum critical points

As is well known, randomness can have an important eKect on classical phase transitions.
Two classes of quenched disorder are distinguished: First, impurities coupling quadratically to
the order parameter [121] or, equivalently, impurities which may be used to deAne a local
transition temperature Tc(r); the second class concerns impurities coupling linearly to the order
parameter [131]. The so-called Harris criterion, for the Arst class, tells us that the disorder is
relevant, i.e., changes the exponents or turns the transition to a crossover, if the speciAc heat
exponent � of the pure system is positive or, equivalently, if

d�− 2¡ 0 : (195)

For application to QCP phenomena, the value of � to be used is diKerent in the quantum
Muctuation regime and the quasiclassical regime. 42 For the latter, � should be deAned by the
correlation length O ∼ (T −Tc)−�1 for a Axed (p−pc) while in the former, near T = 0 it should
be deAned by O ∼ (p−pc)−�2 . Accordingly, the eKect of disorder depends on the direction from
which one approaches the QCP. Similarly, the celebrated Imry-Ma argument [131] for linearly
coupled disorder can be generalized to QCPs.

42 Actually, the Harris criterion is derived in the form (195) for � and d, not in terms of the exponent �. This is
particularly important at QCPs, since as we discussed in Section 6.2 for QCPs, one is often above the upper critical
dimension where the hyperscaling relation d�− 2 = � breaks down.
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In problems of fermions, additional eKects of disorder arise because the vertices coupling the
impurity to the fermions can be renormalized due to the singularity in the Muctuation of the pure
system [271]. Not too much work has been done along these lines. A simple example is the
eKect of magnetic impurities near a ferromagnetic transition [155]. The growth of the magnetic
correlation length converts a single-channel Kondo eKect to a multichannel Kondo eKect with
a regime in which the singularities discussed in Section 3.8 for the degenerate multichannel
Kondo eKect may be realized without tuning any parameters [166]. This may be relevant to
the deviations from the predictions of the pure case discussed here in the properties near the
QCP in MnSi. Extensions of these ideas to antiferromagnetic and other QCPs would be quite
worthwhile.

7. The high-Tc problem in the copper-oxide-based compounds

About 105 scientiAc papers have appeared in the Aeld of high-Tc superconductors since their
discovery in 1987. For reviews, see the Proceedings [175] of the latest in a series of Tri-annual
Conferences or [110]. Although no consensus on the theory of the phenomena has been arrived
at, the intensive investigation has resulted in a body of consistent experimental information.
Here, we emphasize only those properties which are common to all members of the copper-oxide
family and in which singular Fermi-liquid properties appear to play the governing role.

The high-Tc materials are complicated, and many fundamental condensed matter physics
phenomena play a role in some or other part of their phase diagram. As we shall see, the
normal state near the composition of the highest Tc shows convincing evidence of being a
weak form of an SFL, a marginal Fermi liquid. Since the vertices coupling fermions to the
Muctuations for transport in the normal state and those for Cooper pairing through an exchange
of Muctuations can be derived from each other, the physics of SFL and the mechanism for
superconductivity in the cuprates are intimately related.

7.1. Some basic features of the high-Tc materials

A wide variety of Cu–O containing compounds with diKerent chemical formulae and diKerent
structures belong to the high-Tc family. The common chemical and structural features are that
they all contain two-dimensional stacks of CuO2 planes which are negatively charged with
neutralizing ions and other structures in between the planes. The minimal information about the
structure in the Cu–O planes and the important electronic orbitals of the copper and oxygen
atoms is shown in Fig. 47. The structure of one of the simpler compounds La2−xSrxCuO4 is
shown in Fig. 48(a) with the CuO2 plane shown again in Fig. 48(b). For x = 0 the CuO2 plane
has a negative charge of −2e per unit cell which is nominally ascribed to the Cu2+(O2−)2
ionic conAguration. Since O2− has a Alled shell while Cu2+ has a hole in the three-dimensional
shell, the Cu–O planes have a half-Alled band according to the non-interacting or one-electron
model. However, at x = 0, the compound is an antiferromagnetic insulator with S = 1=2 at the
copper sites. This is well known to be characteristic of a Mott-type insulator in which the
electron–electron interactions determine the ground state. Actually [297,266,267], copper-oxide
compounds at x = 0 belong to the charge-transfer sub-category of Mott-insulators. However,
at x = 0, the ground state and low-energy properties of all Mott-insulators are qualitatively
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Fig. 47. (a) Schematic structure of the copper-oxide ab-planes in La2CuO4. Ba or Sr substitution for La in the
parent compound La2CuO4 introduces holes in the CuO2 planes. The structure of other high Tc materials diKers
only in ways which do not aKect the central issues, e.g. it is oxygen doping in YBa2Cu3O6+x that provides planar
holes. The magnetic moments of the planar copper atoms are ordered antiferromagnetically in the ground state of
the undoped compounds. From [135]. (b) The “orbital unit cell” of the Cu–O compounds in the ab plane. The
minimal orbital set contains a dx2−y2 orbital of Cu and px and a py orbital of oxygen per unit cell.

Fig. 48. (left) The crystal structure of La2CuO4. From [201]. Electronic couplings along the c direction are weak;
(right) schematic of the CuO2 plane. The arrows indicate the alignment of spins in the antiferromagnetic ground
state of La2CuO4. Speckled shading indicates oxygen p� orbitals; coupling through these leads to a superexchange
in the insulating state.

the same. By substituting divalent Sr for the trivalent La in the above example, “holes” are
introduced in the copper-oxide planes with density x per unit cell.

Fig. 49 is the generic phase diagram of the Cu–O compounds in the T–x plane. In the
few compounds with electron doping which have been synthesized properties vary with doping
density in a similar way.
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Fig. 49. Generic phase diagram of the cuprates for hole doping. The portion labeled by AFM is the antiferromagnetic
phase, and the dome marked by SC is the superconducting phase. Crossovers to other characteristic properties are
marked and discussed in the text. A low-temperature “insulating phase” in Region II due to disorder has not been
shown.

Antiferromagnetism disappears for x typically less than 0.05 to be replaced by a supercon-
ducting ground state starting at somewhat larger x. The superconducting transition temperature
is peaked for x typically between 0.15 and 0.20 and disappears for x typically less than 0.25.
We will deAne xm to be the density for maximum Tc. Conventionally, copper-oxides with x¡xm
are referred to as underdoped, with x = xm as optimally doped and with x¿xm as overdoped.
Superconductivity is of the “d-wave” singlet symmetry.

The superconducting region in the T–x plane is surrounded by three distinct regions: a region
marked (III) with properties characteristic of a Landau Fermi liquid, a region marked (I) in
which (marginally) SFL properties are observed and a region marked (II) which is often called
the pseudo-gap region whose correlations in the ground state still remain a matter of conjecture.
The topology of Fig. 49 around the superconducting region is that expected around a QCP. In-
deed, it resembles the phase diagram of some heavy fermion superconductors (see e.g. Fig. 39)
except that region II has no long-range antiferromagnetic order—the best experimental infor-
mation is that, generically, spin rotational invariance as well as (lattice) translational invariance
remains unbroken in the passage from (I) to (II) in the Cu–O compounds.

The quantity �(T ) ≡ Cv(T )=T and the magnetic susceptibility &(T ), which are temperature
independent for a Landau Fermi liquid begin to decline rapidly [162] in the passage from
region I to region II, which we will call Tp(x), but without any singular feature. However,
the transport properties—resistivity, nuclear relaxation rate (NMR), etc.—show sharper change
in their temperature dependence at Tp(x). The generic deduced electronic contribution to the
speciAc heat for overdoped, optimally doped and underdoped compounds is shown in Fig. 50.
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Fig. 50. The electronic contribution to the speciAc heat as a function of temperature for underdoped, optimally
doped and overdoped samples of Y0:8Ca0:2Ba2Cu3O7−x. For optimally doped and overdoped samples, the heat
capacity remains constant as the temperature is lowered, then shows the characteristic features at the superconducting
transition temperature Tc and rapidly approaches zero in the superconducting state. For underdoped samples, however,
the heat capacity starts to fall well above Tc as the temperature is reduced, and there is only a small peak at Tc

indicating much smaller condensation energy than the optimal and overdoped compounds [162]. From [35].

The generic behavior for an underdoped compound for the resisitivity, nuclear relaxation rate and
Knight shift—proportional to the uniform susceptibility—is shown in Fig. 51. Angle resolved
photoemission (ARPES) measurements show a diminution of the electronic density of states
starting at about Tp(x) with a four-fold symmetry: no change along the (�; �) directions and
maximum change along the (�; 0) directions. The magnitude of the anisotropic “pseudo-gap” is
several times Tp(x).

It is important to note that given the observed change in the single-particle spectra, the
measured speciAc heat and the magnetic susceptibility in the pseudo-gap region are consistent
with the simple calculation using the single-particle density of states alone. Nothing fancier is
demanded by the data, at least in its present state. Moreover, the transport properties as well
as the thermodynamic properties at diKerent x can be collapsed to scaling functions with the
same Tp(x) as a parameter [291].

7.2. Marginal Fermi liquid behavior of the normal state

Every measured transport property in Region I is unlike that of a Landau Fermi liquid. The
most commonly measured of these is the dc resistivity shown for many diKerent compounds at
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Fig. 51. Signatures of the pseudo-gap in various transport properties for the underdoped compound YBa2Cu4O8.
At high temperatures, the resistivity (solid line) decreases linearly with temperature. In the pseudogap region, it
drops faster with temperature before falling to zero at the superconducting transition temperature (about 85 K).
Similarly, the NMR relaxation time displays characteristics of the optimum doped compounds above about 200 K
(squares on dashed line) but deviates strongly from it in the pseudogap region. The NMR shift (top squares)
also deviates from the temperature-independent behavior (not shown) below the inset of the pseudogap. Note that
the pseudogap expresses itself as a sharper change with temperature in the transport properties compared to the
equilibrium properties—speciAc heat and magnetic susceptibility [46,293,10]. From [35].

the “optimum” composition in Fig. 52 including one with Tc ≈ 10 K. The resistivity is linear
from near Tc to the decomposition temperature of the compound. As shown in Fig. 51, in
the “under-doped” region, the departure from linearity commences at a temperature ∼ Tp(x)
marked in Fig. 49. Similarly, the crossover into region (III) shown in Fig. 49 is accompanied
by Fermi-liquid-like properties. Wherever measurements are available, every other measured
transport property shows similar changes.

The diKerent measured transport properties study the response of the compounds over quite
diKerent momentum and energy regions. For example, the Raman scattering studies the long-
wavelength density and current response at long wavelength but over a range of frequencies
from low O(1 cm−1) to high, O(104 cm−1). On the other hand, nuclear relaxation rate T−1

1
depends on the magnetic Muctuations at very low frequencies but integrates over all momenta,
so that the short-wavelength Muctuations dominate. In 1989, it was proposed [268,269] that a
single hypothesis about the particle–hole excitation spectra captures most of the diverse transport
anomalies. The hypothesis is that the density as well as magnetic Muctuation spectrum has an
absorptive part with the following property:

&′′(q;!)
{

= − &′′o!=T for !�T ;
= − &′′o sgn(!) for !c�|!|�T :

(196)
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Fig. 52. Resistivity as a function of temperature for various high-temperature superconductors. From [39].

Here &′′o is the order of the bare single-particle density of states N (0) and !c is an upper cutoK.
The Muctuation spectrum is assumed to have only a weak momentum dependence, except at
very long wavelength, where a q2 dependence is required for Muctuations of conserved quantities
like density or spin (in the absence of spin–orbit interactions). A form which implements these
requirements for the conserved quantities, with a rather arbitrary crossover function to get the
diKerent regimes of !=T , is

&′′(q; !) ∼ −xq2

!(!2 + �2x2)
for vFq�

√
!x ; (197)

where x =! for !=T�T and x =T for !=T�1.
Using the Kramers–Kronig relations, one deduces that the real part of the corresponding cor-

relation functions has a log(x) divergence at all momenta except the conserved quantities where
the divergence does not extend to vFq¿ x. Thus compressibility and magnetic susceptibility are
Anite. (Aside from the contributions encapsulated in the approximate forms (196) or (197), an
analytic background Muctuation spectrum of the Fermi liquid form is of course also present.)

The spectral function (196) is unlike that of a Landau Fermi liquid discussed in Section 2,
which always displays a scale—the Fermi-energy, Debye-frequency, or spin-wave energy, etc.—
obtained from parameters of the Hamiltonian. Such parameters have been replaced by T . As we
have discussed in Section 6, this scale-invariance of (196) is characteristic of Muctuations in the
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Fig. 53. (a) Diagram for the singular contribution to the one-particle self-energy with the Muctuating &(q; �). g’s
are the vertices which in microscopic theory [270] is shown to have important momentum dependence, but which
gives negligible momentum dependence to the self-energy. (b) For &0(q; �) which is momentum independent, a total
vertex - may sometimes be usefully deAned, which has the same frequency dependence as Eq. (198) and which
is also q-independent. The lines are the exact single-particle Green’s functions.

quasiclassical regime of a QCP. Eq. (196) characterizes the Muctuations around the QCP: com-
paring with Eq. (179), the exponent dM=z = 0 and 1=z = 0. These are equivalent to the statement
that the momentum dependence is negligibly important compared to the frequency dependence.
This is a very unusual requirement for a QCP in an itinerant problem: the spatial correlation
length plays no role in determining the frequency dependence of the critical properties.

The experimental results for the various transport properties for compositions near the op-
timum are consistent in detail with Eq. (196), supplemented with the elastic scattering rate
due to impurities (see later). We refer the reader to the original literature for the details. The
temperature independence and the frequency independence in Raman scattering intensity up to
! of O(1 eV) directly follows from (197). Eq. (197) also gives a temperature independent
contribution to the nuclear relaxation rate T−1

1 as is observed for Cu nuclei. The transport scat-
tering rates have the same temperature dependence as the single-particle scattering rate. The
observed anomalous optical conductivity can be directly obtained by using the continuity equa-
tion together with Eq. (197), or by Arst calculating the single-particle scattering rate and the
transport scattering rate. The single-particle scattering rate is independently measured in ARPES
experiments and provides the most detailed test of the assumed hypothesis.

To calculate the single-particle scattering rate, assume to begin with a constant coupling ma-
trix element g for the scattering of particles by the singular Muctuations. We shall return to
this point in the section on microscopic theory. Then provided there is no singular contribu-
tion to the self-energy from particle–particle Muctuations, the graph in Fig. 53 represents the
singular self-energy exactly. It is important to note that for this to be true, Eq. (197) is to be
regarded as the exact (not irreducible) propagator for particle–hole Muctuations; it should not
be iterated.

The self-energy �(q; !) can now be evaluated straightforwardly to And a singular contribution

�(!; q) ≈ g2(&′′o )2
(
! ln

x
!c

− i
�
2
x
)

(198)

for x�!c and vF|(q− kF)|�!c. The noteworthy points about (198) are:

(1) The single-particle scattering rate is proportional to x rather than to x2 as in Landau Fermi
liquids.

(2) The momentum independence of the single-particle scattering rate.
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Fig. 54. The T = 0 distribution of bare particles in a marginal Fermi liquid. No discontinuity exists at kF but the
derivative of the distribution is discontinuous.

(3) The quasiparticle renormalization amplitude

Z =
(

1 − 1 ln
x
!c

)−1

(199)

scales to zero logarithmically as x → 0. Hence the name marginal Fermi liquid.
(4) The single-particle Green’s function

G(!; q) =
1

!− (�q − �) − �(q;!)
(200)

has a branch cut rather than a pole. It may be written as

Z(x)
!− (�̃q − �̃) − i=�̃

; (201)

where �̃q is the renormalized single-particle energy

�̃q − �̃=Z(�q − �) ≈ ZvF · (q − kF) (202)

for small |q− kF|. Also, �̃−1(x) =Z Im �(!), and the eKective Fermi velocity ṽF =ZvF has
a frequency and temperature-dependent correction.

(5) The single-particle occupation number has no discontinuity at the Fermi surface, but its
derivative does, see Fig. 54. So the Fermi surface remains a well-deAned concept both in
energy and in momentum space.

The predictions of (200) have been tested in detail in ARPES measurements only recently.
ARPES measures the spectral function

A(q;!) = − 1
�

�′′(q;!)
[!− (�q − �) − �′(q;!)]2 + [�′′(q;!)]2 : (203)
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Fig. 55. (a) Momentum distribution curves for diKerent temperatures. The solid lines are Lorentzian Ats; (b) mo-
mentum widths of MDCs for three samples (circles, squares, and diamonds). The thin lines are T -linear Ats which
show consistency with Eq. (203) and the MFL hypothesis. The resistivity (solid black line) is also shown. The
double-headed arrow shows the momentum resolution of the experiment. From Valla et al. [261].

In ARPES experiments, the energy distribution curve at Axed momentum (EDC) and the mo-
mentum distribution curve at Axed energy (MDC) can both be measured. It follows from
Eq. (203) that if � is momentum independent perpendicular to the Fermi surface, then an
MDC scanned along k⊥ for ! ≈ � should have a Lorentzian shape plotted against (k − kF)⊥
with a width proportional to �′′(!)=vF(k̂). For a marginal Fermi liquid (MFL), this width
should be proportional to x. The agreement of the measured line shape to a Lorentzian and
the variation of the width with temperature are shown in Fig. 55. The Fermi velocity v(k̂) is
measured through the EDC with the conclusion that it is independent of k̂ to within the ex-
perimental errors. Further data from the same group shows that the temperature dependence is
consistent with linearity all around the Fermi surface [262] with a coePcient independent of k̂
although the error bars are huge near the (�; 0) direction. Besides the MFL contribution, there
is also a temperature independent contribution to the width which is strongly angle-dependent,
to which we will soon turn. The ambiguity of the temperature (and frequency) dependence
near the (�; 0) direction is removed by the EDC measurements. In Fig. 56, the EDCs at the
Fermi surface in the (�; �) direction and the (�; 0) directions are shown together with a At to
the MFL spectral function with a constant contribution added to �′′. EDCs have the additional
problem of an energy-independent experimental background. This has also been added in the
At. In both directions, �′′ has a contribution proportional to ! with the same coePcient within
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Fig. 56. Fits of the MFL self-energy - + 1˝! to the experimental data, according to (204). Estimated uncertainties
are ±15% in - and ±25% in 1. (a) A scan along the (1,0) direction, - = 0:12, 1= 0:27; (b) a scan along the (1,1)
direction, - = 0:035, 1= 0:35. From Kaminsky and co-workers [139].

the experimental uncertainty. Fig. 57 presents the self-energy for the At at 13 diKerent points
on the Fermi surface, showing that the inelastic part is proportional to ! and independent of
momentum.

In summary, the ARPES experiments give that

�′′(k; !;T ) ∼= -(k̂F) + �′′
MFL(!; T ) : (204)

The (!; T )-independent contribution -(k̂F) can only be understood as due to impurity scattering
[2]. Its dependence on k̂F can be understood by the assumption that in well-prepared samples,
the impurities lie between the Cu–O planes and therefore only lead to small angle scattering
of electrons in the plane. The contribution -(k̂F) at k̂F then depends on the forward scattering
matrix element and the local density of states at k̂F which increase from the (�; �) direction
to the (�; 0) direction. This small angle contribution has several very important consequences:
(i) relative insensitivity of residual resistivity to disorder, (ii) relative insensitivity of d-wave
superconductivity transition temperature to the elastic part of the single-particle scattering rate
[142], and (iii) most signiAcantly, relative insensitivity to the anomalous Hall eKect and magneto
resistance. Such anomalous magneto-transport properties follow from a proper solution of the
Boltzmann equation including both small angle elastic scattering and angle independent MFL
inelastic scattering [275].

The momentum independence of the inelastic part of �′′ is crucial to the SFL properties of
the cuprates. Since the inelastic scattering to all angles on the Fermi surface is the same, i.e.,
s-wave scattering, the vertex corrections to transport of vector quantities like particle current
and energy current are zero. It follows that the momentum transport scattering rate measured in
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Fig. 57. The left panel shows the energy distribution curves measured in optimally doped Bi2212 perpendicular to
the Fermi-surface at 13 points shown in the top-right panel. Each of these is Atted to the Marginal Fermi-liquid
self-energy plus a frequency independent scattering contribution, i.e., with Im �(!; k̂F) = a(k̂F + b!), with Ats of
the quality shown in Fig. 56. The variation of the Atting parameters a and b on the 13 points is shown in the
bottom-right panel. The parameter b is seen to be independent of direction to within experimental error while a
increases by about a factor of 4 in going from the (�; �) direction to the (�; 0) direction. (Figure courtesy of A.
Kaminsky and J.C. Campuzano, presented at Proceedings of the International Conference on Spectroscopy of Novel
Superconductors, Chicago, May 13–17, 2000). Similar results may be found in the work by Valla et al. [262].

resistivity or optical conductivity and the energy transport rate measured in thermal conductivity
have the same (!; T ) dependence as the single-particle scattering rate 1=�(!; T ).

Recently far-infrared conductivity measurements [68] have been analyzed and shown to be
consistent with 1=�(!; T ) deduced from MFL including the logarithmic corrections.
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As already discussed no singular correction to the magnetic susceptibility is to be expected
on the basis of (196). However, the speciAc heat should have a logarithmic correction so that

�(T ) = �0[1 + 1 ln(!c=T )] : (205)

Such a logarithmic correction has not yet been deciphered in the data presumably because the
electronic speciAc heat in the normal state is less than O(10−2) of the total measured speciAc
heat and must be extracted by a subtraction procedure which is not suPciently accurate.

7.3. General requirements in a microscopic theory

The MFL self-energy, Eq. (198), has been veriAed in such detail in its (!; T; q) dependence
that it is hard to see how any theory of CuO compounds can be relevant to the experiments
without reproducing it (or a very close approximation to it) in Region I of the phase diagram
of Fig. 49. Such a scale-invariant self-energy is characteristic of the quasiclassical regime of a
QCP and indeed the topological features of the phase diagram are consistent with there being
a QCP at xc near the composition for the highest Tc (Alternatively, a QCP in the overdoped
region where Tc vanishes is predicted in some approaches, like in [235]). To date, no method
has been found to obtain Eq. (197) except through the scale-invariant form of Muctuations which
is momentum independent (z ≈ ∞) as in Eq. (196).

A consistent and applicable microscopic theory of the copper-oxides must show a QCP with
Muctuations of the form (197). This is a very unusual requirement for a QCP in a homoge-
neous extended system for at least two reasons. First, the Muctuations must have a negligible
q-dependence compared to the frequency dependence, i.e., z ≈ ∞ and second, the singularity in
the spectrum should just have logarithmic form; i.e., there should be no exponentiation of the
logarithm giving rise to power laws. Such singularities do arise, as we discussed in Section 3,
in models of isolated impurities under certain conditions but they disappear when the impurities
are coupled; recoil kills the singularities. The requirement of negligible q=! dependence runs
contrary to the idea of critical slowing down in the Muctuation regime of the usual transitions, in
which the frequency dependence of the Muctuations becomes strongly peaked at zero frequency
because the spatial correlation length diverges.

Another crucial thing to note is that any known QCP (in more than one dimension) is
the end of a line of continuous transitions at T = 0. Region II (at least at T = 0) must then
have a broken symmetry (this includes part of Region III, which is also superconducting). The
experiments appear to exclude any broken translational symmetry or spin-rotational symmetry
for this region 43 although as discussed in Section 7.1, a sharp change in transport properties is
observed along with a four-fold symmetric diminution of the ARPES intensity for low energies
at T ≈ Tp(x). If there is indeed a broken symmetry, it is of a very elusive kind; experiments
have not yet found it.

43 A new lattice symmetry due to lattice distortions or antiferromagnetism, if signiAcant, would change the fermi
surface because the size of the Brillouin zone would decrease. This would be visible both in ARPES measurements
as well as in hall eKect measurements.
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Fig. 58. The Cooper-pair vertex and the normal state self-energy, Fig. 53, are intimately related.

A related question is how a momentum independent &(q; !; T ) can be the Muctuation spectrum
of a transition which leads to an anisotropic state as in Region II. Furthermore, how can such a
spectrum lead to an anisotropic superconducting state? After all, it is unavoidable that &(q; !; T )
of Eq. (197) which determines the inelastic properties in Region I may also be responsible
for the superconductive instability. After all, the process leading to the normal self-energy,
Fig. 53, the superconductive self-energy, and the Cooper pair vertex, Fig. 58, are intimately
related. Given Im &(q; !; T ), the eKective interaction in the particle–particle channel is

Vpair(k;k ± q) = g2 Re &(q; !) : (206)

Re &(q;!) is negative for all q and for all −!c6!6!c. So we do have a mechanism for
superconductive pairing in the Cu–O problem given by the normal state properties just as the
normal state self-energy and transport properties of, say, Pb tell us about the mechanism for
superconductivity in Pb. In fact, given that the normal state properties give that the upper cut-oK
frequency is of O(103) K and that the coupling constant 1 ∼ g2N (0) is of O(1), the correct scale
of Tc is obtained. The important puzzle is, how can this mechanism produce d-wave pairing
given that &(q; !) is momentum independent. How can one obtain momentum independent
inelastic self-energy in the normal state and a d-wave superconducting order parameter from
the same Muctuations?

In the next section, we summarize a microscopic theory which attempts to meet these re-
quirements and answer some of the questions raised.

7.4. Microscopic theory

There is no consensus on even the minimum necessary model Hamiltonian to describe the
essential properties in the phase diagram, Fig. 49, of the CuO compounds. It is generally agreed
that, since other transition metal compounds do not share the properties of CuO compounds,
a model Hamiltonian with some rather special features is called for. Two such features are:

(A) They are two-dimensional with an insulating antiferromagnetic ground state and spin
S = 1=2 per unit cell at half-Alling. Although not unique, this feature is rare. If this is the
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determining feature, a two-dimensional Hubbard model is adequate [24]. Even this model is not
soluble in d= 2.

(B) The copper oxides are the extreme limit of charge transfer compounds [297] in which
charge Muctuations in the metallic state occur almost equally on oxygen and copper. Then the
longer-range ionic interactions, which in magnitude are comparable to the on-site interactions,
have a crucial role to play in the low-energy dynamics in the metallic state through excitonic
eKects. A model with both Cu and O orbitals, hopping between them, and the excitonic inter-
actions besides the on-site repulsions is then required [266,267]. This is of course even harder
to deal with than the Hubbard model.

Numerous attempts have been made using one or the other such models to obtain SFL
behavior. We brieMy discuss the motivations for the pursuit of model (A) before summarizing
in a little more detail the only attempt to obtain the phenomenological Muctuation spectrum of
Eq. (196), and which relies on a model of type (B).

7.4.1. The doped Hubbard model
The investigations of the copper-oxide problem from this point of view ask some valid and

deep questions [24]. How does a low concentration of holes move through the spin conAgura-
tions in a two-dimensional model with double occupancy strictly prohibited? 44 In Section 4.8,
we have sketched the diPculties of connecting to the same problem in one dimension when
the ground state at zero doping is an antiferromagnet. In fact, analytic [228] and numerical
[172] answers to the question for a single hole show the spectral weight of a heavy particle
with an incoherent part composed of multiple spin-wave polaronic cloud. Simply extrapolated
(a dangerous thing to do), a Fermi liquid is expected. The larger zero-point Muctuations of
the S = 1=2 model, compared to a large-spin model only change the relative weight of the co-
herent and the incoherent parts. However, more subtle possibilities must be considered. The
antiferromagnetic ground state of a Heisenberg S = 1=2 model (or the undoped non-degenerate
Hubbard model) in two dimensions is close in energy to a singlet ground state. A possible
description of such a state is as a linear combination on the basis of singlet-bonds of pairs of
spins. As noted earlier, such itinerant bond states have been termed resonating valence bonds
[25] (by analogy to the ground state of benzene like molecules). The massive degeneracy of
the singlet bond-basis raises interesting possibilities. If the quantum Muctuations of spins were
(signiAcantly) larger than allowed by S = 1=2, such states would indeed be the ground state, as
they are in the one-dimensional model or two-dimensional models with additional frustrating
interactions [6]. It is possible that by doping with holes in the S = 1=2 Heisenberg model, the
additional quantum Muctuations induce a ground state and low-lying excitations which utilize
the massive degeneracy of RVB states. Especially intriguing is the fact that resonating va-
lence ground state may be looked up on as the projection of the BCS ground state to a Axed
number of particles [24]. Furthermore, in the normal state this line of reasoning is likely to
lead to an SFL.

44 Questions of this type have a long history in the Aeld of correlated electron systems going back to the classic
work of Nagaoka [191] on the ferromagnetism induced by the motion of one hole in a half-Alled inAnitely repulsive
Hubbard model.
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A speciAc proposal incorporating the RVB idea [144] relies on the ground state of the
half-Alled model to be localized dimers. Then defects in this state due to deviation from
half-Alling can plausibly support excitations which are charged spinless bosons. Further work
on this idea may be found in [225,188]. Related ideas were put forth in [82,236].

These are a very attractive set of ideas and no proof exists that they are disallowed. We
have already considered an implementation of these ideas in Section 5.2 on generalized gauge
theories. As discussed, controlled calculations using these ideas are hard to come by. Moreover,
what theoretical results do exist do not correspond in a persuasive way to the experimental
results on the copper-oxide materials.

One should take special note here of the idea of Anyon superconductivity which besides
being a lovely theoretical idea, is founded on the solution to a well-deAned model, and has
clear experimental predictions. Laughlin and collaborators [156,138,91] found a speciAc model
with long-range four-spin interactions for which his quantum hall wavefunction is the ground
state. Therefore, time-reversal and parity are spontaneously broken in this state. This state is
superconducting. The predicted time-reversal broken properties have not been observed experi-
mentally [248].

An alternative idea from the microscopic characterization of these materials as doped Hubbard
models is that a dilute concentration of holes in the Hubbard model is likely to phase separate or
form ordered one-dimensional charge-density wave=spin-density wave structures [298,299,86].
There exists both empirical [257] and computational [288] support for this idea at least for
a very dilute concentration of holes. For concentrations close to optimum compositions these
structures appear in the experiment to exist only at high energies with short correlation lengths
and times and small amplitudes in the majority of copper–oxygen compounds. Their relation to
SFL properties is again not theoretically or empirically persuasive.

7.4.2. The excitonic interactions model
This relies on a model of type (B). A brief sketch of the calculations leading to a QCP and

an MFL spectrum is given here. We refer the reader to [266,268,275] for details.
At half-Alling, the ground state and the low-lying excitations of such models are identical

to the Hubbard model. However, important diKerences can arise in the metallic state. Con-
sider the one-electron structure of such models. The O–O hopping in the lattice structure with
dx2−y2 orbitals in Cu and px, py orbitals on O, as shown in Fig. 47, produces a weakly dis-
persing “non-bonding” band while the Cu–O hopping produces “bonding” and “anti-bonding”
bands—see Fig. 59. We need consider only the Alled non-bonding band and the partially Alled
anti-bonding bands shown in Fig. 59.

In the mean Aeld approximation, such an electronic structure together with the on-site interac-
tion and the ionic interactions is unstable to an unusual phase provided the latter, summed over
the nearest neighbors, is of the order or larger than the bandwidth. In this phase, translational
symmetry is preserved but time-reversal symmetry and the four-fold rotation symmetry about
the Cu sites is broken. The ground state has a current pattern, sketched in Fig. 60, in which
each unit cell breaks up into four plaquettes with currents in the direction shown. The variation
of the transition temperature with doping x is similar to the line Tp(x) in Fig. 38, so that there
is a QCP at x = xc. Experiments have been proposed to look for the elusive broken symmetry
sketched in Fig. 60 [274].
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Fig. 59. Three bands result from the orbitals shown in Fig. 47(b) in a one-electron calculation; two of these are
shown. The chemical potential lies in the “anti-bonding” band and is varied by the doping concentration. The other
band shown is crucial for the theory using excitonic eKects as in [270].

The long-range interactions in the model also favor other time-reversal breaking phases which
also break translational invariance. This is known from calculations on ladder models [203].
Such states have also been proposed for copper-oxide compounds [148,128,58].

Our primary interest here is how the mechanism of transition to such a phase produces
the particular SFL Muctuation spectrum (197) in Region I of the phase diagram. The driving
mechanism for the transition is the excitonic singularity, due to the scattering between the states
of the partially Alled conduction band c and the valence band v of Fig. 59. This scattering is of
course what we considered in Sections 3.5 and 4.9 for the problem of X-ray edge singularities
for the case that the interband interaction V in Eq. (55) is small and the valence band is
dispersionless (i.e., the no recoil case). Actually, the problem is exactly soluble for the no-recoil
case even for large V [65]. For large enough V , the energy to create the exciton, !ex, is less
than the v–c splitting @. The excitonic line shape is essentially the one sketched in Fig. 19(b)
and given by Eq. (56) for !¿!ex, but � is now the phase shift modulo � which is the value
required to pull a bound state below @. The excitonic instability arises when !ex → 0.

The eKect of a Anite mass or recoil on the excitonic spectra is to smoothen the edge sin-
gularity on the scale of the valence band dispersion between k = 0 and k = kF. The phase shift
� or the interaction energy V no longer determines the low-energy shape of the resonance. V
does determine its location. The low-energy Muctuation spectra is determined by the following
argument. Let us concentrate on q= 0 which is obviously where Im &ex(q; !) is largest. The
absorptive part of a particle–hole spectra must be odd in frequency

Im &(q; !) = − Im &(q;−!) : (207)

As V increases, Im &ex(0; !) must shift its weight towards zero-frequency as shown in Fig. 61.
Let us continue to denote by |!ex| the characteristic energy of the maximum in Im &. For |!|
small compared to |!ex|, Im &(0; !) ∼ ! while for |!| large compared to |!ex|, it is very slowly
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Fig. 60. One of the possible current patterns in the time-reversal breaking phase predicted for Region II of the
phase diagram.

Fig. 61. Sketch of the development of the particle–hole spectra in the microscopic model for the cuprates.
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Fig. 62. Singularity of interaction -aaaa between states “a” near the chemical potential generated by the excitonic
singularity between the states “a” of the conduction band and states “b” of the valence band. The excitonic singularity
is indicated by the shaded block.

varying up to a cut-oK !c on the scale of the Fermi energy. Then by the Kramers–Kronig
relation, to leading order

Re &(0; !) ∼ ln(!c=max(!x;!)) : (208)

For any Anite |!ex|; Re & is Anite and there is no instability. Only for |!ex| → 0, i.e.
Im &(0; !) → sgn !; Re &(0; !) is singular ∼ ln |!| and there is an instability. Thus in an
excitonic instability of a Fermi sea with a dispersive valence band, the zero-temperature spec-
trum has the form &(!; 0) ∼ ln |!|+i sgn ! at the instability. Given a parameter p such that the
instability occurs only at pc, i.e., !ex(p → pc) → 0, the generalization for Anite temperature T
and momentum q and p �=pc is

&(q; !) =

[(
i!

max(!; T;!ex(p))
+ ln

!c

max(!; T;!ex(p))

)−1

+ a2q2 + (pc(T ) − p)
]−1

: (209)

Here, !c is the cut-oK frequency of O(@). Since the binding energy is O(1 eV), the size
of the exciton, a, is of the order of the lattice constant. The q dependence of (209) is
negligible compared to the frequency dependence. The exponent z is eKectively inAnite. At
p ≈ pc, to logarithmic accuracy, the above expression (209) is identical to the phenomenolog-
ical hypothesis (197).

The eKective low-energy interaction for states near the chemical potential, which is sketched
in Fig. 62, is singular when the excitonic resonance is at low frequency. Here is an example of
the mechanism mentioned under (v) in Section 2.6 where the irreducible interaction obtained by
integrating over non-perturbed high-energy states is singular. This is, of course, only possible
when the interactions represented by the shaded block in Fig. 62 are large enough.

In relation to some of the questions raised about the phenemenology at the end of the last
subsection, the momentum dependence of the vertex coupling the low-energy fermions to the
Muctuations in Figs. 53 and 58 has been evaluated [273]. It is non-local with a form depending
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on the wavefunctions of the conduction and valence bands and the leading result is

g(k; k ′) ∼ (sin(kxa=2) sin(k ′xa=2) − sin(kya=2) sin(k ′ya=2)) : (210)

Note that at (k−k ′) = 0 this is proportional to [cos(kxa)−cos(kya)]. This is intimately related to
the d-wave current distribution in the broken-symmetry phase predicted for Region (II), shown
in Fig. 60. Eq. (210) is such that when the diagram of Fig. 53 is evaluated, the intermediate state
momentum integration makes the self-energy depend very weakly on the incoming momentum.
But when the pairing kernel of Fig. 58 is evaluated, it is momentum dependent and exhibits
attraction in the d-wave channel.

Similarly, as has been shown [273], the vertex of Eq. (210) leads to an anisotropic state
with properties of the pseudo-gap state of Region II below a temperature Tp(x). The principal
theoretical problem remaining with this point of view is that a transition of the Ising class
occurs at Tp(x) at least in mean Aeld theory. This would be accompanied by a feature in the
speciAc heat unlike the observations. 45

The microscopic theory reviewed above reproduces the principal features of the phase dia-
gram Fig. 49 of the copper-oxide superconductors, and of the SFL properties. It also gives a
mechanism for high-temperature superconductivity of the right symmetry. Further conAdence
in the applicability of the theory to the cuprates will rest on the observation of the predicted
current pattern of Fig. 60 in Region II of the phase diagram. 46

8. The metallic state in two dimensions

The distinction between metals and insulators and the metal–insulator transition has been a
central problem in condensed matter physics for seven decades. Despite the accumulated theo-
retical and empirical wisdom acquired over all these years, the experimental observation made
in 1995 of a metal–insulator transition in two dimensions [149] was a major surprise and is a
subject of great current controversy. The theoretical work in the 1980s [11,92–94,157,14] on
disordered interacting electrons pointed to a major unsolved theoretical problem in two dimen-
sions. Infrared singularities were discovered in the scattering amplitudes which scaled to strong
coupling where the theory is uncontrolled (The situation is similar to that after the singulari-
ties in the one- or two-loop approximations in the Kondo problem were discovered, revealing
a fascinating problem without providing the properties of the asymptotic low-temperature state).
However, the problem was not pursued and the Aeld lapsed till the new experiments came
along.

The 1980s theoretical work shows that this problem naturally belongs as a subject in our
study of singular Fermi liquids. We will Arst summarize the principal theoretical ideas relevant
to the problem before the 1995 experiments. We then brieMy summarize the principal results
of these and subsequent experiments. Reviews of the experiments have appeared in [3,16,17].

45 One might appeal to disorder to round oK the transition, but this appears implausible quantitatively. More likely,
the nature of the transition is strongly aKected by the Muctuation spectra of the form of Eq. (196) and is unlikely
to be of the Ising class.
46 As already mentioned in Section 2.6, ferromagnetism in some compounds has an excitonic origin. The dynamics
near such a transition should also exhibit features of the edge-singularity as modiAed by recoil.
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Fig. 63. Sketch of a MOSFET. Holes (or electrons) are trapped at the interface of the semiconductor and the insulator
due to the band gap diKerence between them, the dipole layer and the applied electric Aeld. Two-dimensional
electrons (holes) may also be found by layered structures (heterostructures) of semiconductors with diKerent band
gaps such as GaAs and AlGaAs.

There are two types of theoretical problems raised: the nature of the metallic state and the
mechanism of the metal–insulator transition. We will address the former and only brieMy touch
on the latter.

8.1. The two-dimensional electron gas

We consider an electron gas with a uniform positive background with no complications
arising from the lattice structure—this is how the many-electron problem was originally formu-
lated: the Jellium model. This situation is indeed realized experimentally in MOSFETS (and
heterostructures) in which an insulator is typically sandwiched between a metallic plate and
a semiconductor—see Fig. 63. By applying an electric Aeld, a two-dimensional charge layer
accumulates on the surface of the semiconductor adjacent to the insulator, whose density can
simply be changed by varying the Aeld strength (For details see [26].). Similar geometries have
been used to observe the quantum Hall eKects and the metal–insulator transition by varying the
density.

Typically we will be interested in phenomena when the average inter-electron distance is
O(10) − O(102) nm. The thickness of the insulating layer is typically more than 100 nm,
so that the positive (capactive) charge on the insulator provides a uniform background to a
Arst approximation. In Si samples, surface roughness is the principal source of disorder at high
densities, while at low densities (in the regime where the transition takes place) ionized im-
purity scattering dominates due to the fact that there is much less screening. In GaAs, remote
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impurity scattering dominates, and this scattering is mostly small angle. This is the main reason
that the mobility in these samples is large.

Neglecting disorder, the problem is characterized by rs, deAned as the ratio of the potential
energy to the kinetic energy

rs =
me2

4��˝2
√
�n

: (211)

Here n is the electron density, m the band mass, and � the background static dielectric constant.
We can also write

�r2
s a

2
0 =

1
n

; (212)

which expresses that rs is the radius of the circle whose area is equal to the area per conduction
electron, measured in units of the Bohr radius a0. For a two-valley band structure, as on the
(110) surface of Si, the kinetic energy is reduced and rs is twice that deAned by Eqs. (211)
and (212).

For rs�1, (the dense electron limit) the kinetic energy dominates and metallic behavior is
expected. For rs�1, the potential energy dominates and a crystalline state (Wigner crystal)
is expected. The best current numerical estimates place the transition to the crystalline state
at rsc ≈ 37 [253]. The entropy at the transition is tiny, indicating that the radial distribution
function for the liquid state at low densities is similar to that of the crystal for distances up to
a few times rsa0.

It is important to note for our subsequent study that magnetism is always lurking close by.
Reliable numerical calculations show that the magnetic state in the Wigner crystal near the crit-
ical density is determined by multiple-particle exchanges [47]. On the metallic side, the energy
of the ferromagnetic state is only a few percent above the unpolarized metallic or crystalline
states for rs ≈ rsc [253]. Disorder is expected to make the metal–insulator state continuous. On
the insulating side at T → 0, the disordered Wigner crystal is expected to be glassy and have
low-energy properties of a Coulomb glass [239]. On the metallic side Muctuations in the local
density of electrons might be expected to lead to locally polarized magnetic states or possibly
to some unusual frustrated magnetic states [57]. The perturbative calculations with disorder and
interactions, already alluded to [92–94,54] also hint at the formation of magnetic moments in
the metallic state. It is the interplay of such magnetic Muctuations with itinerancy which is one
of the principal theoretical problem in understanding the metallic state.

8.2. Non-interacting disordered electrons: scaling theory of localization

Detailed reviews on the material in this section may be found in [256,157,14,133].
The concept of localization of non-interacting electrons for strong enough disorder was in-

vented in 1958 by Anderson [18]. In one dimension, all electronic states are localized for
arbitrarily small disorder while in three dimension a critical value of disorder is required. That
d= 2 is the marginal dimension in the problem was discovered through the scaling theory of
localization.
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The conceptual foundations for the scaling theory of localization were laid by Thouless and
co-workers [255,256] and by Abrahams et al. [1], and were developed formally by Wegner
[286]. Abrahams et al. [1] also made predictions which could be tested experimentally. Thouless
noted Arst of all that the conductance G of a hypercube of volume LD in any dimension d is
dimensionless when expressed in units of (e2=h), thus deAning a scale independent quantity

g=G=(e2=h) : (213)

Next, he argued that g for a box of linear size 2L may be obtained from the properties of
a box of size L and the connection between the two of them. The conductance of a box of
size L itself increases with the transition amplitude t between energy levels in the two boxes
and decreases with the characteristic width of the distribution of the energy levels in the boxes
^W (L) due to the disorder

g(L) ≈ f
(

^t(L)
^W (L)

)
: (214)

For weak-Gaussian disorder, the bandwidth may be expected to be proportional to the square
root of the number of impurities in the box, so ^W (L) ∼ Ld=2. The transition amplitude t is
obtained by the hopping between near-neighbors near the surface of the boxes of size L. It is
therefore proportional to the surface area Ld−1. Thus 47

g(L) =f(L(d−2)=2) : (215)

Now, in three dimensions the conductivity should approach a constant for large L (Ohm’s law!),
and hence the conductance should scale as L. This implies that the scaling function f(x) should
go for large L as f(x) ∼ x2. Note that for d¿ 2 the g therefore increases with increasing L
while for d¡ 2 the large L behavior is determined by the small argument behavior of the
scaling function; clearly d= 2 is the marginal dimension.

In a very inMuential paper, Abrahams et al. [1] analyzed the B-function of the RG Mow

B(g) ≡ d(ln g)=d(ln L) (216)

and showed by a perturbative calculation in 1=g that

B(g) = (d− 2) − 1
�2

1
g

; (217)

where the Arst part comes from Eq. (215) with f(x) ∼ x2.
For small enough g (i.e., for large disorder) we expect exponential localization g(L) ∼ e−L=D,

where D is the localization length, so that B(g) ∼ (−L=D). The smooth connection between the
perturbative result (217) for large g and the exponentially localized solution at small g is shown
in Fig. 64. While for d= 3 (or any d¿ 2), a critical disorder gc is required for localization,
for d= 2 states are asymptotically localized for any disorder for non-interacting fermions. The

47 This line of reasoning of course breaks down when we include electron–electron interactions.
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Fig. 64. The scaling function for non-interacting electrons with disorder deduced by Abrahams et al. [1].

characteristic value of the localization length in d= 2 is estimated from the perturbative solution:

g(L) = g0 − 1
�2 ln

(
L
‘

)
; (218)

where g0 is the dimensionless conductance at L ≈ ‘. In conventional Boltzmann transport
theory g0 = (e2=2�˝)kF‘. The localization length D is of the order of the value of L at which
the correction term is of order g0, so that

D ≈ ‘ exp
(�

2
kF‘
)

: (219)

At T → 0, the sample size of a sample with kF‘�1 has to be very large indeed for weak
localization to be observable.

The theory described above must be modiAed at Anite temperatures due to inelastic scattering.
If the inelastic scattering rate is much less than the elastic scattering rate, �−1

in ��−1, localization
eKects are cut-oK at a length scale LTh(T ), the Thouless length scale

LTh = (D�in)1=2 ; (220)

where D= (v2
F�=d) is the (Boltzmann) diKusion constant. However, as noted by Altshuler

et al. [12,13], the correct scale for the cut-oK is �−1
. , the phase breaking rate. In an indi-

vidual collision the energy change ^E may be such that the phase changes only by a very
small amount, �in^E�2�. The phase breaking time is then longer and is shown to be given
by �. ∼ (^E�in)−2=3�in. The T = 0 theory with the “phase length”

L. = (D�.)1=2 (221)
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Fig. 65. Interfering (time-reversed) parts in elastic scattering oK a Axed set of impurities. The probability for the
particle to arrive at B is reduced because of the enhanced probability for the particle to arrive back at A, as a result
of interference.

replacing L then gives the Anite temperature scaling behavior to which experiments may be
compared.

The characteristic temperature Tx at which weak-localization eKects become prominent may
be estimated in a manner similar to (218)

Tx�.(Tx) = exp(−�kF‘) : (222)

This expression puts useful bounds on the temperatures required to observe weak localization.
Eq. (217) is derived microscopically by considering repeated backward scattering between

impurities. It can also be derived by considering quantum interference between diKerent paths
to go from one point A to another B [41]. The total probability / for this process is

/=

∣∣∣∣∣
∑
i

ai

∣∣∣∣∣
2

=
∑
i

|ai|2 +
∑
i �=j

a∗i aj ; (223)

where ai is the amplitude of the ith path. The second term in Eq. (223) is non-zero only for
classical trajectories which cross, for example at the point O in Fig. 65. The probability of
Anding a particle at the point O is increased from 2|ai|2 to

|a1|2 + |a2|2 + 2 Re a∗1a2 = 4|a1|2 (224)

because the two paths are mutually time-reversed. Increasing this probability of course leads
to a decrease in the probability of the particle to arrive at B, and hence to a decrease in the
conductivity.

This argument makes it clear as to why the interfering paths must be shorter than the phase
relaxation rate due to inelastic processes and why magnetic impurities or a magnetic Aeld which
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introduces phase shift between two otherwise time-reversed paths suppress weak localization.
In two dimensions [14]

�(H; T ) − �(O; T ) =
e2

2�2˝

[
 
(

1
2

+
1
x

)
+ ln x

]
; (225)

where  is the digamma function and

x = 4L2
.eH=˝c ≡ (L.=LH )2 : (226)

The quantity in brackets in (225) is equal to x2=24 for x → 0 and to ln(x=4) − � for x → ∞.
Spin–orbit scattering preserves time-reversal symmetry but spin is no longer a good quan-

tum number. The spins are rotated in opposite directions in the two self-intersecting paths of
Fig. (65) if the impurities are spin–orbit scatters [125,14,157]. This has been shown to lead to
an average overlap of the spinfunction of −1

2 (because a rotation by 2� of wavefunction of a
spin 1=2 particle leads to a wavefunction of opposite sign). The correction to the B-function of
Eq. (217) due to this eKect is

1
2�2

1
g

: (227)

This eKect tends to an enhancement of the conductivity.

8.3. Interactions in disordered electrons

Fermi liquid theory for interacting electrons survives in three dimensions in the presence of
a dilute concentration of impurities [43]. Some noteworthy diKerences from the pure case are:

(1) Owing to the lack of momentum conservation, the concept of a Fermi surface in momentum
space is lost but it is preserved in energy space, i.e., a discontinuity in particle occupation
as a function of energy occurs at the chemical potential. The momentum of particles may
be deAned after impurity averaging. General techniques for calculating impurity-averaged
quantities are well developed; see for example [4,43]. Here and subsequently in this chapter
the self-energies, vertices, etc. refer to their form after impurity averaging.

(2) In the presence of impurities, the density–density correlation (and spin-density correlation,
if spin is conserved) at low frequencies and small momentum must have a diKusive form
(this is required by particle-number conservation and the continuity equation)

�(q;!) =%
Dq2

i! + Dq2 ; q�‘−1 and !��−1 : (228)

Here %= dn=d� is the compressibility and D is the diKusion constant. For non-interacting
electrons, D= 1

3v
2
F�. Interactions renormalize D and % [43]. In the diagrammatic represen-

tation used below, the diKusive propagator is shown by a cross-hatched line connecting a
particle and a hole line as in Fig. 66.

(3) Owing to statement 1, the impurity-averaged single-particle spectral function at a Axed k
is spread out over an energy -, so that for frequencies within a range - of the chemical
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Fig. 66. Elementary processes important in the problem of two-dimensional disordered interacting electrons and
referred to in the text. (a) Representation of the diKusion propagator due to impurity scattering vertices and cor-
responding self-energy. The particle lines and hole lines should be on opposite sides of the chemical potential.
(b) Singular second-order interactions. (c) Singular vertex in the density channel (and in the spin-density chan-
nel for the spin-conserving problem). (d) Singular (irreducible) Arst-order interactions. (e) Elementary singular
polarization propagator.

potential, it has both a hole part (for !¡�) and a particle part (for !¿�). This is an
important technical point in microscopic calculations.

(4) The Ward identities relating the coupling of vertices to external perturbations change for
the coupling to unconserved quantities (for the pure case they are given in Section 2.6).
For example, no Ward identity can be derived for the vertex needed for the conductivity
calculation, i.e., Lim!→0 Limq→0 0

impure
� , because current is not conserved.

Lim
q→0

Lim
!→0

0impure
� =

k�
m

− 9�(k; !)
9k�

(229)

holds because after impurity averaging momentum is conserved. However, microscopic
calculations show that, at least when Fermi-liquid theory is valid (cf. Section 2.4),

Lim
!→0

Lim
q→0

0impure
� = Lim

q→0
Lim
!→0

0impure
� : (230)
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Indeed, if this were not so, one would not get a Anite dc conductivity at T = 0 for a
disordered metal in d= 3. An argument for this is as follows: Normally, we calculate
the conductivity by Arst taking the limit q → 0 and then the limit ! → 0, as on the
left-hand side of (230). In practice, however, even when we apply a homogeneous Aeld
to a system, the electrons in a disordered medium experience a Aeld which varies on the
scale of the distance between the impurities, and so the physically relevant limit is the one
on the right-hand side of (230), where the limit ! → 0 is taken Arst. But the validity of
(230) appears not to extend to the case of singular Fermi liquids, at least for the present
case where the singularities are q-dependent. This is one of the important diPculties in
developing a consistent theory for disordered interacting electrons in d= 2.

The diKusive form of the density correlation function and spin-density correlation is the culprit of
the singularities which arise due to interactions in two dimensions. For example, the elementary
eKective vertex in Fig. 66 due to a bare frequency independent short-range interactions in two
dimensions is

v2
∫ ‘−1

0
dq q

(
1

i! + Dq2

)
≈ v2N (0) ln(!�) : (231)

The singularity arises because �(!; q) =f(!=Dq2). Recall that for pure electrons �(!; q) =
f(!=vFq) leading to a logarithmic singularity for the second-order vertex in one dimension
and regular behavior in higher dimensions. Similarly, �(!; q) =f(!=q3) leads to a logarithmic
singularity in the second-order vertex in three dimensions, as we saw in Section 5.1 on SFLs
due to gauge interactions.

Note that in Eq. (231) and other singular integrals in the problem have ultra-violet cutoKs at
q ≈ ‘−1 and ! ≈ �−1 since the diKusive form is not applicable at shorter length scales or time
scales. It also follows that Boltzmann transport theory is valid at temperatures larger than �−1.

Actually, even the Arst-order interaction dressed by diKusion Muctuations is singular. Consider
Arst the diKusion correction to the vertex shown in Fig. 15

0
00

=
1
�

(i! + Dq2)−1 ; (232)

provided �¡ 0; �−!¿ 0 or vice versa. The restriction is a manifestation of point (3) and arises
because in the diKusion process, only intermediate states with one line above (particle) and the
other below (hole) the chemical potential contribute as they alone deAne the physical density.
This leads to the Arst-order irreducible interaction and the polarization graph shown in Fig. 67
to be logarithmically singular.

For the small q of interest for singular properties, one need consider interactions only in the
s-wave channel. One then has two interaction parameters, one in the singlet channel and the
other in the triplet channel.

Consider the problem with Coulomb interactions. Then the eKective interaction in the singlet
channel sums the polarization bubbles connected by Coulomb interactions. Using (228) for the
polarization bubble, it is shown [14] that for small momentum transfer the interaction in the
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Fig. 67. EKective interactions can be split into singlet and triplet channels. In the singlet-only channel (a), the
density–density interaction is screened by the Coulomb interaction and is universal at long wavelengths. In the
triplet channel and in the singlet channel for large momentum, the screened density–density interaction appears only
in the cross channel and is therefore non-universal.

Fig. 68. Simplest processes contributing to the singular self-energy. (a) Exchange process; (b) Hartree process.

spin singlet (S = 0) channel, Fig. 67, becomes

Vsinglet = 2% : (233)

In the non-interacting limit %=N (0), independent of density. Consider now the ladder-type
interactions illustrated in Fig. 68. These involve both the singlet and the triplet interactions.
The momentum carried by the interaction lines is, however, to be integrated over. Therefore,
the triplet interactions do not have a universal behavior, unlike the singlet interactions.

Altshuler, Aronov and collaborators [14] (see also [103]) calculated the logarithmic cor-
rections to Arst order in the interactions for various physical quantities. To these one can add
the contribution already discussed due to weak localization. The corrections to the single-particle
density of states, the speciAc heat and the conductivity over the non-interacting values
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are, respectively:
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The compressibility has no logarithmic corrections. In these equations, s is the screening length
and F is a parameter which is of the order of the dimensionless interaction rs.

The Arst terms in (235) and (236) are due to exchange processes and the second due to
the Hartree processes. The exchange process, of which the contribution to the self-energy is
shown in Fig. 66, use the interaction in the singlet channel; hence the universal coePcient.
The second contribution uses both the triplet and the (large part of the q) singlet interactions.
In Arst order of interaction, the diKerence in signs of the two processes is natural. In pure
systems, the Hartree process does not appear as it involves the q= 0 interaction alone which is
exactly canceled by the positive background. For disordered systems, due to the Muctuation in
the (ground state) density, a Arst-order Hartree process, Fig. 68 contributes.

In the presence of a magnetic Aeld, the Sz = ± 1 parts of the triplet interactions acquire a
low-energy cut-oK. Therefore, the logarithmic correction to the resistivity is suppressed leading
to negative magnetoresistance proportion to F(H=kT )2 for small H=kT but g�BH��−1

so ; �−1
s where

�−1
so and �−1

s are spin–orbit and spin-scattering rates, respectively, for appropriate impurities.

8.4. Finkelstein theory

Finkelstein [92] has used Aeld-theoretical methods to generalize Eqs. (234)–(236) beyond the
Hartree–Fock approximation. His results have been rederived in customary diagrammatic theory
[52,40,53]. The interference processes leading to weak localization are again neglected. The
theory may be regarded as Arst order in 1=kF‘. In eKect, the method consists in replacing the
parameter F by a scattering amplitude �t for which scaling equations are derived. The equivalent
of the Fs

o parameter is Axed by imposing that the compressibility remains unrenormalized, i.e.,
does not acquire logarithmic corrections. A second important quantity is a scaling variable z,
which is analogous to the dynamical scaling exponent z which we discussed in Section 6, which
gives the relative scaling of temperature (or frequency) with respect to the length scale. A very
unusual feature of the theory is that z itself scales! Scaling equations are derived for �t and z to
leading order 1=kF‘. As T → 0, both �t and z diverge. The divergence in z (see the discussion
in Section 7) usually means that the momentum dependence of the Muctuations is unimportant
compared to their frequency dependence. The divergence in �t as T → 0 in such a case has
been interpreted to imply divergent spatially localized magnetic Muctuations; in other words, it
implies the formation of local moments [93,54]. At the same time, the scaling equations show
conductivity Mowing to a Anite value.
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Fig. 69. Schematic renormalization group Mow for the disordered interacting electron problem according to the
Finkelstein theory. The dashed lines represent the eKect on the solid lines on applying a magnetic-Aeld which
couples to spins alone.

The scaling trajectories of Finkelstein’s theory are shown schematically in Fig. 69. While in
the non-interacting theory with disorder, one always has an insulator, this theory always Mows
towards a metal. However, the theory cannot be trusted beyond �t ∼ 1, as then it is uncontrolled.
The theory also cannot be trusted for large disorder, kF‘ ∼ O(1), even for small interactions.

It is worth emphasizing that Finkelstein’s theory gives an eKect of the interactions in a
direction opposite to the leading perturbative results. The perturbative results themselves of
course are valid only for small rs while Finkelstein theory is strictly valid only for rs ¡O(1).
One possibility is that the Finkelstein result itself is a transient and the correct theory scales
back towards an insulator (the dashed lines in Fig. 69). Another possibility is that it correctly
indicates (at least for some range of rs and disorder) a strong-coupling singular Fermi liquid
metallic Axed line. The new experiments discussed below can be argued to point to the latter
direction.

It is hard except in very simple situations (the Kondo problem, for instance) to obtain the
approach to a strong-coupling Axed point analytically. In that case, one may usually guess the
nature of the Axed point and make an expansion about it to ascertain its stability. 48

48 Although the theory breaks down in the strong coupling regime, this situation is somewhat comparable to the hints
that the weak-coupling expansion gave in the early phase of the work on the Kondo problem: these weak-coupling
expansions broke down at temperatures comparable to the Kondo temperature, but did hint at the fact that the
low-temperature regime was a strong coupling regime.
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In making such a guess, the SFL properties towards which the Finkelstein solution Mows
should be kept in mind:

(i) The conductivity Mows towards a Anite value in the theory as T → 0.
(ii) The density of single-particle states Mows towards zero

N (!) ∼ !� : (237)

(iii) The magnetic susceptibility diverges at a Anite length scale (the eKect of a diverging z)
indicating the formation of local moments.

The last point appears to be crucial. As may be seen from Eq. (244) below, the growth of
the triplet scattering overrides the exchange processes which favor the insulating state. Indeed,
if the triplet divergence is suppressed by an applied magnetic Aeld, the theory reverts to the
perturbative form of Eq. (225). The scale of the magnetic Aeld for this eKect is given by the
temperature. The formation of localized regions of moments may be linked to the fact already
discussed that the ferromagnetic state is close in energy to the paramagnetic Muid (and the
crystalline states) as density is decreased. The experiments discussed below have a signiAcant
correspondence with this picture, although there are some crucial diKerences.

A possible strong coupling Axed point 49 is a state in which the local moments form a
singlet state with a Anite spin stiKness of energy of O(Hc) in the limit T → 0. This eliminates
any perturbative instability of the triplet channel about the Axed point. The state is assumed
to have zero density of single-particle states at the chemical potential. This eliminates the
localization singularity as well as the singularity due to the singlet channel. This state is then
perturbatively stable. The conductivity of such a state can be shown to be Anite. The occurrence
of a characteristic scale Hc observed in the magnetoresistance experiments discussed below with
Hc → 0 as the metal–insulator transition in zero Aeld as n → nc is also in correspondence with
these ideas.

8.5. Compressibility, screening length and a mechanism for metal–insulator transition

Suppose the metallic state in two dimensions is described by a Axed point hinted by the
Finkelstein theory and an expansion about it. Such a description must break down near
the critical rs where a Arst-order transition to the Wigner transition must occur in the limit
of zero disorder. General arguments suggest that the transition for Anite disorder must be
continuous [132].

A suggestion for the breakdown of the Finkelstein regime follows from the calculation of
the correction to the compressibility due to disorder [241]. As already mentioned, no pertur-
bative singularity is found in the compressibility due to interactions. However, the correlation
energy contribution of the zero-point Muctuations of plasmons is altered due to disorder with a
magnitude which also depends on rs. The leading order contribution in powers of (kF‘)−1 can
be calculated for arbitrary rs. Including this contribution, the compressibility % may be written

49 This paragraph is based on the unpublished work of Q. Si and C.M. Varma.
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in the form
%0

%
=

%0

%pure
+ 0:11r3

s =(!0�) + O((r4
s )=(!0�)2) : (238)

Here %pure is the compressibility for zero disorder, %0 =N (0), and !0 is the Rydberg. In the
Hartree–Fock approximation

%0

%pure
= 1 − (

√
2=�)rs : (239)

The best available numerical calculations also give %0=% varying slowly enough with rs that the
correction term (238) dominates for rs of interest near the metal–insulator transition even for
a modest disorder. For example for !0� ≈ 10, the disorder contribution in Eq. (238) is larger
than the pure contribution for rs¿ 10. This has an important bearing on the metal–insulator
transition because the screening length s is given by

s=s0 =%0=% ; (240)

where s0 = a0=2. Strictly speaking, s is the screening length for an external immobile charge
and the screening of the electron–electron interactions is modiAed from (238) due to ver-
tex renormalizations. However, in this case they do not change the essential results. From
Eq. (238) it follows that the screening length s(‘)¿‘, the mean free path, for

rs¿ 3(!0�) : (241)

Suppose the condition s(‘)¿L¿‘ is satisAed. Here L again is the size of the box for which the
calculation is carried out, deAned through DL−2 ≈ T . The assumption of screened short-range
interactions, with which perturbative corrections leading to results of Eqs. (234)–(236) are
obtained, is no longer valid. In this regime, the calculations must be carried out with unscreened
Coulomb interactions. The correction proportional to F in Eqs. (234)–(236) is not modiAed but
the singlet contributions are more singular (due to the extra q−1 in the momentum integrals).
For instance, Eq. (236) is modiAed to

��=�= − (
√

2=�2)rs
L
‘

: (242)

This implies a crossover to strong localization. It is therefore suggested that the metallic state
ceases to exist when condition (241) is satisAed.

The above line of reasoning is of particular interest because as discussed below, a sharp varia-
tion in the compressibility is indeed observed to accompany the transition from the metallic-like
to insulating-like state as density is decreased (as shown in Fig. 79 below).

8.6. Experiments

Soon after the publication of the theory of weak localization, its predictions were seemingly
veriAed in experiments on Si-MOSFETS [48,260]. The experiments measured resistivity on
not very clean samples of high density with resistivity of O(10−2h=e2). In a limited range of
temperature, the predicted logarithmic rise in resistivity with decreasing temperature with about
the right prefactor was found [41]. In view of the perturbative results of Altshuler and Aronov
[14] and the knowledge that electron–electron interactions alone lead to a Wigner insulator at low
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Fig. 70. Resistivity data on a Ane scale for the two highest densities in Fig. 75 below, showing correspondence
with the theory of weak localization at such high densities. From Pudalov et al. [216]. See text.

densities, one was led to the conviction that the metallic state does not exist in two dimensions.
It was expected that samples with larger rs will simply show logarithmic corrections to the
resistivity at a higher temperature and pure samples at a lower temperature. Not too much
attention was paid to Finkelstein’s results which pointed to the more interesting possibility of
corrections in the opposite direction.

The more recent experiments on a variety of samples on a wider range of density and of
higher purity than earlier have refocused attention on the problem of disorder and interactions
in two dimensions and, by implication, in three dimensions as well. Several reviews of the
experiments are available [3,16,17]. We will present only a few experimental data to highlight
the theoretical problems posed, and will focus on the behavior of the data as a function of
temperature. The scaling of the data as a function of the electron density n− nc or Aeld E will
not be discussed; there is a considerable body of data on non-linear E-dependence (see e.g.
[238] and references therein) but the signiAcance of the data is not clear at present.

The Arst thing to note is that results consistent with the earlier data [48,260] are indeed
obtained for high enough densities. Fig. 70 shows the resistance versus temperature in Si for
rs ∼ O(1). The magnitude of the temperature dependence is consistent with the predictions
of weak localization corrections. As we will show below in the same region of densities, the
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Fig. 71. Resisitivity as a function of temperature for a wide range of densities (and Fermi energy) in a disordered
Si MOSFET. The inset shows accurate measurements of H(T ) close to the separatrix for another sample. From
Sarachik and Kravchenko [226,3].

negative magneto-resistance predicted as the correction to weak localization, discussed above,
is also observed.

Fig. 71 shows the resistivity as a function of T over a wide range of densities. Similar data
from [150] over a large small of densities is shown in Fig. 72, and data over a large range
of densities are plotted as a function of T=EF in Fig.73. The resistivity clearly shows a change
of sign in the curvature as a function of density at low temperatures. The resistivity at the
crossover density as a function of temperature is shown down to 20 mK in the inset of Fig. 72
and is consistent with temperature independence. The true electron temperature in these samples
is a question of some controversy [16,3], but more recent experiments, whose data are shown
in Fig. 74, have corroborated these results by studying this issue very carefully down to 5 mK.
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Fig. 72. Resistivity versus temperature at Ave diKerent electron densities in the experiments of Kravchenko and
Klapwijk [150]. The inset shows that the middle curve (ns = 7:25 × 1010 cm−2) changes by less than ±5% in the
entire temperature range.

In the high-density region the resistivity does rise with decreasing temperature logarithmically,
consistent with earlier measurements. The consistency of these datasets for two very diKerent
types of samples therefore gives strong evidence that these are genuine eKects in both types of
systems.

The data shown in Figs. 71–73 is for Si-MOSFET samples. The data for GaAs heterostruc-
tures, and Si in other geometries is qualitatively similar [120,62,63,210,119,184]. Fig. 74 shows
data on high-quality gated GaAs quantum wells with densities on the metallic side of the
metal–insulator “transition” taken to temperatures as low as 5 mK. The resistivity is essen-
tially temperature independent at low temperatures. The logarithmic corrections expected from
weak-localization (calculated using the measured resistivity and the theoretically expected �.)
is also shown.
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Fig. 73. Plot of the resistivity as a function of the scaled temperature T=EF. The encircled region indicates the
range of parameters explored in Fig. 72 and in [150]. The dash–dotted vertical line depicts the empirical tem-
perature TQ = 0:007EF below which the logarithmic temperature dependence like that of Fig. 70 sets in. From
Prinz et al. [214].

8.6.1. Experiments in a parallel magnetic =eld
A magnetic Aeld applied parallel to the plane couples primarily to the spin of the electrons.

For small Aelds and for n�nc, a positive magnetoresistance proportional to H 2 is observed as
expected from perturbative calculations in the interactions. For Aelds such that �BH ≈ EF,
the electrons are fully polarized and the resistivity saturates as expected. The temperature
dependence of the resistivity begins to become insulating-like at low temperatures with the
crossover temperature increasing as n decreases [243]. This is an indication that the metallic
state becomes unstable as the spins are polarized. A complete set of data is shown in Fig. 75
where resistivity versus temperature in an Si-MOSFET with density varying across nc is shown
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Fig. 74. (a) Temperature dependence of the longitudinal resistivity of a two-dimensional hole gas for various gate
biases and associated densities in experiments on GaAs. The solid curves are estimated weak localization predictions;
(b)–(f): MagniAed view of the data in (a) averaged over a 5% temperature interval. The estimated weak localization
prediction has been shifted to coincide with the data curve at T = 50 mK. From Mills et al. [184].

together with the resistivity versus magnetic Aeld at the lowest temperature for some densities
on the n¿nc side. It is noteworthy that the temperature dependence of the high-Aeld data (not
shown) appears to fall on the curve of resistivity versus temperature (at H = 0) which the high
Aeld (low temperature) data saturates asymptotically.

The parallel magnetoresistance has been examined carefully for n close to but larger than
nc, and is shown in Figs. 76 for p-type GaAs [294]. 50 It is discovered that a critical Aeld

50 Roughly similar results are found in Si-MOSFETS, but a unique crossover Aeld Bc
‖ as in Fig. 76 is not found

[223].



398 C.M. Varma et al. / Physics Reports 361 (2002) 267–417

Fig. 75. Results for resistivity versus temperature and versus magnetic Aeld applied in the plane for a few densities
on either side of nc. The magnetic Aeld is shown on the upper axis and the data is taken at the lowest temperature
for some of the densities shown in the resistivity versus temperature plots. From Pudalov et al. [215].

as a function of density Hc(n) exists such that for H ¡Hc(n) the resistivity continues to be
metallic-like dH=dT ¿ 0 and for H ¿Hc(n) it is insulating like dH=dT ¡ 0. The Aeld Hc(n) tends
to zero as n → nc. The low-temperature data on the high Aelds side is puzzling and should be
re-examined to ensure that the electron temperature is indeed the indicated temperature.
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Fig. 76. Plot of the magnetoresistance. In (a) the T dependence of H in the zero Aeld metallic phase is shown on
a semilog plot for a hole density 3:7 × 1010 cm−2 for varying B‖ values. As B‖ increases from zero, the strength
of the metallic behavior measured by the total change in H from about 1 K to 50 mK weakens progressively, and
for B‖¿Bc dH=dT becomes negative (i.e., the system becomes insulating). An alternate way of demonstrating the
existence of a well-deAned Bc

‖ is to plot H against B‖ at several diKerent temperatures. In (b) H is plotted versus

B‖ at a hole density 1:5× 1010 cm−2. Bc
‖ is read oK the crossing point marked by the arrow. In (c), the diKerential

resistivity dV=dI measured at 50 mK across the B‖ induced metal–insulator transition is shown at magnetic Aeld
strengths similar to those in (a). From Yoon et al. [294].

8.6.2. Experiments in a perpendicular =eld
The behavior of a resistance in all but very small perpendicular Aelds, is dominated by

the quantum Hall eKect (QHE). The connection of the quantum Hall transitions to the metal–
insulator transition at n= nc and H = 0 is an interesting question which we will not touch on.
At low Aelds and for n¿ nc, outside the QHE regime, negative magnetoresistance predicted by
weak-localization theory are observed. Data for n�nc is shown in Fig. 77 and agrees quite well
with the theoretical curves as shown; similar results for n close to nc are also reported [119].
More recent low-temperature data in GaAs heterostructures [184] is reproduced in Fig. 78 for
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Fig. 77. Plot of the magnetoresistance. The change in the resistivity ^H(B) =Hxx(B)− Hxx(0) versus magnetic Aeld
B at an electron density of 1:05 × 1012 cm−2 at various temperatures. The open circles denote the measurements
and the full line is the best least square At according to the single electron weak localization correction to the
conductivity. From Brunthaler et al. [49].

densities n¿nc but close to nc. A magnetoresistance two orders of magnitude smaller than
the weak localization theory is estimated although the width of the negative magnetoresistance
region is not inconsistent with the weak-localization correction.

8.6.3. Compressibility measurements
Compressibility (%) measurements [81,129] in the region around n= nc show a rapid change

in %−1 from the negative value characteristic of high rs metallic state to positive values—see
Fig. 79. These are very important measurements which show that a thermodynamic quantity has
a very rapid variation near n ≈ nc. We have already discussed that such changes were predicted
[241] to occur through perturbative corrections due to disorder in the energy of interacting
electrons. Some recent ingenious measurements [130] of the local electrostatic potential show
that in the region n ≈ nc large-scale density Muctuations (puddles) occur with weak connections
between them. Such density Muctuations become more numerous with weaker contacts between
them as the density is lowered into the insulating phase. These show up in the experiments
as local Muctuation in which %−1 approaches 0. Completely isolated puddles (Coulomb dots)
of-course must have %−1 = 0.

8.7. Discussion of the experiments in light of the theory of interacting disordered electrons

In comparing the experimental results with the theory, it is necessary to separate out the
eKects due to “customary-physics”—for instance electron–phonon interactions, creation of ion-
ized impurities with temperature [15], change of screening from its quantum to its classical
form as a function of temperature [73] change of single-particle wavefunctions with a magnetic
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Fig. 78. Variation of the longitudinal resistance with perpendicular magnetic Aeld for two-dimensional sample at
T = 9 mK and at various indicated densities. The weak-localization correction is estimated to be O(102) larger than
the observations at these densities. From Mills et al. [184].

Aelds [145], inter-valley scattering [292], etc.—from the singular eKects due to impurities and
interactions. The separation is at present a matter of some debate. However, it seems that the
following features of the experimental data in relation to the theoretical ideas summarized in
Sections 8.3, 8.4 are especially noteworthy. These must be read bearing in mind our earlier
discussion that most of the interesting experiments are in a range of rs and disorder where
the theoretical problems are unresolved and only hints about the correct form of a theory are
available.

• At rs6O(1) and kF‘�1, a logarithmic increase in resistance with decreasing T consistent
with weak localization as well as with the perturbative interaction correction is observed.
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Fig. 79. Compressibility data. In this experiment, at low frequencies, Ix is directly proportional to Rx, the dissipation
of the two-dimensional hole system, while Iy is proportional to the inverse compressibility. Ix and Iy are shown
as a function of density for Ave diKerent temperatures ranging from 0.33 to 1:28 K at an excitation frequency of
100 Hz. The crossing point of the Ave dissipation channel curves corresponds to the metal–insulator transition at
B= 0. The minimum of the inverse compressibility occurs at the same hole density of 5:5×1010 cm−2. From Dultz
et al. [81].

A positive magnetoresistance consistent with the latter is also observed. Also observed is the
correction to weak localization due to phase-breaking of backscattering in a perpendicular
magnetic Aeld. The latter yields sensible values and temperature dependence for the phase
relaxation rate given by the theory. It appears that at high enough density, the weak localiza-
tion theory supplemented by the perturbative theory of interactions is in excellent agreement
with the experiments in the range of temperatures examined.

• As rs is increased (and kF‘ decreased), the logarithmic resistance is lost in the observed
temperature range, whereas weak-localization theory predicts that the coePcient of such terms
(as well as the onset temperature for their occurrence) should increase. For rs not too large,
the decreased logarithmic term may be associated with the perturbative corrections (225) due
to interactions.

• Upon further increasing rs, the derivative dH=dT becomes positive in the low-temperature
region as in a metal. The magnetoresistance in a parallel Aeld is positive ∼ H 2 as is pre-
dicted by Finkelstein [although the variation is closer to H 2=T rather than as (H=T )2] [216].
The phase-breaking correction in a perpendicular Aeld continues to be observed. However,
quite curiously the deduced �. is larger than � deduced from resistivity—by deAnition a
phase-breaking rate serves as a cutoK only if �. ¡�.

• In the “metallic” regime for intermediate rs, a strongly temperature dependent contribution for
T6EF is found which may be Atted to the form H′(n) exp(−Ea(n)=T ). The magnitude of this
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term rapidly decreases as the density n decreases. No accepted explanation for this contribution
has been given. In Si, the change of resistivity at n ≈ 10nc due to this contribution is an order
of magnitude larger than in GaAs. It has been proposed [14,215] that this contribution together
with the weak-localization contribution may well account for all the data in the “metallic”
regime since it pushes the minimum of the resistivity below which the logarithmic temperature
dependence is visible to lower temperature than the available data at lower densities.
This issue can be resolved by experiments at lower temperatures. At this point, especially

in view of the consistency of the recent results of Mills et al.—see Figs. 74 and 78—with
the earlier experiments, one can say that it requires an unlikely conspiracy of contributions to
remove the temperature dependence over a wide range for diKerent materials and with diKerent
degrees of disorder.

A quite diKerent scenario also consistent with the existing data is that the logarithmic upturn
in the resistivity observed in high-density samples is a transient that on further decreasing
the temperature disappears to be replaced by dH=dT → 0 as T → 0, at least above some
characteristic density which is a function of disorder. We will come back to this issue when
we discuss the possible phase diagram.

• As rs approaches rsc; dH=dT tends to zero (through positive values). A separatrix is observed
with dH=dT ≈ 0 over about two orders of magnitude in temperature for Si and over an order
of magnitude in GaAs. For rs ¿ rsc; dH=dT is negative beAtting an insulator. rsc appears to
be smaller for dirtier samples but not enough systematic data is available for drawing a
functional relation.

• The electronic compressibility rapidly changes near the “transition” and rapidly becomes small
on the insulating side. Its value on the insulating side is consistent with approaching zero
in the limit of zero temperature. Although this is in qualitative accord with the theoretical
suggestion [241], further experiments simultaneously measuring the compressibility and the
conductivity at low temperatures are necessary to correlate the metal–insulator transition with
the rapid variation of compressibility or the screening length. Note that it follows from
the Einstein relation �=D% that if % is Anite in the metallic state (� Anite) and zero in the
insulating state (�= 0), % must go to zero at the transition. Otherwise, we would have the
absurd conclusion that D → ∞ at the transition.
Interesting phenomenological connections between the transport properties and formation of

“puddles of electron density” of decreasing size as the metal–insulator “transition” is approached
have been drawn [178]. The important question is why such behavior begins to dominate as
the density is lowered to nc. Evidence that the formation of “puddles” is a result of disorder
strongly augmented by electronic correlations is available in recent measurements [130].

• Near rs = rsc, the resistivity as a function of temperature on the insulating side appears to be a
reMection of that on the metallic side about the dH=dT = 0 line if the data is not considered at
low temperatures [149]. Now with more complete data, we know that the resistivity Mattens
to zero slope at low temperatures on the “metallic” side of nc. The most likely behavior
appears to be that the resistivity approaches a Anite value at low temperature on one side of
nc and an inAnite value on the other. A one-parameter scaling ansatz [77] for the problem
with interaction and disorder gave H → ∞ for n¡nc and H → 0 for n¿nc as T → 0 and
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reMection symmetry just as at any second-order transition with one scaling parameter. 51 Does
this necessarily imply that multidimensional scaling is required near this transition? However,
another important point to bear in mind is that since resistance does not depend on a length
scale in two dimensions, it need not be a function, in particular, of the correlation length near
the transition. The resistivity is allowed to be Anite on one side of a metal–insulator transition
and inAnite on the other even though the transition may be continuous and the correlation
length diverges on either side with the same exponent. The glassy nature (Coulomb glass)
of the insulating state is also expected to change the critical properties.

• The resistivity at low temperatures for n�nc has been Atted to an activated form ˙ exp(@=T )�

with � ≈ 1=2 and with @ → 0 as n → nc. This is characteristic of a Coulomb glass [239].
Whether this is indeed the asymptotic low temperature form is not completely settled.

• The resistance at n ≈ nc appears to vary from sample to sample but is within a factor of 3 of
the quantum of resistance. It is worth emphasizing that nc is close to the density expected for
Wigner crystallization. With Coulomb interactions and disorder, the insulating state is indeed
expected to be Wigner glass. In that case, one might expect singular frequency-dependent
properties and hysteretic behavior near the transition.

• For rs ≈ rsc the resistance in a parallel Aeld is especially noteworthy. In a parallel Aeld dH=dT
decreases until at a Aeld H =Hc(n) it changes sign. Hc vanishes at nc, the density where
dH=dT = 0 for H‖ = 0. In this regime, H(H; T; n) can be scaled as [294]

H
(

(n− nc)
T� ;

(H −Hc(n− nc))
TB

)
: (243)

This means that the transition from the metallic state to the insulating state can be driven by
a magnetic Aeld. It appears that the “metallic” state owes its existence to low-energy magnetic
Muctuations which are quenched by a magnetic Aeld. This is in line with Finkelstein theory and
the Mow diagram of Fig. 69 yet the existence of a scale Hc is not anticipated by the calculations
of Finkelstein (nor, of course, is the mere existence of nc). As H‖ is further increased dH=dT
approaches the insulating behavior characteristic of n¿nc at H‖ = 0. At a Axed temperature,
the resistivity saturates for g�BH‖¿EF, i.e., for a fully polarized band.

For small perpendicular Aelds, negative magnetoresistance of the form of (225) continues to
be observed at least for Si for n�nc. In GaAs, this contribution at least in the range nc¿ n¿ 2nc
is negligible.

• The Hall coePcient RH is continuous across the transition, obeying the kinetic theory result
RH ∼ 1=n. On the “metallic” side this is not surprising. On the “insulating” side this is
reminiscent of the properties of Wigner glasses [61,109].

8.8. Phase diagram and concluding remarks

It is worthwhile to try to guess the T = 0 phase diagram of interacting disordered electrons
on the basis of the data and the available theory, inadequate though it is. A convenient set of

51 The data also led to suggestions for a superconducting ground state on the metallic side [207], and to an anyonic
state [301]!
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Fig. 80. A tentative phase diagram at T = 0 for two-dimensional disordered electrons with interactions.

axes is rs (or n−1=2), as it parameterizes the dimensionless interaction, and the resistance in
units of h=e2 as it parametrizes the dimensionless disorder, see Fig. 80.

Reliable theoretical results are found only along the two axes of Fig. 80. States are localized
all along the horizontal axis. Localized states at T = 0 must be organized into one or another
kind of magnetically ordered state. On the vertical axis a Fermi-liquid gives way via a Arst-order
transition to a Wigner crystal which may have various magnetic phases.

In light of the experiments, the assumption that the entire region in Fig. 80 is an insulator
made too long, has to be abandoned in all likelihood. There does appear to be a “metallic state”.
With disorder, a crossover to a Wigner glass must occur at large rs. It is also clear that at high
densities weak-localization theory supplemented by perturbative corrections due to interactions
works quite well in the range of temperatures examined. At moderate rs for small disorder the
Finkelstein correction appears to take over and a “metallic” state takes over. The best evidence
for this, paradoxically, is the magnetic Aeld (parallel to the plane) dependence of the resistivity
which appears to eliminate the “metallic” state.

Based on these considerations, the phase diagram Fig. 80 is put forth. It is surmised that
the weak localization correction Mows to strong localization for suPciently strong disorder and
small enough rs, but that it gives way to a metallic state at weak-disorder and larger rs. What
determines the boundary? A possible criterion is that on one side, the Finkelstein renormalization
is more important and on the other side localization due to disorder is more important. The
crossover to strong localization occurs at a length scale D given by Eq. (219) where the resistivity
doubles.

The scaling equation for the triplet interaction parameter is [92,51,157]

d�t=d ln L=�kF‘(1 + 2�t)2 (244)

so that for small initial value �0
t at L= ‘ one gets �t(L) = �0

t +(�kF‘) ln(L=�). As L= D, the triplet
interaction parameter �t ≈ �0

t + 1. The boundary between the “metallic” and the “insulating”
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regions on this basis is linear at small rs and small g−1, as shown in Fig. 80. This is highly
conjectural but the existence of the phase boundary at the point rs → 0 and 1=g → 0 is more
robust.

This scenario can be tested in high density, low disorder samples by measurements of re-
sistivity at very low temperatures. If correct in some regime of parameters near the boundary,
the logarithmic weak-localization correction should appear at high temperatures and disappear
at lower temperatures.

We have stressed that the “metallic state” in two-dimensions is likely to be a singular Fermi
liquid with an interesting magnetic-ground state. 52 Direct or indirect measurements of the
magnetic susceptibility through, for instance the magnetic Aeld dependence of the compress-
ibility should yield very interesting results. Also interesting would be measurements of the
single-particle density of states through tunneling measurements. Further systematic and care-
ful measurements of the compressibility are also required to correlate the transition from the
“metallic” state to the increase in susceptibility.

The basic theoretical and experimental problem remains the characterization of the “metallic
state” its low-temperature entropy, magnetic susceptibility, single-particle density of states, etc.
The experimental and theoretical problems are many but one hopes not insurmountable.
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