
EUROPHYSICS LETTERS 

Europhys. Lett., 11 (2), pp. 107-113 (1990) 

15 January 1990 

Layer Formation of Dilute Colloidal Suspensions as a 
Result of a Concentration-Dependent Sedimentation Velocity: 
Some Simple Considerations and Suggestions for 
Further Experiments. 

W. VAN SAARLOOS and D. A. HUSE 
AT&T Bell Laboratories - Murray Hill, NJ 0797.4 

(received 31 July 1989; accepted in final form 14 November 1989) 

PACS. 05.60 - Transport processes: theory. 
PACS. 05.40 - Fluctuation phenomena, random processes, and Brownian motion. 
PACS. 47.55K - Multiphase flows. 

Abstract. - In a number of experiments on sedimentation in colloidal suspensions, the formation 
of a vertically layered structure in the concentration profile has been observed. We argue that 
this may be interpreted as the formation of shock fronts in the concentration profile due to the 
concentration dependence of the sedimentation velocity, a mechanism first identified by Kynch. 
We propose several experiments to test this suggestion, and draw attention to the possibility of 
observing anomalous diffusion in a sedimenting suspension with reversible aggregation. 

For over a century[l], it has been known that suspensions often exhibit a stratified 
structure upon sedimentation. This stratification occurs in the form of the appearance of one 
or more horizontal bands, as sketched in fig. 1. Within each band, the suspension appears to 
be approximately homogeneous, but the concentration (volume fraction) of the suspension 
differs from one band to the other. Thus, a plot of the concentration us. height shows a 
staircaselike structure, with the dnterfacesn between the bands corresponding to the 
vertical positions where the concentration jumps. 

As discussed by Siano [2], this stratification has been observed in a number of different 
suspensions, including clays, oil emulsions, gold sols 131, membrane vesicles [41 and 
polyballs [2]. For an extensive account of the various observations, we refer to the recent 
paper by Siano [2]. As he discusses, there is apparently no agreement on the origin of this 
effect. It has sometimes been suggested that the layering is due to the polydispersity of the 
suspended particles. However, one would rather expect polydispersity to give rise to the 
formation of streamers [5] (predominantly horizontal velocity and density modulations) than 
to vertical stratification. Moreover, the experiments of Siano [21 on monodisperse 
suspensions rule out this explanation. An alternative suggestion [61 has been that the 
layering should be viewed of as some kind of spinodal decomposition. Spinodal 
decqmposition has in fact recently been observed in colloids with attractive interparticle 
forces [7], but as one would expect the patterns are isotropic and statistically homogeneous, 



108 EUROPHYSICS LETTERS 

24 

2 2  

20 

18 

16 

14 

- 
E 

hl 

0 
t= 0 3 6 9 12 15 d a y s  

Fig. 1. - Schematic representation of the appearance of layers a,s a function of time in the experiments 
of Siano on an initially homogeneous suspension of 1.09 pm spheres at a volume fraction of 0.001. After 
Siano[21, fig. 2. 

not layered on length scales of order centimeters. Moreover, there is no evidence for the 
existence of significant particle clustering through attractive forces in Siano’s experi- 
ments [2]. 

The aim of this letter is to point out that it is natural, even for dilute suspensions, to 
attribute the stratification to the (nonlinear) concentration dependence of the sedimentation 
velocity[8]. We propose some simple experiments to test this idea in more detail. 

For suspensions that are large enough that Brownian motion can be neglected, this idea 
is not at  all new. It is well known that the sedimentation velocity V(c) of a homogeneous 
suspension is a decreasing function of the concentration c. (This effect is sometimes called 
.hindered settling,.) Back in 1952, Kynch [9] realized that according to  the conservation 
equation for a suspension sedimenting in the - x  direction 

one should expect the development of shocks, i . e .  interfacelike discontinuous jumps in the 
concentration c. These shocks arise from the concentration dependence of Wc). One way in 
which this shows up is the .self-sharpening>, of the interface at the top of a sedimenting 
suspension. Although some questions have remained [ 101 concerning the precise conditions 
at  the shock discontinuity, the existence of shocks is well established-in fact a convenient 
way to determine the concentration dependence of V(C)  is by extracting it from the 
measured shock velocities [ll-131. 

The interesting question therefore becomes: is the stratification observed in dilute 
colloidal suspensions another manifestation of the same physics? The most important effect 
on going towards small particle sizes is that Brownian motion becomes significant. A 
convenient way to expresss the importance of the sedimentation relative to the effects of 
Brownian motion for a dilute monodisperse suspension is through the P6clet number P 
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defined so that Brownian motion becomes more important with decreasing P. Here a is the 
particle radius, and Vo and Do are the sedimentation velocity and the diffusion coefficient of a 
single sphere, respectively. Since 

with g the gravitational acceleration, 4 the density difference between the particles and 
the liquid and q the viscosity of the liquid, we get 

Thus, the importance of fluctuations and diffusion rapidly increases with decreasing 
sphere size. Usually, Brownian motion becomes important for particles smaller than a few 
p. Siano used polystyrene particles in the range 2a = 0.109 pm (P = 2 .  to 2a = 
= 1.09 p (P = 0.2), and polyvinyltoluene particles with diameter 2.02 pm and P = 1.6. 

For dilute s y s t e m d i a n o  [2] used concentration up to about 0.5 volume p e r c e n t w e  
can approximate V(c)  = Vo(l - kc + ...), where k = 6.55 for hard spheres [14,15]; since the 
concentration-dependence of the (collective) diffusion coefficient [ 16,171 D(c) is unimportant 
for the effects discussed here(l), we will neglect it and consider for dilute colloidal 
suspensions the generalization [19] of eq. (1) 

Here t; is a fluctuating noise term; for a system with a conserved number of particles that 
obeys the fluctuation dissipation theorem, its correlations are [20] 

(F(r, t )  E(r', t')) = fw3cD0vz8(r- r')8(t - t'). 

For t;= 0 and one-dimensional profiles c(z,  t), eq. (6) reduces to 

('1 Note that although we consider, for simplicity, dilute suspensions in arriving a t  eq. (61, this 
equation is valid more generally for small concentration jumps in nondilute suspensions if c is 
reinterpreted as the deviation of the particle concentration from its mean value c, and Vo and Do are 
reinterpreted as the velocity and diffusion coefficient at  c = c,. In this case, k = - V;'dV(c)/dclcm. 
Moreover, the concentration dependence of D(c) can straightforwardly be incorporated. The layering 
arises from the behavior of eq. (6) on scales much larger than the interface width W (defined in eq. (9)) 
and so is driven by the convective term given in (1). As a result, a strong concentration dependence 
D(c) only effects the <<interface structure>>. For weak concentration jumps that satisfy D-'. 
.(dD/dc) Ac << 1 the concentration dependence can indeed be neglected and the internal shock structure 
is that given by Whitham, ref. [181. 
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Fig. 2. - Sketch of the dynamics implied by the Burgers equation for small Do. a) The initial profile at  
t = 0. b)  The profile after long times. 
Fig. 3. - a) Initial concentration profile as hypothesized by Siano and Hagan and Cohen. b) Illustration 
of the fact that if the initial concentration profile has a smoothed steplike character, the dynamics 
dictated by the Burgers equation would correspond mainly to a sharpening of the steps. 

Since the Vo &?l3x term can be transformed away by going to a frame moving with velocity 
-Vo, this equation is equivalent to the Burgers equation[l8] whose dynamics is well 
understood [18] (the equation is exactly solvable). The effect of adding noise to this equation 
in one and more dimensions has been under active investigation in the last few years. We 
will come batk-to this below. 

In view of.the experimental observation that the layering is only in the x-direction, we 
will first consider x-dependent profiles c(x, t )  and compare to what extent the experimental 
results agree with what one would expect theoretically on the basis of eq. (7). As illustrated 
in fig. 2 and discussed in detail by Whitham [HI ,  according to eq. (7) an initial profile c(z,  to) 
will develop into a saw-tooth-like profile. Clearly, it is tempting to associate this with the 
formation of layers or bands seen experimentally. Let us therefore make a more detailed 
comparison of the experimental observations and prediction of this model, and propose a 
number of experiments that would provide a better test of these ideas. 

i) Because of the sign of the c(3clax) term in (7), regions with aclax negative tend to 
develop interfaces (.shocks.), while regions where aclax > 0 do not. As a result, according 
to the Burgers equation one will typically find a positive gradient acldx within the bands. 
Siano[2] remarks that although, to the eye, each layer appears to be of nearly constant 
concentration, there could perhaps be a slight .reverse gradient., in other words, c 
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increases with height. Clearly, measurements of whether the concentration in the bands 
does indeed show this expected reverse gradient effect would be extremely valuable. 

ii) According to the Burgers equation, the velocity of an interface between two bands 
is [18] 

where c1 and c2 are the concentration on both sides of the interface as sketched in fig. 2b). 
Similarly, the interface width W is of order 

Again, measurements of the concentration in the bands would provide definite tests of these 
predictions, essentially without adjustable parameters. In fact, Hagan and Cohen [6], on the 
basis of a private communication by Siano, mention that the transition zone between the 
layers was of the order of (8 t 20)% of the layer width, say (1 t 2) mm. If this number refers 
to the 1.09 pm particles, it would be consistent with the estimate (9) if we arbitrarily take 
c1 - c2 of the order of For spheres of diameter 0.1 pm, on the other hand, it is difficult 
to understand on the basis of (9) how one could ever get such sharp interfaces with 
concentration jumps that are less than 0.5%. 

iii) One of the main conclusions of Siano [2] is that the layering depends on the initial 
concentration profile. In one set of experiments, he starts with a homogeneous profile 
c(x, t = 0) = constant. In experiments of this type with 1.09 pm spheres, bands form with a 
rather irregular spacing, while the 0.109 pm spheres apparently did not show any evidence 
towards stratification [2, 61. In another set of experiments, Siano prepared an initial profile 
with an approximately constant negative gradient, so that c decreased with height. In this 
case, spheres of both sizes gave rise to layering: Moreover, bands appeared much sooner 
and were more regularly spaced. While Siano[2] and Hagan and Cohen[61 conclude from 
these observations that a strictly linear initial profile c(x, t = 0) = bo - bl x as sketched in fig. 
3a) facilitates the formation of striations, we note that these findings are completely 
consistent with the dynamics of the deterministic one-dimensional Burgers equation if one 
assumes that the initial profile was not linear but actually looked more like the smoothed out 
steplike profile of fig. 3b). As indicated in this figure, the dynamics dictated by the Burgers 
equation would show a sharpening in time of the initial homogeneities. That this is the 
proper explanation appears plausible to us in view of the fact that these dinear, profiles 
were prepared by mixing two solutions, one, A, with a given concentration of the colloid and 
the other one, B,  without any particles. The initial concentration profile was then made [21 
<<by first adding enough of A to give a depth of about 10 cm in the tube. Then, for example, 2 
drops of B were added and then 18 drops of A,  4 drops of B,  16 drops of A,  etc., until the last 
addition was 20 drops of B,. Since the time for the 1.09 ym particles to diffuse 1 cm is of the 
order of two months, it is unlikely that the initial concentration profile ever becomes 
accurately linear, as was assumed. It would clearly be interesting to systematically 
investigate our suggestion that the late time concentration profile is indeed a sharpened 
<<image. of the initial profile. In particular, by preparing a number of different well-charact- 
erized initial concentration profiles, it should be possible to test qualitatively as well as 
quantitatively the accuracy of the Burgers equation for the concentration dynamics, and 
hence the origin of the formation of bands. 

If our interpretation is correct, the noise in the experiments on the 1.09 pm spheres is 
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still small enough that most experimental observations can be understood in terms of the 
deterministic Burgers equation without noise. However, as we mentioned earlier, the 
diffusion coefficient and the relative strength of the fluctuations rapidly increase with 
decreasing particle size. According to our present understanding, we expect no anomalous 
behavior of the correlation functions in this fluctuation-dominated regime: as shown by 
Janssen and Schmittmann[21], d ,=2  is the upper critical dimension for eq. (6) with 
conservative noise (relevant to the case considered here), and in three dimensions, the 
nonlinear sedimentation term only leads to long time tail correction terms [221(2). 
(Apparently [23], the structure of the equation does not give any reason to believe that there 
exists a nontrivial strong-coupling fixed point, as happens [24] in the case of an isotropic flux 
in dimensions d>d,= 3.) However, if the noise were nonconserved ((55) a 
a 8(r - r’)  6(t - t’) in (6)), concentration correlations should have nontrivial scaling 
exponents [23]. It may be interesting to explore whether such a situation can be realized in a 
suspension in which reversible aggregation takes place [25], so that the effective number of 
sedimenting particles is nonconserved and fluctuates. Such a situation can occur [25] if the 
interaction potential of the colloidal particles has a minimum of order kgT.  In order to 
perform such an experiment, it would probably be advisable to choose the system such that 
the strength of the nonlinearity and the diffusion in (6) is of the same order of magnitude on 
scales of the interparticle distance R = ac;lB, where cm is the mean particle concentration. 
This requires (3) that the Peclet number P = O(l /ke>.  For concentrations of about 1%, this 
yields P = O(3). According to the renormalization group analysis [23], the density cor- 
relation function in such an experiment should then exhibit anomalous exponents on long 
time and length scales, in particular superdiffusive spreading of density fluctuations. For 
this collective diffusion effect (4), the long-wavelength behavior needs to be probed. The pm 
particle size dictated by the above requirement might pose difficulties to probe this regime. 
Nevertheless, with a system in which a majority of the particles is index matched [26], this 
might become feasible. 

In conclusion, we have argued that even the layering of colloidal suspensions of pm 
spheres can be attributed to the mechanism of shock formation identified by Kynch [9]. If 
the experiments that we have suggested do c o n h  our suggestion, the physics of band 
formation is related to the Burgers equation, which governs a number of related phenomena 
in physics, such as e.g. step-bunching during crystal growth [27,28] and the anomalous 
roughness of an interface in a 2 - d Ising model with random interactions [29]. If systems 
with nonconserved noise can be created, these might yield interesting examples on which to 
test the recent prediction that the scaling exponents are nontrivial [23]. 

(‘1 The following likely scenario indicates why one nevertheless sees sharp bands and interfaces in 
the experiments of ref. [2-4,10-121. Presumably, eq. (6) has a deterministic (F = 0) fixed point which is 
unstable to any amount of noise, so that the renormalization group flow is towards the noise-driven 
fixed point. For small Do and thus small E,  the system starts extremely close to the deterministic fixed 
point and thus acts essentially deterministically for a long initial time period. From the renormalizat- 
ion group equations it should be possible to estimate the scaling of the crossover time (and associated 
lengths) from this deterministic regime to the long-time stochastic behavior. 

(3) If we measure distances in units of R ,  times in units of R2/Do and concentrations in units of c,, 
eq. (6) becomes in a comoving frame Waf = - Pkcg3 E W a f  + V 2 E  + E .  Here the dimensionless 
quantities are indicated by a tilde and, for the case of conserved noise, (((F, €) t(F’, f’)) = 
= 8d3V’ 6(F - F‘) 6(i  - f‘). Thus, in order that the strength of the nonlinear term is comparable to the 
diffusion term on the scale of the interparticle distance R ,  we need Pkcg3=O(1). 

(4) In an earlier version of this paper, we mentioned photobleaching as a possible way to study the 
effect. However, photobleaching probes self-diffusion, not the collective diffusion of interest here. 
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