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We study a simple nonlinear-heat-conduction model for the dynamics of rapid crystallization of
amorphous films, and provide a linear stability analysis of the steady-state solutions which describe
the propagation with a constant velocity of a straight interface separating the crystalline and amor-
phous phases. Results are given for the case of self-sustained “‘explosive” crystallization as well as
for the case of cw-laser-driven crystallization. The steady states of the model can have oscillatory
instabilities, which result in periodic variations in the amorphous-crystalline interface velocity. For
some ranges of the parameters the instability is morphological, so that the interface acquires a wavy
shape, while for others it leaves the interface straight. We argue that these two types of instabilities
will produce qualitatively different patterns of surface undulations on the crystallized films, similar
to those seen in recent experiments on (In,Ga)Sb. Similarities and differences with the Mullins-
Sekerka instability are discussed and the importance of interface kinetics for this instability is point-
ed out. The onset of the instability is predominantly determined by a parameter related to the ac-
tivation energy for the amorphous-crystalline transition. Values of this stability parameter are given
for Si, Ge, and Sb. The latter material appears to be close to the threshold for the instability and

hence is best suited for an experimental test of our theory.

I. INTRODUCTION

It is well known that thin films of amorphous materials
can be made to crystallize by locally injecting energy with,
for instance, a laser pulse or by impact with a stylus. The
transition from the metastable amorphous state to the
stable crystalline state is accompanied by a release of la-
tent heat, since the crystalline state has the lower entropy.
The energy released when some of the material crystal-
lizes can then diffuse to nearby, still-amorphous material,
possibly enabling it to crystallize in turn, with the release
of more latent heat. Under favorable conditions, a self-
sustained avalanche process results, so that once the
crystallization has been initiated in some region, the entire
film will crystallize. This phenomenon of “explosive”
crystallization has been observed in a wide variety of ma-
terials.

Experiments have shown that the initial tempera-
ture of the film and its substrate must be greater than
some critical temperature T* for self-sustained growth to
occur. T* depends strongly on the material and on the
thickness and history of the film and substrate; some ma-
terials, such as Yb and Bi,'% can crystallize explosively at
liquid-He temperatures, while Sb (Refs. 2—6) and
(In,Ga)Sb (Refs. 7—9) films exhibit self-sustained crystall-
ization at room temperature and near 100 °C, respectively.
When the substrate temperature is slightly above T*, ex-
periments by Coffin and Johnston? on Sb and Wicker-
sham et al.”~° on (In,Ga)Sb have shown that after the
film has crystallized, there are often regular, periodic vari-
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ations in thickness, accompanied by variations in the
grain size and possibly in the extent of completeness of
the amorphous-crystalline (a-c) transformation.””® De-
pending on what the growth conditions were, these undu-
lations may either take the form of parallel “wave fronts”
lying perpendicular to the direction of propagation of the
crystallization wave,” or of corrugations that exhibit a
wavy structure perpendicular to the direction of propaga-
tion as well.%® One of our goals in this paper is to provide
an explanation for the occurrence of both types of undula-
tions.

At substrate temperatures below T™*, the latent-heat
release will not suffice to sustain the crystallization wave;
after initiation it will die out near the triggering area un-
less additional energy is imparted to the film. In several
recent experiments “laser-driven” crystallization in such a
case, where the crystallization is maintained by moving a
continuous-wave-laser spot at a constant velocity across
the film, has been studied.!’—2¢

In this paper we provide a theoretical analysis of the
macroscopic crystallization dynamics of thin amorphous
films, studying both the cases of self-sustained and
continuous-wave-laser-driven growth (the well-docu-
mented case of laser annealing,?’ in which a portion of the
layer is heated and often melted with a short laser pulse, is
not considered here). In accord with the physical picture
discussed above, we study heat flow within the film, tak-
ing into account the heat produced by the laser, the latent
heat generated at the moving a-c boundary, and heat loss
to the substrate. A crucial element in determining the fi-
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nal energy balance is the dependence of the crystal-growth
rate on the temperature of the a-c boundary due to none-
quilibrium interface kinetics. The important role of inter-
face kinetics will be discussed in detail in the next section.

Our work generalizes previous work by Gilmer and
Leamy,?® Shklovskii,”” and van Saarloos and Weeks.’%3!
Gilmer and Leamy?® studied a one-dimensional heat-
conduction equation incorporating the physical features
mentioned above. They found that if the substrate tem-
perature is sufficiently high, then the model indeed has
steady-state solutions which describe a straight interface
advancing into the amorphous region with a constant
velocity. Shklovskii?® and van Saarloos and Weeks*3!
(hereafter referred to as vSW) analyzed the stability of
these self-sustained solutions against small changes in
velocity. They showed that for substrate temperatures
slightly above critical, and depending on the slope of the
growth-rate curve, the steady-state solution can have an
oscillatory instability against small velocity perturbations.
Numerical analysis of the model equation verified that
this instability causes the interface temperature and ve-
locity to oscillate in time.3®3! The distance that the
model interface moves during one oscillation is of the
same order as the wavelength of the experimentally ob-
served surface structure. Since the large velocity changes
would naturally be expected to affect details of the cry-
stallization process, vSW argued that the height and com-
position variations found near T* are induced by this
thermal instability.

Since the analysis of vSW was based on a one-
dimensional model for a straight interface, their work did
not address the possibility of morphological instabilities
leading to “wavy” structures such as those also observed
by Wickersham et al.%° Here we extend this earlier work
by investigating a two-dimensional model of thin-film
crystallization. Although we mathematically analyze only
the linear stability of possible steady-state solutions, phys-
ical arguments and a comparison with the earlier results
enable us to obtain a fairly complete picture of the full
behavior of the model, even above the instability thresh-
old. We also obtain similar results for cases in which the
crystallization is driven by a continuous-wave-laser slit, as
in the experiments by Zeiger et al.?? discussed below. Our
model is essentially that of Gilmer and Leamy?® general-
ized to allow for two-dimensional heat flow in the plane
of the film and to include a line energy source (the laser
slit).

Previous theoretical work by Zeiger et al.?* on laser-
driven crystallization neglected the influence of interface
kinetics by assuming that the interface remains at a fixed
temperature regardless of its velocity. This approxima-
tion caused both numerical and physical difficulties in
their analysis. Negative interface velocities (correspond-
ing to crystalline material becoming amorphous) arose
during the integration of their model equation; this un-
physical situation was corrected by artificially setting the
velocity to zero whenever the equations made it negative.
A proper treatment of interface kinetics avoids these
problems automatically. More importantly, it is required
for an understanding of the stability of the a-c boundary
and is an essential element in the physical mechanism that

vSW proposed to explain the surface undulations.

Temkin and Polyakov,’? in an analysis which could be
applied to self-sustained crystallization, studied the stabil-
ity of a planar interface between two phases using a model
which included the same physical features as ours (except
for the laser) and allowed morphological instabilities.
They accounted for the effect of interface kinetics by tak-
ing the interface velocity to be a function of interface tem-
perature of the form sketched in Fig. 1(b). This form is
appropriate for crystal growth from the melt; as we dis-
cuss below, the growth rate for the amorphous-crystalline
transition should be given by a curve such as Fig. 1(a). It
is clear that the results of Temkin and Polyakov for inter-
faces operating on the upward-sloping left-hand side of
their growth-rate curve are, in principle, applicable to ex-
plosive crystallization. However, they made the quasista-
tionary approximation, namely that the temperature field
responds instantaneously to changes in the interface posi-
tion. This approximation is not valid for interfaces mov-
ing as quickly as the explosive a-c interface. Indeed, any
stability analysis based on it will be unable to detect oscil-
latory instabilities, since these require that the time evolu-
tions of the interface velocity and of the temperature field
be out of phase. In addition, although they correctly lo-
cated the stability boundary for growth on the right-hand
side of the growth-rate curve, and found instabilities for
negative interface velocities (i.e., melting), they incorrectly
located the stability boundary for growth on the left-hand
side of the curve, which is of primary interest to us.

The next section discusses the role of interface kinetics
in some detail. Although conceptually straightforward,
the linear stability analysis of steady-state solutions is
rather tedious, especially because the usual quasistationary
approximation is inaccurate. We therefore summarize the
main results of this analysis in Sec. III, and discuss their
experimental implications there as well. In particular, a
comparison with parameters for Si, Ge, and Sb is made,
and the reason why the thermal instability is predom-
inantly seen in Sb is clarified. In Sec. IV the extension of
the Gilmer-Leamy model to allow for two-dimensional
heat flow is discussed and the stability equation is derived.
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FIG. 1. Dependence of the interface velocity ¥? on interface
temperature T° arising from growth kinetics. (a) Typical
Arrhenius curve for the amorphous-to-crystalline transition.
For growth driven by a laser slit at a speed V;, Tgs is the
steady-state interface temperature. (b) Typical curve for
crystal-melt growth where T¥ is the equilibrium melting tem-
perature. (c) Growth-rate curve of (a) with the dashed curve of
steady-state values T°= T°+q\/l—3 for explosive crystallization;
the intersections of the solid and dashed curves give the possible
steady states. The middle dashed curve is for T°=T¥, the
threshold temperature for the existence of steady-state solutions,
the left curve is for T° < T, and the right is for T°> T*.
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The latter equation is analyzed in detail in Secs. V, VI,
and VII for one-dimensional systems, for two-dimensional
self-sustained growth, and for two-dimensional laser-
driven growth, respectively.

II. INTERFACE KINETICS

The growth rate of a crystal is a sensitive function of
the temperature because of microscopic kinetics of attach-
ment and detachment of molecules at the interface. The
a-c transition is generally an activated process where mol-
ecules in “frozen-in” amorphous configurations must sur-
mount an activation barrier to crystallize. Thus the “in-
trinsic” a-c growth rate of a local region of the a-c¢ boun-
dary can wusually be well approximated by an
Arrhenius type of behavior,

VP xexp(—Q/T?), 2.1)

as sketched in Fig. 1(a) (for data on Si, see, e.g., Ref. 33).
Here, V?, the velocity with which the crystalline phase
grows, is plotted as a function of the temperature T at
the a-c boundary. Note that the growth rate is an increas-
ing function of T®.

This behavior is very different from the more familiar
case of crystal growth from a slightly undercooled melt.
Here the crystal growth rate increases as T is decreased
from the melting temperature T™ and, for small devia-
tions, is linear in the undercooling. A typical growth-rate
curve for melt growth is drawn in Fig. 1(b). Note that for
very low values of T the curve bends over due to “viscos-
ity effects” and then the behavior resembles that of the
a-c system.~3¢ However, most experiments on direc-
tional solidification and dendritic growth occur on the
right-hand side of the growth-rate curve, where T? is
close to T™ and the slope of the growth-rate curve is neg-
ative. As pointed out by Shklovskii?® and vSW (Refs. 30
and 31), this implies that the stability properties of a pla-
nar interface growing into an amorphous phase are very
different from one growing into a melt. Indeed, the well-
known Mullins-Sekerka and dendritic instabilities®” occur
only when the slope of the growth-rate curve is negative,
as is usually the case for melt growth.

To see this, consider the behavior of a small perturba-
tion along a straight front where part of the boundary
bulges forward into the cooler melt [Fig. 2(a)]. The local
boundary temperature will drop, which results in an in-
creased driving force for growth [Fig. 2(b)]. Thus the per-
turbation increases in time [Fig. 2(d)] and the interface
can break up into complex patterns (e.g., dendritic) ulti-
mately stabilized by other mechanisms (e.g., surface-
tension-like curvature effects). As a result the final length
scale of the patterns is the geometric mean of a thermal
length and a microscopic (capillary) length.

On the other hand, in the case of the a-c transition
[Fig. 2(c)] or of crystal-melt growth on the left-hand side
of the growth-rate curve in Fig. 1(b), the growth of the
protrusion into the cooler region will slow down with
respect to other parts of the interface. Thus we expect
stable, although possibly oscillatory, behavior of the a-c
interface. The results of the analysis to follow are con-
sistent with these physical considerations.
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FIG. 2. Evolution of a protrusion on the advancing interface.
(a) Protrusion at point A is cooler than the trailing part of the
interface. For crystal growth into the melt, the growth-rate
curve (b) shows that the interface velocity at 4 then increases,
leading to instability (d). For growth from an amorphous phase,
the growth-rate curve (c) shows that the velocity at 4 decreases,
leading to stability or oscillations (e).

III. SUMMARY OF OUR RESULTS
AND DESCRIPTION OF THE IMPORTANT
PHYSICAL PARAMETERS IN THE PROBLEM

The situation that we consider for thin-film crystalliza-
tion driven by a continuous-wave-laser slit is depicted in
Fig. 3. An infinitely long line energy source (the laser slit)
of arbitrary profile J(x) is scanned across the film at a
constant velocity V; in the x direction. A special case of
this analysis, occurring at sufficiently high substrate tem-
peratures, is that of self-sustained growth where the laser
is not needed to maintain growth.

In addition to taking into account the temperature
dependence of the local a-c growth rate V%, we allow a
phenomenological dependence of ¥? on the interfacial
curvature. As explained later in this section, we believe
that this effect, which is the analog of the Gibbs-
Thomson lowering of the equilibrium melting temperature
at the crystal-melt interface,”’ is not strictly necessary in
order that the time-dependent propagation fronts stabilize,
and indeed our results do not depend sensitively on its
magnitude. We find that in order for the model’s predic-
tions to make physical sense, the curvature dependence
must be such that if the ¢ phase bulges into the a phase,
then the interface velocity is lower than for a flat inter-
face. Otherwise, the steady-state solutions of the model
would always be unstable against perturbations with suffi-
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FIG. 3. Schematic view of the laser-driven crystallization of
a thin film. The laser slit image, shown crosshatched, defines
the y axis; it advances at a constant speed ¥V, in the x direction,
driving the amorphous-crystalline interface at x =x%(y,) ahead
of it.

ciently short wavelengths. For the Arrhenius-type a-c
growth rate (2.1) the effect of curvature can best be
thought of as resulting in an increase of the activation en-
ergy.2>

As mentioned above, we consider a two-dimensional
version of the Gilmer-Leamy heat-conduction equation®®
(see Sec. IV for details). In general, we find that our
model has steady-state solutions which describe a
straight-line a-c interface parallel to the laser slit advanc-
ing into the amorphous region at a constant velocity
(which equals the laser scan speed V). If the laser input
power is too small and the substrate temperature T° is too
low, then it may not be possible to maintain the interface
at a sufficiently high temperature for it to advance at the
steady-state velocity ¥V, and continuous crystallization
cannot occur. On the other hand, if the substrate tem-
perature is too high, then self-sustained growth at a
steady-state velocity Vgs>V; may be possible; in this
case the front will outrun the laser. Other cases are possi-
ble, but in our discussion of laser-driven growth in this
section, we concentrate on the most common experimental
situation where substrate temperatures are below T*.

We now summarize our main conclusions regarding the
stability of these steady-state solutions (assuming that
they do exist), based on a linear stability analysis similar
to that of vSW, but generalized to allow for fronts with
periodic variations with wave number k along the inter-
face; their one-dimensional analysis corresponds to k =0
in this work. Details of the analysis are given in Secs.
IV—-VIIL

A. Parameters a and B

The stability of self-sustained as well as laser-driven
steady-state solutions depends mainly on the value of the
parameter

L VB
c Vl

vt

P 3.0

a

I

vh=v,

Here L is the latent heat released in the a-c transition, c is
the specific heat,”® and 8V®/3T? is the derivative of the
growth-rate curve Vo=V T?) giving the growth rate of
the ¢ phase as a function of T [See Fig. 1(a)]. In the case
of self-sustained explosive crystallization, ¥ should be
replaced throughout by the steady-state growth velocity
Vss. The dimensionless parameter 8 (0<fS< 1) is a mea-
sure of the importance of heat loss to the substrate. In
fact, the combination LV'B/c is the steady-state increase
of the boundary temperature over that of the substrate
due to the latent-heat release. (In the presence of a laser,
the true steady-state increase of the boundary temperature
is the sum of this term and the contribution from the
laser.) Hence, a is a dimensionless measure of the steep-
ness of the growth-rate curve. In our model, we find for
B the explicit result

B=V?/(V}+4DT), (3.2)

where D is the thermal diffusivity of the deposited ma-
terial (denoted k in our earlier work’®3!) and T is a
phenomenological rate constant connected with heat loss
to the substrate (see Sec. IV). Note that indeed S—1 for
I’ —0, as indicated above.

For the Arrhenius-type V% T?) dependence (2.1), we ob-
tain for a

a=Lvp—2_, (3.3)
4 (Tss)
where Tls’s is the steady-state boundary temperature.
Thus in this case, a is completely determined by experi-
mentally accessible parameters. In particular, if heat loss
is negligible, we obtain the simple result

L_©Q
== I'—-0, B—1). 3.4
a= ey (T—0 8= (3.4)

From our linear stability analysis, we find that the
steady-state solutions are unstable when a exceeds a criti-
cal value which typically lies between 2 and 4. We will
discuss these instabilities in some more detail in Secs.
IIIB and IIIC, and then in Sec. III D, we will compare
our results with experimental observations on the basis of
Eq. (3.4).

B. Self-sustained explosive crystallization

Our results for the values of the physical parameters at
which the steady-state solutions in self-sustained explo-
sive crystallization become unstable do not differ very
much from the earlier predictions of vSW for the propa-
gation of a straight front. The result of the linear-
stability analysis of this paper is depicted in Fig. 4(a),
where the parameter a, related to the steepness of the
slope of the growth-rate curve, is plotted along the hor-
izontal axis and the “heat-loss parameter” B is plotted
along the vertical axis. In the absence of curvature
corrections, the solid and dashed lines mark the szability
boundary, i.e., all steady-state solutions having parameter
values to the left of these lines are stable.

Note that for a given sample, the possible values of a
and B characterizing steady-state self-sustained growth
are related through the growth-rate curve, so that the
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FIG. 4. Stability plot for self-sustained explosive crystalliza-
tion, with a and B defined by Egs. (3.1) and (3.2). The dashed
curve separates always-unstable steady states below it from pos-
sibly stable ones above it. (a) Solid and dotted lines are the
boundaries at which morphological instabilities occur for zero
and infinite capillarity, respectively. (For finite d, the stability
boundary lies between these lines.) The dashed-dotted line
marks the limit of instability against one-dimensional (k =0)
perturbations. Stable steady states lie to the left of the solid
(dp=0) or dotted and dashed-dotted (dy= ) lines. (b) Solid
curve represents the possible steady states for a given material.
As T?is increased, points representing the stability of the steady
states move in the direction shown by the arrows. Apart from a
pathological solution at small B (cf. Ref. 39), there are no
steady-state solutions for T°< T¢. At T°=T¢ steady states ap-
pear whose stability is represented by a point in (b) near ¢;. The
value of a of the steady-state solution whose stability changes
[upper branch of the solid line in (b)] decreases for increasing
values of T°.

steady states lie on a curve in the stability diagram. Such
a “material curve” is sketched in Fig. 4(b). Experimental-
ly, one selects a particular steady state by adjusting the
substrate temperature T°. Theoretically, the steady-state
interface temperature and velocity are determined?®3! by
the intersection of the growth-rate curve and a curve [Fig.
1(c)] representing steady-state values in the V’-versus-7T?
diagram. For TP below a threshold temperature T, the
curves in Fig. 1(c) do not intersect and self-sustained
crystallization is not possible. For T° above T° there are
typically two intersections,® which merge when T° ap-
proaches T° from above. In this limit the stability of the
two intersections is represented by points in the stability
diagram, Fig. 4(a), approaching the dashed line
a=1/(1—p). For T°> T¢, the lower intersection of Fig.
1(c) is represented by a point moving down on the materi-

al curve from the point c;; this steady-state solution is al-
ways unstable. The second, interesting steady state, which
may be stable or unstable, corresponds to a point on the
material curve moving up from ¢, as T° increases.

In the absence of curvature corrections the stability
boundary for the latter steady-state solution is the solid
line in Fig. 4(a). To the right of this line, where a exceeds
some critical value between 2 and about 4, there is an os-
cillatory instability just as was found before in the one-
dimensional model: T° and V? vary periodically in time.
However, the new feature of our calculation is that the
solid line represents a finite-wave-number oscillatory in-
stability, so that slightly beyond the threshold, one has

Vb=Vo+ Vysin(wt)sin(ky) , 3.5

and similarly for T°. Note that this line lies to the left of
the dashed-dotted line, which represents the instability for
straight fronts studied by Shklovskii*® and vSW.3%3!
These solutions represent a “wavy” interface with oscilla-
tory speed and temperature, with different positions y
along the interface being out of phase with one another.
It is natural to associate the occurrence of this thermal in-
stability with the existence of the wavy structures seen in
the experiments of Wickersham et al.®®

The solid line actually represents the stability boundary
only in the special case that there is no curvature depen-
dence of the growth rate. In our calculations, we have al-
lowed for such a dependence by introducing the parameter

_—1 av?
D=T0 ok

where « is the curvature of the interface, taken to be posi-
tive if the ¢ phase bulges into the a phase. Since with this
definition V? will decrease with k, the arguments given
above require that d, be positive.

For increasing values of d, the finite-wave-number in-
stabilities are suppressed more and more toward the dot-
ted line in Fig. 4(a) which represents the case dy= w0, so
that for sufficiently large d, the k =0 instability line of
Shklovskii?® and vSW becomes part of the stability boun-
dary. Thus within the context of our model, the k =0 in-
stability (describing a straight a-c boundary acquiring an
oscillatory speed) will only be observed for large d,,.

It is physically likely?®>? that the curvature dependence
of V? enters via a curvature correction to the activation
energy. This implies that d, is proportional to Vgg so
that the physically realized stability boundary approaches
the dotted dy= « line in Fig. 4(a) for large velocities. In
this case the k =0 line becomes the stability boundary in
the upper part of the diagram (8—1).%

The physical origin of the oscillatory instability was
discussed by vSW. For a boundary moving with an aver-
age velocity V,,, only the heat released within a distance
of the order of d,,=8D/V,, of a given point can con-
tribute to the temperature at that point. It follows that
the wavelength A, of the pattern along the direction of
propagation (the distance traveled by the interface during
one oscillation) is of the order of d,,,

andm =8D/Vav . (3.7)

(3.6)

Oscillatory velocities can arise because an increase in the



30 SELF-SUSTAINED AND LASER-DRIVEN CRYSTAL GROWTH 1403

growth rate will cause the boundary to move ahead so
rapidly that the heat diffusion from positions not immedi-
ately behind the interface (more than +d,, away, say) can-
not keep up. Then T and the front velocity drop, after
which more heat diffuses to the boundary, so that T and
V® can rise again.

These same physical considerations permit a qualitative
understanding of the wavelength A, along the interface of
the finite-k instability predicted by our analysis. Since in
finite-k instabilities the velocities at two positions a dis-
tance %k =m/k apart are out of phase with one another,
one expects A, to be at least larger than d,, ~A,. We
have calculated the aspect ratio A, /A, for the mode that
first becomes unstable as a function of d, and B. For pa-
rameter values close to the stability boundary, this mode
will dominate the oscillatory component of the solution.
The results are plotted in Fig. 5 and confirm our argu-
ment that the aspect ratio should typically be of the order
of =, although large values of d, can suppress the aspect
ratio below this value.

Although it does not follow directly from the linear sta-
bility analysis, it should be clear from the above discus-
sion that one generally expects the amplitude of the wavy
structure along the interface to be less than d,,, because
otherwise it would not be possible for points bulging for-
ward into the a phase to move temporarily faster and thus
to have a somewhat higher boundary temperature. For
this reason, and because the aspect ratio stays finite in the
limit dy—0, we believe that it is not necessary for the sta-
bility of the moving boundary to take the curvature
dependence of the growth rate into account via the pa-
rameter do. This indicates that an expansion involving
only a few k modes would suffice for an analysis of the
nonlinear crescentlike patterns observed by Wickersham
et al®® In contrast, the Mullins-Sekerka instability on
the right-hand side of the growth-rate curve is suppressed
at short wavelengths only by such capillary effects. As a
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FIG. 5. Aspect ratio Aj;/A, for self-sustained growth near the
morphological instability curve. The dashed curve marks the
appearance of morphological instabilities with a=1/(1—p).

result the dendrite-like patterns beyond this instability re-
quire a much more complex treatment.

C. Stability of laser-driven steady-state solutions

We now briefly discuss the stability of laser-driven
steady-state solutions. The presence of the laser intro-
duces another parameter,
dT;
dx

—2Dc
LV, VB
where T (x) is the temperature profile introduced by the
laser and whose derivative is evaluated at the steady-state

interface position x®. To understand the meaning of this
parameter, we note that for B~1, we may write*!

—1
dT, dTy,
dx dx

R , (3.8)

b

X=X

R~2

’ (3.9

x=xb+

x=x"

where dTy,/dx is the derivative of the steady-state tem-
perature profile induced by the latent heat alone and
evaluated just in front of the interface. This derivative is
usually quite large and under most experimental condi-
tions greater than or of the order of dT; /dx. Hence, R is
typically of order unity.

From the linear stability analysis, we find that for
R <1, the stability diagram does not differ qualitatively
from the one given above for self-sustained explosive
crystallization, although the onset of the instability is
shifted towards larger values of a for increasing R (for
explicit results, see Fig. 6). In analogy with the oscilla-
tions occurring for self-sustained explosive crystallization
for small damping, this leads to the prediction that the
laser-driven steady-state propagation becomes unstable
when a exceeds some threshold value around 4. Slightly
beyond the threshold, the interface will oscillate periodi-
cally back and forth on the steep side of the laser profile.

To control the parameters experimentally, note that the
values of a and B appropriate to a laser-driven steady

1
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UNSTABLE

©o
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1 B

FIG. 6. Stability plot for laser-driven crystallization for small
but finite capillarity do, with a, 3, and R defined in (3.1), (3.2),
and (3.8). Steady states represented by points in front of the
surface (smaller a) are linearly stable.
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state are related through the growth-rate curve, as in the
case of self-sustained growth discussed above. In the
laser-driven case, however, their values are set by the laser
velocity ¥V rather than the substrate temperature: V
determines B directly via Eq. (3.2) and also fixes the
operating point on the growth-velocity curve as illustrated
in Fig. 1(a), thus determining a. Note that a and B still
lie on the same curve as for self-sustained growth. In gen-
eral, from Eq. (3.9), R is increased by decreasing the sub-
strate temperature. However, if the laser power is so low
that the interface is actually within the area illuminated
by the laser, then it will also affect the value of R. If, on
the other hand, it is sufficiently high that the interface is
not actually within the illuminated area, then the laser
temperature profile T (x) is exponential at the interface,
so that R will simply be proportional to T} (x?), which is
completely determined by ¥; and the substrate tempera-
ture. Thus, R will be independent of the laser power, and
the theoretical parameters a, 3, and R will depend only
on the laser velocity and substrate temperature.

D. Comparison with experiments

As discussed above, under most experimental condi-
tions our theory predicts that steady-state solutions will be
unstable when the stability parameter a exceeds some
value between about 2 and 4. In Table I we estimate typi-
cal values of a for Si, Ge, and Sb. Although the activa-
tion energy E, of Sb is not known very precisely, Table I
shows that Sb is likely to be roughly in the range where
the instability sets in and where it should be possible to
see the oscillations predicted by our theory most clearly.
It is therefore reasonable to associate the periodic varia-
tions in Sb films seen by Coffin and Johnston? with the
occurrence of this instability. Unfortunately, we have
been unable to find data for L/c and E, of GaSb or
(In,Ga)Sb, the materials for which Wickersham et al.”~?
observed both the parallel and the wavy surface undula-
tions. If the occurrence of these structures is indeed asso-
ciated with a value of a of the order of 3, then (In,Ga)Sb
should have a rather low activation energy for the a-c
transition or (less likely) a small value of L /c.

Experimentally, the surface roughness is found to de-
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crease for increasing values of T°. vSW associated this
behavior with a leveling off of the growth-rate curve. A
much more convincing explanation, however, is based on
the observation that the stability parameter a o« (T%)~2 de-
creases for increasing values of T and hence T° [cf. Eq.
(3.3) and Fig. 4(b)]. Therefore, an increase in T° will, in
general, result in a decrease in the amplitude of the oscil-
lations and, eventually, a stabilization of the steady-state
growth.

Table I also shows that Si and Ge have a large a and
hence are far in the unstable regime; thus steady-state
growth of the ¢ phase will normally be impossible for
these materials. Although we have not performed de-
tailed numerical calculations to investigate what would
happen this far in the unstable nonlinear regime, it is clear
that in such cases our model would show that the a-c¢
boundary would quickly speed up at first, then outrun the
laser beam, and finally stop when it lacks the support
from the laser heat (experimental conditions are such that
self-sustained growth is not possible). Crystallization fi-
nally starts again when the laser catches up to the boun-
dary region. Such a behavior would be consistent with the
experimental observations by Auvert et al.*>~?" on Si as
well as with those of Zeiger et al.*? on Ge, and is similar
to what Zeiger et al.*? found in their theory, which may
be viewed as the a— o« limit of our work.

It must be kept in mind, however, that because of the
large activation energy, the direct a-c transition in Ge is
never rapid enough, even at boundary temperatures of
1000 K, to give the experimentally observed growth rates
of the order of meters per second. Thus Gilmer and
Leamy?? suggested that there probably is a liquid zone in
between the a and c phases (a-Ge is believed to melt at
about 970 K). This prediction was verified by Leamy
et al.*? The crystalline Ge then grows from a highly un-
dercooled melt, probably on the right-hand side of the
growth-rate curve [Fig. 1(b)], thus giving the possibility of
Mullins-Sekerka—type instabilities rather than those stud-
ied in this paper. The situation for Si is somewhat less
clear—although a-Si has a melting temperature T some-
where between 1335 and 1460 K,* Auvert et al. ap-
parently have sometimes observed direct a-c transitions
with rather large growth rates near these temperatures,

TABLE 1. Experimental values for various parameters in the definition of the stability parameter a.
The values of T? for Sb and Ge were estimated as the sum of L /c and the substrate temperature used
in Refs. 2—6 and 49, respectively, and therefore tend to be too large in view of the neglect of heat losses.
The value of 1300 K is taken for Si because T needs to be of this order to obtain growth rates of cen-

timeters per second.

L ¢ L/c E, Q=E,/ky T
(cal/g) (cal/gK) (K) (eV) (K) (K) a
Si 842 0.2° 420 2.7° 31300 1300 7.8
Ge 404 0.09° 444 1.5¢ 17 400 900 9.5
Sb 20 0.06° 333 0.09—0.27° 1040—3130 600 1-2.9

2Reference 43.
®Reference 47.
“Reference 33.
dReference 46.
“Reference 48.
fReference 6.
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while Thompson et al.** find evidence for the presence of
a liquid layer. In Sb, on the other hand, the experiments
of Bostanjoglo and Schlotzhauer® gave no evidence for the
presence of a liquid zone.*’

Thus, if it is possible to find the direct a-c transition
(i.e., no liquid zone) in laser-driven explosive crystalliza-
tion of high-activation-energy materials, this occurs far in
the unstable regime. Lower-activation-energy materials,
such as Sb, however, can be close to the threshold and
should show the behavior discussed above. Hence, these
are more appropriate candidates for an experimental test
of our ideas, using, e.g., the time-resolved transmission-
electron-microscopy (TEM) technique of Bostanjoglo and
Schlotzhauer.®

IV. THE MODEL AND ITS STABILITY EQUATION

To model the laser-driven crystallization process, we
think of a laser slit, which defines the y direction, being
moved at a constant velocity ¥V, perpendicular to itself in
the x direction as sketched in Fig. 3. We will work in a
frame of reference moving with the laser. The power den-
sity provided by the continuous-wave laser then depends
only on x, and we denote it by J(x). The a-c interface is
located at x =x%(y,t) relative to the laser. We consider
only heat diffusion in the film, and assume that the film
is sufficiently thin that the diffusion is essentially two-
dimensional. Heat loss to the environment (including the
substrate) is treated crudely using a phenomenological
damping term. In the moving frame of reference, heat
diffusion in the layer is described by

OT _ w2 OT .t o
L —DVT+¥, 31T -T)
+Jg—) +qV8(x —x(3,1)) . @.1)

Here T(x,y,t) is the temperature of the layer, D is its
thermal diffusivity and c is its volumetric specific heat,
both of which we take to be the same in the amorphous
and crystalline phases,®® d is the thickness of the layer,
q =L /c, where L is the latent heat of crystallization, TO
is the substrate temperature, and I is a phenomenological
constant which accounts for heat loss to the environment.
Finally,
by, o 0x°

V=V (4.2)
is the velocity of the interface relative to the substrate. As
discussed above, we assume that this interface velocity de-
pends on the local boundary temperature and curvature,

VO=VYT(x%y,t),y,1),k)=V¥Tk) , (4.3)

where the graph of V® versus T has the general form of
Fig. 1(a), and

21-3/72

3%xt ox?

o ay
is the curvature of the interface, defined to be positive

when the crystalline region bulges into the amorphous re-
gion.

(4.4)

K=

A simple steady-state solution to this problem is one in
which the interface is a straight line parallel to the laser
slit, moving at a constant speed, which must be ¥, with
respect to the substrate. This solution is

(4.5a)
T (x,y,t)=Tss(x)=T°+ Ty (x)+qV; Gsslx —x3s) ,
(4.5b)

xb(y,t)=x25 =constant ,

where
Gss(x)=(V} +4DT)~ 12

Vi (VZ+4DT)'72
Xexp | =S — 5D [x | (4.6)
is the steady-state Green’s function for diffusion in the x
direction in the moving frame, and

1 ®© ’ ’ ’
TL(x)=—7 S Gsslx —x")M(x")dx 4.7)

is the part of the temperature field due entirely to the
laser.® The interface position xJg is determined by the
self-consistency requirement that the interface velocity 144
must be equal to ¥;. To find it, we must first solve

VoTEs, k=0)=V, (4.8)

for the steady-state interface temperature T b =Tss(x59)
as shown in Fig. 1(a), and then, from Eq. (4.5b), solve

Ty (x%s)=Ts—T°—qVB 4.9)

for xZ, as shown in Fig. 7, with B defined in Eq. (3.2).
As we can see from Fig. 7, there can be no steady state if
TO is either so low that T —7T°—gV/B is greater than
the maximum value of T,(x) or so high that
T8 —T°—qV/B is negative. In the former case there sim-
ply is not enough energy being fed into the system to crys-
tallize the sample completely at the desired rate. In the
latter, there is a steady-state self-sustained solution in
which the interface moves faster than V;, so that it runs
away from the laser.

When conditions are such that a laser-driven steady

T

e

Tgs -T%-q '\/,E

xb X
FIG. 7. Temperature profile T.(x) produced by the laser.
The steady-state interface position xJs is found by solving Eq.
(4.9), where T% is found from the growth-rate curve as shown
in Fig. 1(a).
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state exists, we investigate its stability by calculating the
evolution of an infinitesimal perturbation of the form

.VLk Vi ;
S0t op?

.1
2D R (4.10a)

x5y, 0)=xL +eexp

lL 112,
—=ky + —=
207 ot

.10
°D (4.10b)

T (x,y,t)= Tss(x)-i-e’f(x)exp

Here, k and @ =w(k?) are the dimensionless wave number
and growth rate of the perturbation. As shown in Appen-
dix A, o must satisfy

[@+a(14+R)+dok?)(14+Bk*+2B0) *=alw+1) ,
(4.11)

where the square root has a positive real part and the di-
mensionless quantities a, B, dy, and R are defined in Egs.
(3.1), (3.2), (3.6), and (3.8). The quantity B, which lies be-
tween O and 1, measures the importance of heat loss: B
near 1 means small I" or large V;. The slope of the
growth-velocity curve at steady state is given by a. Simi-
larly, d, measures the change in interface velocity due to
curvature of the interface. We have argued above and will
verify below that d, should be positive for our choice of
the sign of k. Finally, R measures the slope of the laser
temperature profile at the interface; it will also be posi-
tive. If there is any k for which w(k?) satisfying the sta-
bility equation (4.11) has a positive real part, then the
steady state is unstable.

At this point it is worthwhile to stress the distinction
between the stability boundary, which is the surface in a-
B-R space at which the steady-state solution becomes un-
stable, and the critical surface (or critical curve in the a-8
plane, when R is zero) for a given k, at which the steady-
state solution, which may already be unstable against per-
turbations with other wave numbers, becomes unstable
against those with the given k. Critical surfaces are locat-
ed by simply setting Re(w)=0 in the stability equation
and eliminating Im(w) with k held fixed, while the stabili-
ty boundary is the envelope of the set of critical surfaces
for all k.

If we square both sides of the stability equation, we ob-
tain a cubic polynomial in @ with real coefficients. Thus
there are at most three solutions or branches of w(k?),
corresponding to modes of disturbance of the interface
which decay or grow linearly at short times. These modes
can include at most one oscillatory mode, which would
show up as a pair of complex-conjugate solutions.

Note that the only feature of the laser temperature pro-
file which appears in the stability equation (4.11) is R, a
measure of its gradient at the interface. Setting R =0 is
then equivalent to considering a problem in which the
laser is absent, which is that of self-sustained crystalliza-
tion, provided that ¥, which appears in the definitions
of a, B, and d,, is replaced by Vgg, the steady-state veloci-
ty of explosive growth. The steady-state problem has a
symmetry which is destroyed when R is nonzero, namely
that the solution is unaffected if the entire system is
translated in the x direction. This symmetry is manifest-
ed by the fact that when R vanishes, the stability equation

is satisfied by @ =0 with k =0. In fact, it is easy to see
that when a and d, are positive, the stability equation
will allow =0 only when R =0. In this case, one of the
three possible modes is the translation mode. In addition,
another mode has o real and increasing through O as « in-
creases through 1/(1—p), which then forms part of the
stability boundary for the one-dimensional self-sustained
situation. As pointed out in Sec. III, this part of the sta-
bility boundary is not of great importance, as it separates
two different types of steady-state solutions that may ex-
ist, one of which is always unstable.’>3! The interesting
one that may be stable or unstable is represented in the
stability diagram by points to the left of the curve
a=1/(1—p). If k or R is increased from zero, the linear
growth rate of the first unstable mode will acquire an
imaginary part and so the mode will be oscillatory.

As we have discussed before (Sec. III) the parameter d,
must be positive (or zero) for physical reasons. One can in
fact show explicitly from Eq. (4.11) that if d, were nega-
tive, all steady-state solutions would become unstable
against short-wavelength perturbations. The reason for
this is that if the interface curves, then the part having
positive curvature, i.e., where the crystalline region bulges
into the amorphous region, is also farther from the laser.
The usual stabilizing effect is still present: Since this
leading part of the interface is farther from the laser, it
becomes cooler than the rest of the interface and so tends
to slow down, thus allowing the trailing part of the inter-
face to catch up to it. However, if d, were negative, then
the positive curvature would increase the growth velocity
of the leading part of the interface. This effect is destabi-
lizing, and for sufficiently large curvatures or short wave-
lengths it would overcome the stabilizing decrease in ve-
locity due to the lowered interface temperature. Thus
negative dy, would make the system unstable against all
disturbances of sufficiently short wavelength. This is
unphysical—capillary effects should stabilize a system
against short-wavelength perturbations, not destabilize
it—and so we conclude that d, must be positive or zero.
It is worth noting that for growth-rate curves of the type
of Fig. 1(b), dy>0 is inconsistent with the statement,
sometimes encountered in the literature, that the growth
velocity depends only on the difference between the inter-
face temperature and the equilibrium coexistence tempera-
ture. For positive curvatures, the equilibrium temperature
is lowered by the Gibbs-Thomson effect, so according to
this statement the entire curve of intrinsic growth velocity
versus interface temperature would then be shifted to the
left. This would correctly decrease the growth velocity on
the right-hand side of the curve, but would raise it on the
left-hand side where the curve slopes upward, thus render-
ing the system unstable. The more precise statement
which is intended is that positive curvature lowers the in-
trinsic growth velocity (cf. also Refs. 29 and 32).

In the following sections we seek the stability boundary
of the steady-state solution. We will look first at two spe-
cial cases: k =0, for which the disturbances preserve the
straight-line interface, and which then gives the stability
boundary for a one-dimensional system, and R =0, for
which the laser is absent. We then consider the general
case. To locate the stability boundary, we first note that
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on the critical surface for a given k, w(k) must be purely
imaginary, since Re(w) must be positive on one side of the
surface and negative on the other; as noted above, we can
have =0 only when R =0 and k =0. We then locate
the critical surface by setting

0=iQ, (4.12)

and then writing the radical in the stability equation as
Q +iP, where Q and P are real and Q satisfies
Q > (1+BkH!2. From (Q +iP)*=1+Bk*+2Bw, we ob-
tain

Q=QP/B=0(Q*—1-Bk?)'?/B,

which we then use to eliminate Q in favor of Q (Coriell
and Sekerka®! have used a similar method to study oscilla-
tory instabilities in rapid directional solidification of a
mixture). This yields two equations—the real and
imaginary parts of the stability equation—which we solve
for B. The result is

g Q=0 _ 0(9—1)
(1+R)a+dok® [(14+R)a+(14dx)k?]Q0 —a

(4.14)

(4.13)

By cross-multiplying we can obtain a quadratic equation
for Q, whose solution then yields the critical surface for
given k. This is useful for a one-dimensional system,
whose stability boundary is just the k =0 critical surface.
However, it is not the best approach for a two-
dimensional system, for which we use other techniques to
locate the stability boundary. Note that for Q >a the
middle member of (4.14) is negative and so, since 8 must
lie between O and 1, there can be no solution. Since

I
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Q > (14+Bk*)12, this implies that no critical curve can
have 0 <a <1; thus for a in this range the steady-state
solution is linearly stable. Note also that the critical sur-
faces can go through =0 only when Q@ =a=1.

For negative a, corresponding to growth on the right-
hand side of a growth-rate curve of the form of Fig. 1(b),
the stability equation (4.11) shows that the steady state is
unstable for all R >0. To see this, we solve it for a, find-
ing

a=(o+dok?)(1+Bk2+2Bw)'?
X[@+1—(1+R)(1+Bk2+2Bw)/*]7 1.

If we imagine varying o with k =0, we see that for
R >0, a decreases from 0 to — o« as w increases from 0O
to the positive zero of the denominator. Turning the ar-
gument around, we see that for any negative a the stabili-
ty equation has a positive real solution @ corresponding to
an unstable mode (with k =0). This is to be expected on
physical grounds, for if the interface moves slightly far-
ther from the laser than its steady-state position, then its
temperature drops slightly; if a is negative, this causes the
interface to speed up and move even farther ahead of the
laser. For self-sustained growth we set R =0, and the
above argument shows that the steady state is unstable for
a < —2dy/B, which agrees with the results of Temkin and
Polyakov.*? It is also possible to show from (4.14) that
there are no oscillatory instabilities for a <0.

(4.15)

V. ONE-DIMENSIONAL LASER-DRIVEN SYSTEM

When we set k =0, so that we restrict our attention to
one-dimensional perturbations, which leave the interface a
straight line, the procedure outlined above yields

B=({(1+Rc?+4(1+R)a—[1+4(1+R)*1}+[(14+R)a—1]{[(1+R)a—3?+8[(1+ R —11}/})[8(1+R)’a] " .

(5.1
Using (4.13), we then obtain the frequency of the unstable oscillation,
2
nZ:——Z(a‘j_ o (1+RPa?>—4(1+R)a+[1+2(1+R?]+[(1+R)a—11{[(1+R)a—3+8[(1+R1?—1]}!/2) . (5.2)
r
N iy iy e el i oy sz T

frequency is close to this Q. Thus in one cycle of the os-
cillation the interface will have moved a distance of about
Ay=47D/V Q [cf. Eq. (3.7)]. As argued in Sec. III, this
should be the wavelength of the surface structure left
behind. In fact, a nonlinear analysis®? of the motion of
the interface when R is small and a and B are close to the
stability boundary (with 8 < %) confirms this expectation.
When R is large, we find

_(@@—4) +a(@®+8)!?
= 8aR

B (5.3)

and

From this we see that when the steady-state interface
“rides” on a steep-sloping laser temperature profile, an in-
stability can only be triggered by small B, meaning low
laser velocity or high heat-loss rate, or by large a, mean-
ing a steep growth-velocity curve. Moreover, when the in-
stability does set in, it is with a very high frequency, so
that the surface structure it produces has a very short
wavelength. This is reasonable, since such a laser profile
acts somewhat like a stiff spring, in the sense that small
displacements of the interface from its steady-state posi-
tion result in large changes in its temperature, and hence
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large restoring changes in its velocity. An instability
occurs when the fractional change in velocity thus pro-
duced is so large—either because ¥ is small or because
dV?/dT? is large—that it overcompensates the perturba-
tion, so that the interface is pushed to the other side of its
steady-state position.

In the opposite limit of small R we recover the results
of vSW: the stability boundary is given by

@?—1_ (a+1)(@®—4a+1)

R, 3 5.

- tala—3) a> (5.5a)

B~ %+%R1/2, a=3 (5.5b)
a—1_ (@=D@a=5)p o (5.50)
a a(3—a)

with the imaginary part of the linear growth rate at the
boundary given by

172

a—3 a’—4a+5
o atl @—3) R|, a>3 (5.6a)
R4, a=3 (5.6b)
a[2R/(a—1)3—a)]'?, a<3 (5.6¢)

Thus for small gradients of the laser temperature profile,
the curve along which the steady-state solution becomes
unstable against one-dimensional perturbations moves into
previously stable regimes for 3 <a<2+V3 or
+ <B<V3/2. In this intermediate range of parameters it
is then easier to destabilize the interface when it is driven
by the laser at small R. In addition, the instability which
has w real when the laser is absent acquires a slow oscilla-
tory component for small R. This is because this instabil-
ity is caused by a balance of stabilizing and destabilizing
effects, while the presence of the laser introduces another
stabilizing force which tends to overcompensate changes
in the interface velocity.

One should bear in mind that the curve defined by (5.1)

is not necessarily the stability boundary for a two-
J

dimensional system, because the system could be unstable
against finite-wavelength perturbations even if it is stable
against those with k =0. As we will see in Sec. VII, this
does in fact occur for R not too large.

VI. TWO-DIMENSIONAL SELF-SUSTAINED GROWTH

To examine the possibility of morphological instabili-
ties occurring in self-sustained growth (with no laser
present), we set R =0 in the stability equation while keep-
ing k arbitrary. vSW investigated the stability of the
steady state against k =0 perturbations and found that
the critical curve at which the system becomes unstable
against these perturbations is given by (5.5) with R =0.
We can find the critical curves for arbitrary k by setting
R =0 in (4.14) and eliminating Q. The stability boundary
is given by the envelope of the resulting critical curves,
since stability requires that there be no unstable modes.

For large k, (4.14) becomes

Qa—Q) Q*—1
~ ~ , 6.1
b dok?  * (14dg)k? €D

so that Q will approach a finite value and B 1/k2
Thus, large-k instabilities are unimportant since they only
set in at very small (3, for which the system is already un-
stable against k =0 perturbations.

We must now investigate the possibility that the system
may be stable against perturbations with large k and those
with k =0, but unstable against those having some inter-
mediate k. To check this, we first examine the behavior
of the critical curves for small k. In this regime, we ex-
pect from (4.14) that Q will approach the point where
Q(a—Q)/a and Q(Q+1)/a intersect, namely
Q =(a—1)/2. This, in fact, is correct provided a > 3, but
is invalid for a < 3 because the resulting value of Q would
be less than 1, while Q must be greater than 1 in order for
Q to be real. Instead, for small k£ with a<3, Q ap-
proaches 1, where both the numerator and denominator of
the last member of (4.14) are small. An expansion in
powers of k then leads to

a+1 (a—1)—dola*—4a+1) ,
4a (@—1)+ ala—3) k*|, a>3 (6.2a)
172
2 1+d0
B~ §+l > [k, a=3 (6.20)
a—1 (a—2)+do(2a—5) ,
a ‘H_ a(3—a) ko <3 (6.2¢)
and
172 2 2
_ —1)*+2dy(a*—4a+5)
a—3 (4 laz D +2dola _ k2|, a>3 (6.3a)
Q a+1 2ala—3)
271 4+d0) /414 12, a=3 (6.3b)
[ala—1+2dy)/(a—1)3—a)]'? |k |, a<3. (6.3¢)



From this we see that there are, in fact, ranges of the
growth parameters a and B for which the steady-state
solution is stable against k =0 perturbations but unstable
against those with some small but finite k. This occurs
where the coefficient of k2 in the expansion of 3 in (6.2)
is positive: from a=(2+5d,)/(1+2d,), which lies be-
tween 2 and <, to the zero (with a>3) of
doa?—(1+4dy)a+(14d,), which decreases from infini-
ty for dy—0 to 2+V'3 as dy— . Note that the critical
curve for k =0 reaches the limiting value B=1 when
a=2+V'5; for this value of @ we see that the critical
curve for small k lies above that for k =0, provided that
dy<(14+V'5)/2=1.61...; otherwise it lies below the
k =0 curve. Thus for d less than this value, the inter-
face first becomes unstable at some finite k as o is in-
creased with B=1, while for d, greater than this value,
the first instability to set in at B=1 has k =0. Most ex-
periments find interface velocities that are large compared
to (DT')"2, and so have B near 1. Thus we see that for
sufficiently strong capillarity (which we expect to have in
the limit Vgg— o0, B—1; see Sec. III), the steady state
with B~=1 is unstable against k =0 perturbations if it is
unstable at all; for weaker capillarity, however, it may un-
dergo a morphological instability, being unstable against
some finite k but not against the kK =0 mode.

It is possible to write the exact stability boundary of the
model parametrically, using Q as a parameter. This
analysis and its result are presented in Appendix B for
general R. It is much simpler and more illustrative to
look at the case dy=0, which is qualitatively similar to
the general case [for dy < (1 +1/5)/2], and for which the
characteristics of the stability boundary can be written ex-
plicitly. For R =0, the critical curve for a fixed k is
found by solving

p— 2—.
p=Lla=0 __00 -1 (6.4)
a (a+k*)Q —«a
The stability boundary occurs where the critical B for

fixed a has a maximum as a function of k. This is found
by setting

_ |98
0= [ak2

_a-20 0= 3021
o a (@a+k?)Q —a

_ Q(Q*—D(a+k¥Q'+0]
[(a+kH)Q —al?
(6.5)

where Q' denotes (0Q / 8k2)a, p- From the middle member
of this equation we see that this maximum is attained for
Q =a/2 (the alternative Q'=0 leads to the uninteresting
results Q =1, =0, and a=1). Substituting this into the
middle member of (6.4) we find

B=a/4, (6.6)

Ql

and the right member then gives
k?=2a—2)/a ‘ (6.7)

for the wave number of the perturbation against which
the system is unstable at the stability boundary. We then
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find, using (4.13), that the imaginary growth rate of this
perturbation is

Q=Vala-2). (6.8)

If, near the onset of this instability, the interface restabi-
lizes into a sinusoidal wave of dimensionless wave number
k propagating with a velocity which has an oscillatory
component of dimensionless angular frequency (2, then
the surface pattern it leaves behind will have an aspect ra-
tio

A
M _ 47D ﬂ:_k_=£2_ (6.9)

)\,J_ o VLQ VLk Q a

which varies from V2/2 to V2/4 along the part of the
stability boundary (2 <a <4 or % <B<1) for which mor-
phological instabilities occur.

VII. TWO-DIMENSIONAL LASER-DRIVEN GROWTH

In the general case of nonzero R and k, the stability
boundary can also be located parametrically as in the spe-
cial case R =0. The details of the procedure are present-
ed in Appendix B. Again, the results are much easier to
appreciate in the simple case do=0, although, as we will
see below, one qualitative feature of the stability boundary
for general d> 0 is missing in this special case. For this
case, the stability boundary can again be found as it was
in the preceding section for R =0. It is given explicitly
by

B=a/4(14+R) . (7.1)

The wave number of the perturbation against which the
steady state first becomes unstable as we approach this
stability boundary is

k?=2—4(14+R)/a , (7.2)

from which we see that the finite-k part of the stability
boundary meets the section at which k =0 instabilities
occur first at @=2(1+R) and B=+. For smaller a or B
the system first becomes unstable against one-dimensional
(k =0) perturbations. Note that the transverse wave-
length A, =47wD/V;k for the unstable perturbation in-
creases with R. The frequency of the unstable oscillations
at the stability boundary is given by

Q=vV(1+R)a[(1+R)a—-2], (7.3)

which remains finite even at a=2(1+R), provided R is
positive. This reflects the fact that for R >0, even the
k =0 instabilities are oscillatory. The aspect ratio of the
pattern that this instability would leave behind is

M _k_ 1| 2a—204m] |7

A Q0 a |(1+R[(1+R)a—2]
=t p-1/2 | (7.4)
201+R)B | 20+R?*B—1 | '

which is a decreasing function of R for fixed a or fixed B.
We see, then, from (7.1), that if the interface “rides” the
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laser temperature profile T, (x) at a location where its
slope R is large, then it is difficult to make it unstable.
This is because small excursions of the interface position
x? ahead of its steady-state value give rise to an appreci-
able decrease in TL(xb), which tends to slow the interface
down and so return it to its steady-state position. When
the interface does become unstable, the frequency of the
unstable oscillations, given by (7.3), is higher than when R
is smaller, so that k” decreases with increasing R, while
A, increases.

For nonzero dg, a new effect arises—the region of mor-
phological instabilities shrinks as the slope R of the laser
temperature profile increases. This is found by examining

]

(1+R)*=

(1+11d+33d5+31d3)+(1+6do+7d3)(1+10dy + 17d3) 1/

expression (B10) derived in Appendix B for the wave
number of the unstable mode at the stability boundary.
The zeros of this expression mark points on the stability
boundary at which the instability crosses over from occur-
ring at k =0 to occurring at some finite k. As pointed
out above, for R =0 there will be one such point at
a=(2+45dy)/(14+2d,),B=(1+3dy)/(2+5d,), and if
do>(1+V'5)/2 there will be another where « is the zero
(with a>3) of doaz—(l+4do)a+(1+d0). As R is in-
creased, these values change. If d, is less than
(14+v'5)/2, then for R =0 there is only one of these
crossover points, but another appears at S=1 when R
reaches a value given by

16dy(1+2d,)?

(7.5)

This value of R grows as (8d,)~!/2 as dy—0, and is equal to zero for do=(14V'5)/2. As R is increased further, the
region of morphological instabilities disappears completely when R satisfies

(14+R)*=[16d(1+2d)*]~'{(1410d, — 3d3 — 140d 3 —236d %)
+(145do+22d3)[(1+2do)(143do)(1+5d +22d3)12} . (7.6)

When R exceeds this value [which diverges as (8d,)~!/2
as dy—0, decreases to 0.0475 as dy—> w0, and is already
as small as 0.1 for dy~ ], there is no region of morpho-
logical instability—the first instability to occur at the sta-
bility boundary has k =0. Thus morphological instabili-
ties, which cannot be suppressed even by infinite d;, when
the laser is absent, can be suppressed by making R large
enough as long as d, is greater than zero.

APPENDIX A

To derive the stability equation (4.11), we start with the
steady-state solution (4.5) of the diffusion equation (4.1)
with the interface-velocity condition (4.3). We add an in-
finitesimal perturbation to this steady-state solution,

2

Vi Vi
—ky +——
207 ot

xb(y,t)=x’s’s+eexp 2D

)

(A1)
Vi Vi
=D ky + wt

T (x,p,t)=Tss(x)+€T(x)exp 5

b

and insert this into the basic equations, keeping only
terms of first order in e. The interface-velocity condition
(4.3) gives

Vi  aw? s V| VI,
D°= Py T”ST(XSSH_E-— 4D2k , (A2)
or
2Da
o—+dok*= VL‘/BT(xgs) (A3)

To find the correction f(x) to the temperature field, it
is convenient to change variables in the diffusion equation
from x to

z=x —x%y,1) . (A4)

The resulting equation reads
2

AT _ )iy, |82 | [T _,8x T  &T
a dy 9z? dy dzdy = 9y?
%t  oax® |aT
+ V=D ay2 + ot oz
—(T—T%+p(z+x+qV?%(2), (A5)
where
px)=J(x)/cd . (A6)

The advantage of this choice of variables is that the inter-
face is always at z =0, and so the 8 function in the equa-
tion is always localized at a known value of z, no matter
what x%y,?) does. In order to derive the stability equa-
tion from its nascent form (A3), we need the value of T at
z=0. Substituting (A1) into (AS), linearizing in €, and
rearranging yields

a7 dat N
0=D V), ——
dz? T dz T

r VLZ(k2 20)
+op K2+

dTgs 4 dp(z +x%s) N qvi

dz dz 2D

Vi o,
+E(k +2w) 0b(z) .

(A7)

The Green’s function G for this equation is the same as
Gss given in (4.6), except that I is replaced by the factor
in large parentheses in (A7),
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v, Vi(1+k2+2w)+4DT]/?
G2 (2)=[VE(1+k?*+20)+4DT']~"%exp -—iz—[ L ] |z |
2D 2D
172 172
1 B VL 14+ Bk*+2Bw
= |\ €Xx —_—-— |2 -_— . A8
Vo |1+Bk*+20 | T | 2D +‘ B | “s
Thus Tis given by
2 2
A9V ® ko nd | Vo , . .
T2)== 206l @+ [ 68—z~ | 7 (K +20)Tss(2)+p (2 +x8s) |dz
qu d *® ’ V[% ’ ’ ’
=%—we’;§w(z)+zf_wa§gw(z.-z) 2p k*+20)Tss(2)+p (2" +x55) |dz’ - (A9)
From (4.5) we see that Tgg satisfies
Tes(z)=T"+ [ .: Gss(z' —z")[p (2" +x85) +qV. 8(z")1dz" , (A10)

so that the term in (A9) involving Tss has a convolution of the two Green’s functions. However, it is easy to see (using

Fourier transforms, for instance) that this convolution is

v} w
S5 +20) [ G&(z—2)Gss(2' —2")dz' =Gs(z

—z")—G&(z—2"), (A11)
and so
~ 165 o
T(z)= qzl; wG’Scéw(Z)+5Z_ f_w {[Gss(z ——z’)_GIS‘vS"’(z ——z')][p(z'+xls’s)+qVL8(z’)]+G’s‘vs"’(z —z’)p(z,__l_xls;s)}
2
qvi d ® a7y
=—2-3wG's°’s"’(z)+qVLZ[Gss(z)—G's“s @] +—— . (A12)
Evaluating this explicitly at z =0 gives
A |47 w+1 Ty Ve o+1
T(x =xb%)=—qVP —1 =——qVB —(1—-R) | . (A13)
*=x3)=9p9 P\ pes2p0r? | dx |y~ 207 | 1Bk 28007

Substituting this into (A3) and rearranging gives the sta-
bility equation

[@+(1+R)a+dok?)(14Bk2+2Bw) *=alw+1) .
(A14)
APPENDIX B
In order to locate the stability boundary of our model,

we start with equation (4.14) which gives the critical sur-
face for a given k,

g Qa—0Q) _ 0(0%*—1) .
(1+R)a+dok?  [(1+R)a+(14+dy)k?]1Q —«

(B1)
12

The parameter Q is the real part of (1+Bk%+2iBQ)
where the linear growth rate of a perturbation of wave
number k is o =i, which is purely imaginary at the crit-
ical surface. At the stability boundary, only the perturba-
tion with a certain wave number will have Re(w)=0; the
system will be stable against all others, so their linear
growth rates will have negative real parts. This can occur
in two ways: either Re(w) vanishes at k =0 and is nega-
tive for all nonzero k, or it has a maximum value of zero
for some nonzero k and is negative for all other k. In
general, the stability boundary will consist of portions of

I
both types—one on which the instability has k =0 and
one on which a morphological instability, with nonzero k,
is occurring.

To find the k =0 portion of the stability boundary we
need only find the critical surface for k =0, for which
(B1) reduces to

g Q=0 _ 0(0*—1)
(14+R)a  [(1+R)Q—1]a °

From this we obtain parametric equations for a and B, us-
ing Q and R as parameters. Solving the last two members
of (B2) for a, we obtain

_ (14+R)2Q*~1)~0Q

(B2)

) B3
(1+RQ—1 ®2
and substituting this back into (B2) gives
2
B= 9 —1) (B4)

T (14R)(20*—1)—Q

The imaginary growth rate of the perturbation at the criti-
cal surface is found from (4.13),

_ (1+R)(20*—1)—Q
- (QZ 1 )1/2
From this we see that the parameter Q must be at least as

Q (BS)
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large as 1, otherwise Q would not be real. At Q=1 we
have a=1 and B=0, except when R =0, for which we
have a=3 and B=3 when Q =1. This occurs because in
the case of self-sustained growth, R =0, the critical curve
for k =0 includes the part of the curve f=(a—1)/a hav-
ing a < 3, at which the instability is not oscillatory but has
o real.

To find the finite-k, morphological-instability part of
the stability boundary, we look at the boundary as the en-
velope of the critical surfaces in a-f3-R space. If we adopt
this viewpoint, it becomes clear that any point on the sta-
bility boundary which is on a critical curve for nonzero k
may be located by extremizing S, say, as a function of k2
]

_ (14 R)aQ[(Q*—1)(a—2Q)—dpa(Q*+1)+20d, ] +doa(3Q*— 1)(a— Q)

subject to (B1) with ¢ and R fixed. This will fail, of
course, if the B direction is tangent to the stability
boundary, but we will find that this does not happen in
our model. Differentiating the first and middle members
of (B1) with respect to k2 gives

B | _,___a20
ok? (14R)a+dyk?

__ dQa—Q)
[(14+R)a+dk?]*’
(B6)

which we can solve for Q'=98Q /3k?% Differentiating the
last member of (B1), substituting for Q’, and solving for
k? gives

a

K B7
do(14do)Q[(Q*+ 1)a—20] B7)
We now use this to eliminate k? in (B1) and obtain a parametric equation for a,
2(14+R)Q*+doQ*[4(1+R)Q +3]+d3(6Q2—1) (BS)
a= .
(14+do)Q[(1+R)Q +2d,] ‘
Substituting this and (B7) into (B1) yields the equation for S,
(14-do)Q*[Q*+do(20%+1)]
B 0 0 (BY)

T 2(14+R)Q3+doQH4(1+R)Q +3]1+d2(6Q°—1)

We fli1nd the wave number of the unstable perturbation at the stability boundary by substituting (B8) into (B7),
which gives

k2={Q[Q —(1+R)]+do[(4Q*—1)—(1+R)Q(2Q%+ 1]} {2(1+R)Q>+doQ*[4(1+R)Q +3]+d3(6Q*—1)}

X {(14do)?Q(1+R)Q +2d,1[Q*+do(20%+ 1]} 7' . (B10)
Finally, the imaginary growth rate of the perturbation is obtained from (4.13),
Q2={Q(1+R)Q —1]1+do[3(1+R)Q*—(2Q2+ 1]} {2(1+R)Q*+doQ[4(14+R)Q +3]1+d5(6Q%—1)}?
X {(14do)Q[(1+R)Q +2do][Q*+do(2Q*+ 1)]?} 1. (B11)

In order for these expressions to give us part of the stability boundary, the values of k? and Q? coming from (B10) and
(B11) must be positive. Expression (B11) is in fact positive for all @ >1 and R >0, but (B10) vanishes when Q and R
satisfy

14+ R =[(1+4d)Q%—d1/Q[2do Q2+ (1+d,)] - (B12)
This function is plotted in Fig. 8. It passes through R =0 when Q =1 and when

0=0,=[(142dy)+(1+4dy+12d3)"?*1/4d, , (B13)
and has a maximum at

02—02 — (1+5d0+10d5)+[(1j;;i)$4;:;10)<1+5d0+22dé>]1/2 , B14)
whose height is given by

(14+R)*=[16do(1+d()*]*{(1+10dy —3d§ —140d3 —236d})

+(145do+22d3)[(142do)(143do)(1+5dy+22d5)1?} . (B15)

If R lies above the curve, then the value of k2 obtained from (B10) will be negative. Thus the curve in a-B-R space on
which the parameters Q and R satisfy (B12) marks the place where the zero-k and finite-k portions of the stability
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boundary meet. The morphological instability is suppressed entirely for R greater than the maximum value given by
(B15). The point on the curve (B12) corresponding to B=1 is given by

Q*=0%2=[(145dy)+(1+10dy+17d3)"?1/4d, .

This is always greater than the value Q,, of Q at the maximum, so that for R less than its value at the maximum, mor-
phological instabilities do indeed occur for some 3 less than 1. For do>(1+v'5)/2, we have Q; greater than Q,, so
that for all R the stability boundary has k =0 both for small 8 and for 8 near 1, with morphological instabilities only
occurring at intermediate B (and R less than the maximum). For smaller d, the opposite situation obtains: Q; is less

(B16)

than Q,, and so for R less than the value given by (B12) with Q =@, which is given by

(1+R)*=

(1+11do+33d3+31d3) +(1+6d+7d3)(1+10dy+17d5)' 2

(B17)

16do(1+2d,)?

the region of morphological instabilities on the stability
boundary extends all the way to S=1.

In identifying the results of the above calculations as
the k =0 and k=40 parts of the stability boundary, we are
tacitly assuming that (i) if Re(w), as a function of k with
a, B, and R fixed, has a maximum of zero at some
nonzero k, then it is negative for all other k, and (ii) if
(a,B,R) lies on the supposed k =0 part of the stability
boundary, then at that point Re(w), which vanishes at
k =0, is negative for all nonzero k. Both of these state-
ments can be shown to be true. To establish (i), assume
that (a,,R) is given by (B8) and (B9) with Q and R being
such that k2, given by (B10), is positive. For (i) to fail,
there must be another value of k at which Re(w) vanishes.
’I;here would also be some value of the parameter, call it
Q=40Q, at which (B1) is satisfied for this k:

g Qla=0) _ 0(0°—1
(1+R)a+dok®>  [(14+R)a+(14+dg)k*]0 —a
(B18)

From the first two members we find that k2 would be
given by

w2 Q@=0) (+Ra

s (B19
doB B )

I

FIG. 8. Plot of R (Q) defined by (B12). For Q and R below
the curve, morphological instabilities occur for smaller a than
k =0 instabilities.

and, substituting this back into the last member of (B18),
we find that Q would satisfy the cubic equation

(142dy)Q 3 —(1+dy)aQ?
+[(14+R)aB—dy1Q +doaB=0 .

If we now substitute (B8) and (B9) for a and B into this
equation, it reduces to

(B20)

(0 —0P{(1+2do)Q[(14+R)Q +2d,]10

+do[Q*+d(20*+1)]}=0. (B21)

Since Q must be at least as large as 1, the only allowable
solution of this equation is Q =Q. Thus there is no other
k at which Re(w) vanishes. To prove (ii) we now assume
that (a,3,R) lies on the calculated k =0 part of the stabil-
ity boundary. That is, a and B are given by (B3) and (B4)
with Q and R such that k2 given by (B10) would be nega-
tive, i.e,, R is greater than the value given by (B12).
Again, for (ii) to fail there would be some nonzero k and a
related Q#Q at which Re(w) would vanish, and k and Q
would satisfy (B19) and (B20). Since k must be real, k?
given by (B19) must be positive; upon substituting (B3)
and (B4) into (B19) we find that this restricts Q to lie be-
tween Q and (1+R)Q2—1)/[(1 +R)Q —1]. Substitut-
ing (B3) and (B4) into (B20) shows that Q would satisfy

(0—Q){(14+2d)[(1+R)Q —1]0*
—[(14+RNQ*—1—dy)+doQ10
—do(Q?2—1)}=0.

Note that the quantity in braces has one positive and one
negative zero, so that if the positive zero were to lie be-
tween the limits given above, the quantity would then be
positive at one limit and negative at the other. At

O=(1+R)Q*—1)/[(1+R)Q —1],
it is easily seen to be positive; at @ = it is equal to
(1+R)Q[2d, Q%+ (1+dy)]—[(1+4dy)Q%*—d,] ,

which is also positive if, as we have assumed, R is greater
than the value given by (B12). Thus our identification of
the stability boundary is, in fact, correct.

We may specialize the above results to the case of self-

(B22)
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sustained crystallization by setting R =0 everywhere.
The stability boundary is given parametrically by

_ 20°+doQ%(4Q +3)+d5(6Q*—1)
- (1+d)Q(Q +2d,) ’

(B23)
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(14dy)Q[Q%*+d(2Q%+1)
B=— °?[Q 08 2] . (B24)
203 +d,QH4Q +3)+d3(6Q*—1)

The wave number and imaginary growth rate of the un-
stable mode at the boundary satisfy

k2

(@ —1[Q —do(20*—2Q —1)][2Q°+doQ*(4Q +3) +d}(6Q*—1)]
- (1+do)’QXQ +2d0)[Q*+do(2Q%+1)]
[2Q°+doQX4Q +3)+d3(6Q*—1)]?

’ (B25)

Q2=(Q —1)[Q%+d(30%+Q +1)+2d3(Q +1)]

As we can see from these equations, the smallest allowable
value of Qis 1. At Q =1, (B23) and (B24) give

which is the point at which the finite-k part of the stabili-
ty boundary meets the curve B=(a—1)/a, on which the
system becomes unstable against the £ =0 mode with a
real growth rate, as discussed in Sec. III. As B increases

(B27)

(14do)’°Q%Q +2d()[Q%+d(2Q2+ D]

(B26)

f

from zero, the stability boundary follows this curve to the
point (B27), from which it then follows the
morphological-instability curve given by (B23) and (B24).
For dy <(14V/5)/2, it follows this curve until it reaches
the limiting value B=1. For dy>(1+1/5)/2, it follows
the curve until Q reaches Q,, at which point it joins the
curve of oscillatory instabilities with k =0, which is given
by B=(a*—1)/4a.
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