


Abstract

Many systems in nature and the synthetic world involve ordered arrange-

ments of units on two-dimensional surfaces. In this thesis I discuss the

fundamental role payed by both the topology of the underlying surface

and its detailed curvature. Topology dictates certain broad features of

the defect structure of the ground state but curvature-driven energetics

controls the detailed structured of ordered phases. Among the surprises

are the appearance in the ground state of structures that would normally

be thermal excitations and thus prohibited at zero temperature. Exam-

ples include excess dislocations in the form of grain boundary scars for

spherical crystals above a minimal system size, dislocation unbinding for

toroidal hexatics, interstitial fractionalization in spherical crystals and the

appearance of well-separated disclinations for toroidal crystals. Much of

the analysis leads to universal predictions that do not depend on the de-

tails of the microscopic interactions that lead to order in the first place.

These predictions are subject to test by the many experimental soft and

hard matter systems that lead to curved ordered structures such as col-

loidal particles self-assembling on droplets of one liquid in a second liquid.

The defects themselves may be functionalized to create ligands with di-

rectional bonding. Thus nano to meso scale superatoms may be designed

with specific valency for use in building supermolecules and novel bulk

materials. Parameters such as particle number, geometrical aspect ra-

tios and anisotropy of elastic moduli permit the tuning of the precise

architecture of the superatoms and associated supermolecules. Thus the

field has tremendous potential from both a fundamental and materials

science/supramolecular chemistry viewpoint.
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Chapter 1

Order and geometry in condensed

matter

1.1 Introduction

More than 200 years ago, on his treatise on the resistance of fluids d’Alembert wrote:

“Geometry, which should only obey physics, when united with it sometimes com-

mands it” [1]. Since then the physics community has explored the power of geometry

not only to describe, but also the explain structures and their properties. In the

past 20 years soft condensed matter physics has provided many examples of how

the geometry of matter is not a quiescent background for some microscopic degrees

of freedom, but instead plays a major role in determining structural and mechani-

cal properties and designing the phase diagram of materials such as colloids, liquid

crystals, membranes, glasses and carbon nanostructure.

Geometric models of condensed matter systems have been developed for a wide

class of materials since the pioneering work of Bernal and Finney [2–6]. In a series

of classic papers they suggested that several properties of liquids have their geomet-

rical counterpart in randomly packed arrays of spheres. The difference in density

between the solid and the liquid phase of a simple monoatomic substance, for in-
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stance, is approximately the same between periodically and randomly packed hard

spheres (roughly 15% − 16%). Also the radial distribution function of randomly

packed spheres corresponds well with that determined by X-ray and neutron diffrac-

tion for rare-gas liquids. After Bernal, a significant amount of work has been done on

random close packing and, even though the legitimacy of the notion of random close

packing itself has been frequently questioned in recent years [7], it is now established

that many features of the liquid state have in fact a purely geometrical nature.

After the discovery of icosahedral order in metallic glasses [8, 9] the idea of geo-

metrical frustration (the geometric impossibility of establishing a preferred local order

everywhere in space, see Sec. 2), became a fundamental concept for the characteri-

zation of amorphous solids. Farges and coworkers [10–12] were the first to show, by

electron diffraction experiments and computer simulations, that the first atoms of

small aggregates of rare gasses condensed in ultra-high vacum form regular tetrahe-

dra, which later organize in the form of small icosahedral clusters. Since icosahedra

don’t fill three-dimensional Euclidean space R
3, the structure resulting from the ag-

gregation of these icosahedral building blocks doesn’t exhibit long range translational

order. The lack of crystallization in covalent glasses is also rooted in the geometrical

frustration associated with the constant coordination number of their constituents.

Tetravalent monoatomic materials, for instance, cannot form a constant angle be-

tween bonds incident at the same atom and organize in a regular network at the

same time. In multiatomic glass-forming material the situation is more involved and

the route to the formation of amorphous structures is related to the fact that crys-

tallization would require complex activated phenomena and too large a decrease in

entropy.

A breakthrough in the geometrical description of amorphous solids came in 1979

when Sadoc and Kléman first observed that a number of continuous random lattices

can be classified as specific mappings of ordered lattices in spaces of constant cur-

vature onto R
3 [13]. This idea was inspired by the remark that, whereas regular
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tetrahedra don’t fill the three-dimensional Euclidean space, they regularly tile the

three-dimensional sphere S
3 (the manifold described by the equation

∑4
i=1 x

4
i = R2

in R
4) on which they build a regular polytope (Schäfli symbol {3, 3, 5}) with 120

vertices of coordination number 12. This idea, later developed by several others (see

Sadoc and Mosseri [14], Steinhardt et al. [15], Nelson [16], Kléman [17]), paved the

way for a new approach to spatial disorder based on the interplay between order and

geometry on three-dimensional manifolds of constant Gaussian curvature.

In-plane order on two-dimensional manifolds has been subject of intensive research

since the discovery of the ordered phases Lβ and Pβ of phospholipidic membranes and

is now a rich and mature chapter of condensed matter physics [18]. After the seminal

work of Nelson and Peliti [19] on shape fluctuations in membranes with crystalline

and hexatic order, much work has been done in elucidating the intimate relation

between in-plane order and the geometry of the underlying substrate with many

striking results and even more open questions. The fundamental role of topological

defects in two-dimensional systems, first elucidated in a series of pioneeristic papers

by Berezinskii [20], Kosterlitz and Thouless [21–23], becomes even more crucial in

presence of a non-zero Gaussian curvature in the underlying medium, causing the

appearance in the ground state of structures that would normally by suppressed in

flat systems. The goal of this article is to review the most recent developments in the

study of the ground state properties of two-dimensional order on curved media; that

is the structure and the mechanics of ordered phases on two-dimensional substrates

equipped with a non-zero Gaussian curvature, in a regime where thermal fluctuations

are negligible in comparison with other energy scales of the system. While focusing

on ground states we must remind the reader that finite temperature physics on curved

spaces is not at all a subject devoid of charm or open problems. On the contrary,

the extension of the statistical mechanics of two-dimensional systems to spaces with

intrinsic curvature remains a challenge for the future.

The thesis is organized as it follows. In §2, I discuss the concept of geometrical
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frustration and we review some fundamentals of the elasticity of topological defects in

flat and curved spaces. §3 is dedicated to crystalline order on surfaces with variable

Gaussian curvature and boundary. The existence of defective ground states in toroidal

monolayers, with intrinsic crystalline or hexatic order, represents one of the most

recent achievements in the study of order on curved surfaces and will be review in §4.

Conclusions as well as some current and potential applications of defective structures

to material science and nano-engineering will be discissed in §5.

1.2 Ordered structures in two-dimensional matter

Before discussing more technical aspects of the physics of ordered structures on curved

surfaces we want to recall some salient features of physical systems with in-pane order

and spatial curvature.

1.2.1 Amphiphilic Membranes

Amphiphilic membranes are thin sheets (50 − 100 Å) of amphiphilic molecules im-

mersed in a fluid and organized in the form of a bilayer (see Fig. 1.2). The most

common constituents of biological membranes are phospholipids consisting of a polar

head group and a hydrophobic tail made up of two fatty acyl chains (see Fig. 1.1).

Tails have typical length 14 − 20 carbon atoms and regulate the thickness and the

stability of the bilaryer. The polar head group contains one or more phosphate groups

-POOH-O-R. Most phospholipid head groups belong to the phosphoglycerides, which

contain glycerol joining the head and the tail. Examples of phosphoglycerides include

phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS).

These are distinguished by the residue R carried by the phosphate group (i.e. choline

R=-CH2-CH2-N
+-(CH3)3, ethanolamine R=-CH2-CH2-NH2). The fatty acyl chain

in biomembranes usually contains an even number of carbon atoms. They may be

saturated (neighboring C atoms are all connected by single bonds) or unsaturated
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(some neighboring C atoms are connected by double bonds).

Figure 1.1: The structure of phosphatidylcholine.

At low temperature pure phospholipids crystallize and form a bilayer with all

the tails in the trans configuration and the heads parallel to the bilayer surface and

firmly linked into a lattice (mostly by hydrogen bonds). At higher temperature the

order is disrupted first among the tails (premelting or chain melting) and later among

the hydrophilic heads. The temperatures corresponding to these two transitions are

known as transition (Tt) and melting (Tm) temperatures respectively. While Tm is

relatively high for most phospholipids (∼ 200 ◦C), the transition temperature Tt is

closer to room temperature and increases with the length of the hydrocarbon tails.

Most pure phospholipids are therefore in a phase where a fluid hydrocarbon layer is

confined between two solid planes.

In solutions the bilayer can be found in a number of phases with differing degrees

of order among the hydrocarbon chains. For phospholipids in the PC family these

phases are usually called Lα, Lβ and Pβ. In the Lα phase, the tails are liquid and

disordered. Lβ is a solid-like phase in which hydrocarbon chains are ordered and

the molecules don’t diffuse freely. The order of the hydrocarbon chains also implies

a larger thickness of the bilayer. The two lamellar phases can be separated by an

intermediate “rippled” phase Pβ in which the bilayer exhibits an undulated structure

and almost solid-like diffusion properties. Hydrocarbon chains can also appear tilted

with respect to the bilayer plane. Tilted phases are generally denoted as L′
β and P ′

β.
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There are in fact several Lβ phases characterized by different amounts of tilt and

in-plane orientational order [24].

Upon changing their concentration, amphiphiles in solutions aggregate in a large

variety of structures other than bilayers. Above the critical micelle concentration

(which is of the order of 10−3 mol/ℓ) spherical micelles appear (see Fig. 1.2). Their

formation occurs more readily for single-chain amphiphiles (e.g. monoglycerids) and

is favored by the presence of large head groups. At higher amphiphile concentra-

tions spherical micelles are replaced by non-spherical ones and eventually by cylindri-

cal rods. Spherical and cylindrical micelles can themselves organize in higher order

structures such as cubic lattices or hexagonally packed rod piles. More exotic phases

can be obtained by adding oil to the solution. Once the oil is dispersed in water,

amphiphiles can form a monolayer across the water-oil interface and self-assemble in

complex tubular structures known under the common name of plumber‘s nightmare

[25].

1.2.2 Colloidosomes

The name colloidosome was coined by Dinsmore et al. to indicate microcapsules

consisting of a shell of coagulated or partially fused colloidal particles surrounding a

liquid core [26]. Because of their controllable size, elasticity and permeability, col-

loidosomes have been recognized to form a promising class of “soft devices” for the

encapsulation and delivery of active ingredients with a variety of potential applica-

tions for development of novel drug and vaccine delivery vehicles and for the slow

release of cosmetic and food supplements. Their major advantage relies on the fact

that the permeability of the shell depends mainly on the size of the gaps between

neighboring colloidal particles which can be tuned by controlling their size, interac-

tions and degree of fusion. Velev et al. [27–29] were the first to report a method

for the preparation of colloidosomes by templating octanol-in-water emulsions stabi-

lized by latex particles and subsequently removing the octanol core by dissolution in
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Figure 1.2: Example of structures formed form self-assembly of amphiphilic molecules. (a) a

vesicle, (b) a micelle and (c) a bilayer. [Courtesy of Mariana Ruiz Villarreal].

ethanol. Structures of similar architecture have been obtained by templating water-in-

oil emulsions [30, 31]. Multilayer shells consisting of alternating positive and negative

polyelectrolytes and/or nanoparticles have also been prepared by using layer-by-layer

assembly techniques, with the final hollow shells being obtained by removal of the

central, sacrificial colloidal particles [32, 33]. Loxley and Vincent [34] developed a

new way of preparing polymeric capsules with liquid cores based on a phase sepa-

ration of the polymer within the templated emulsion. The colloidosomes produced

by Dinsmore et al. [26] were obtained by the assembly of latex particles into shells

around water-in-oil emulsion drops, followed by thermal fusion of the particles in the

shell and centrifugal transfer into water through a planar oil-water interface.

The coverage of emulsified droplets by colloidal particles takes place by self-

assembly. The particles dispersed in the fluid spontaneously adsorb on the interface

provided the surface energy between the fluid on the inside and the outside of the
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Figure 1.3: Scanning electron microscope image of a colloidosome from Dinsmore et al. [26]. The

colloidosome is composed of 0.9 µm diameter polystyrene spheres sintered at 105 ◦C. The close-up

on the left shows the effect of sintering at the contact points of neighboring spheres.

droplet (σi,o) is larger than the difference of those between the particles and the inter-

nal fluid (σp,i) and the particles and the external fluid (σp,o). Thus σi,o > |σp,i−σp,o|.
A similar mechanism is used in Pickering emulsions, which are stabilized by surface

adsorption of colloidal particles. Once adsorbed at the interface, interacting particles

distribute evenly, assuring a full and uniform coverage of the droplet. The interactions

depend on the type of colloidal particles used as well as the liquids. Coated poly-

methylmethacrylate (PMMA) or polystyrene spheres, for instance, acquire a perma-

nent electric dipole moment at the interface between the two fluids, possibly because

of the dissociation of charges on the hydrated surface similar to what happens at a

water-air interface [35]. The resultant dipolar interaction stabilizes the particles and

allows full coverage of the droplet.

The colloidal particles comprising the shell are then locked together to achieve

the desired permeability and robustness of the colloidosome. Several techniques are

available to achieve this. By sintering polystyrene particles at a temperature slightly

above the glass transition (Tg ≈ 100 ◦C), it is possible to achieve a partial fusion of

neighboring particles at the contact points. This process also allows one to control

precisely the size of the gaps between particles and therefore the permeability of the

colloidosome. Another method consists of binding the particles with a polyelectrolyte
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of opposite charge which can bridge neighboring particles and immobilize them at the

interface. Particles locking clearly enhances the toughness of the colloidal shell and

increases its rupture stress. For sintered polystyrene particles, the latter can be tuned

in the range 1− 100 MPa. Colloidosomes locked with polyelectrolytes are even more

deformable and can withstand strains of order 50 % before rupturing.

The crystalline arrangement of charged colloids on a hemispherical droplet has

been recently studied by Irvine and Chaikin who fabricated colloidal suspensions

of PMMA spheres at the interface between water and cyclohexyl bromide (CHB)

[36]. Because of the large difference in dielectric constants, ions from the oil strongly

partition into the water phase [37]. When nearly 100% PMMA particles are dispersed

into the oil phase they form a Wigner crystal and a monolayer near the interface

separated by a zone depleted of particles. These last two features are due the ion

partitioning that provides the water phase with mobile charges. The net charge of

water can be controlled through the pH, shifting the hydrolysis and ion partitioning

equilibria. An electrically neutral water droplets acts as a conductor and attracts

PMMA particles at the interface through an image charge mechanism. As a result,

particles are almost non-wet by the water phase and organize in a perfect monolayer

at (and not across) the interface.

1.2.3 Viral capsids

Viral capsids are protein shells that enclose the genetic material of a virus and protect

it from enzymatic digestion. Capsid proteins are expressed from the DNA or RNA

genome of the virus and in physiological conditions self-assemble in a very efficient

structure which can withstand high forces (their Young modulus is ∼ 2 MPa) and

at the same time effectively disassemble to allow the viral genome to be released in

the host cell. Most viral capsids have spherical or rod-like shape, but less standard

shapes, such as conical or toroidal, also occur.

The crystallographic structure of spherical viruses has been object of intense in-



1.2 Ordered structures in two-dimensional matter 10

Figure 1.4: PMMA colloids sitting at the hemispherical interface between water and cyclohexyl

bromide. The particles are positively charged and interact via a screened Coulomb interaction with

Debye screening length proportional to the concentration of ions in the solvent. [Courtesy of W.

Irvine and P. M. Chaikin, New York University, New York, NY].

vestigation and, thanks to the modern techniques of X-ray spectroscopy and cryo-

transmission electron microscopy, is now part of the core knowledge of modern virol-

ogy. In most of cases the capsid proteins are grouped in subunits called capsomers,

oligomers made of either five (pentamer) or six (hexamer) proteins. Spherical viruses

typically posses icosahedral symmetry with twelve pentamers located as the vertices

of a regular icosahedron. The number of hexamers that complete the capsids is given

by 10(T − 1), where T , the triangulation number, takes values from a sequence of

“magic numbers” (i.e. T = 1, 3, 4, 7 . . .) associated with the lattice structure of

the capsid, as brilliantly explained by Caspar and Klug (CK) in a seminal paper of

1962 [38] (the CK construction of icosahedral lattices will be reviewed in §3). The

diameters of spherical viruses span the range 10 to 100 nm. While small capsids are

almost perfectly spherical, large viruses, such as the bacteriophage HK97 or the phy-

codnavirus, typical exhibit a faceted geometry with nearly flat portions separated by

ridges and sharp corners corresponding to the twelve pentamers. This morphological
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Figure 1.5: Two examples of viral capsids. The L-A virus (on the left) and the cowpea mosaic

virus (CPMV) (on the right). Both have 60 capsomer, but the latter as a marked faceted geometry.

From VIPERdb [45].

difference was explained by Lindmar et al [39] as a buckling transition resulting from

the balance between the stretching energy associated with the pentamers in capsomer

lattice and the bending elasticity of the viral capsid.

Nonicosahedral capsids of spherocylindrical shape are common among bacterio-

phages such as some T -even phages as well as the φCBK and the φ29. In this case

the capsid appears as a cylindrical tube composed of a ring of hexamers closed at the

ends by two half-icosahedral caps. This structure is also found in a variant of the

T = 7 papovavirus and can be induced in other icosahedral viruses by point mutation

in the capsid proteins [40, 41]. Of special interest are polymorphic viruses, which

can appear in either spherical or spherocylindrical conformation. Polymorphism has

been observed in the polyoma/SV40 animal virus [42] and the cowpea chlorotic mot-

tle virus (CCMV) [43] and, for the latter case, appears to be related to the pH and

salt concentration of the environment. The human immunodeficency virus (HIV)

also shows broad polymorphism in its capsid shape, including cone-like structures in

addition to tubular and spherical ones and has been subject of intense investigation

in recent years [44].
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1.2.4 Carbon nanotubes and related materials

The science of carbon nano-materials has experienced a period of phenomenal growth

since carbon nanotubes (CNT) were found by Iijima in 1991 [46] and, since then, a

large number of similar structures, including helix-shaped graphitic nanotubes [47],

nanotori [48], carphitic nanocones [49] and nanoflowers [50] have been reported in the

literature. The great enthusiasm surrounding this field has its origin in the exceptional

properties that make CNT potentially useful in many applications in nanotechnology,

electronics, optics and other fields of materials science. They exhibit extraordinary

strength, unique electrical properties and are efficient conductors of heat. To date,

several methods including laser pyrolysis, arc discharge, and electron irradiation,

for preparation of graphitic nanomaterials, have been developed. Recently, metal-

catalyzed methods have been used to synthesize carbon nanomaterials.

Most single wall nanotubes (SWNT) have diameter of about 1 nm, while the length

is often of the order of microns. The lattice structure of a SWNT can be obtained

from that of a graphene plane by assigning a pair of indices (n,m) which specify

how the graphene lattice is rolled up into a seamless cylinder (see Sec. 4). n = 0

nanotubes are referred to as “zigzag”, while n = m tubules are called “armchair”.

The generic name “chiral” is used otherwise [51]. In terms of tensile deformations,

SWNT are the stiffest materials known with a Young modulus in the range 1-5 TPa

and a tensile strength of 13-53 GPa. This strength results from the covalent sp2 bonds

formed between the individual carbon atoms.

Because of the interplay between the unique electronic structure of graphene and

tubular geometry, the lattice structure of a nanotube strongly affects its electrical

properties. For a given (n,m) nanotube, a nanotube can be a conductor (if n = m),

a small-gap semiconductors (if n−m is a multiple of 3) or a standard semiconductor

(otherwise). Thus all armchair (n = m) nanotubes are metallic, and nanotubes with

(n,m) equal (5,0), (6,4), (9,1), etc. are semiconducting.

Topological defects may occur on the side-wall of carbon nanotubes and related
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materials in the form of atomic vacancies, 5− 7 dislocations and Stone-Wales defects

[52] (i.e. quadrupoles consisting in two pairs of 5-membered and 7-membered rings)

and are believed to deeply change the mechanical and transport properties of carbon

nanotubes. The latter, in particular, were suggested to serve as possible nucleation

centers for the formation of dislocations in the original ideal graphene network and

constitute the onset of possible plastic deformations [53]. Electronic transport is af-

fected by the presence of defects by lowering in the conductivity through the defective

region of the tube. Some defect formation in armchair-type tubes (which can conduct

electricity) can cause the region surrounding that defect to become semiconducting.

Furthermore single monoatomic vacancies induce magnetic properties. Phonons scat-

tering by defective regions heavily affects the thermal properties of carbon nanotube

and leads to an overall reduction of the thermal conductivity. Phonon transport sim-

ulations indicate that substitutional defects such as nitrogen or boron will primarily

lead to scattering of high frequency optical phonons. However, larger scale defects

such as Stone Wales defects cause phonon scattering over a wide range of frequencies,

leading to a greater reduction in thermal conductivity [54]. On the other hand, de-

fective regions appear to be natural places for chemical functionalization. Numerical

simulations have shown how the presence of Stone-Wales defects considerably en-

hances the adsorption of carboxyl groups (COOH) which can then bind to molecules

with amide and ester bonds [55].
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Figure 1.6: Examples of single wall carbon nanotubes. The chirality of the cylindrical lattice is

determined by a pair of integer indices (n,m) which specify how a graphene plane is rolled up. From

Wikipedia (http://en.wikipedia.org/wiki/Carbon nanotube.)



Chapter 2

Interacting topological defects in

curved media

2.1 Geometrical frustration

The notion of geometrical frustration was introduced to describe situations where cer-

tain types of local order, favoured by physical interactions, cannot propagate through-

out a system [56]. The expression was used for the first time by Toulouse in 1977 [57]

to describe certain particular magnetic systems with nearest-neighbours interactions

which cannot be all satisfied simultaneously. A textbook example of frustration in

magnetic models is represented by a system of Ising spins on a triangular lattice with

antiferromagnetic bonds: while a perfect antiferromagnetic alignment would minimize

all terms in the Ising Hamiltonian, such an alignment is not allowed by the topology of

the underlying lattice so that for any triangular plaquette there is always at least one

unsatisfied bond (see Fig. 2.1). This concept can be extended naturally to any system

where interactions impose a local order, but the most favoured local configuration is

geometrically incompatible with the structure of the embedding space.

Two-dimensional manifolds equipped with some microscopic field for which a no-

tion of local order can be defined unambiguously provide a paradigm for systems
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exhibiting geometrical frustration. Consider for instance an assembly of identical

particles interacting with a spherically symmetric pair potential Vij = V (|xi − xj|),
with xi the position vector of the ith particle in a suitable coordinate system. In

flat two-dimensional space, particles almost always pack in triangular lattices, unless

the interaction potential is carefully tuned to select some some other lattice topology.

Endowing the medium with a non-planar topology introduces frustration in the sense

that the energetically favoured 6−fold orientational order can no longer be established

everywhere in the system. Such geometrical frustration arises at the microscopic level

from the celebrated Euler theorem of topology which relates the number of vertices

V , edges E and faces F of any tessellation of a 2−manifold M :

V − E + F = χ , (2.1)

where χ is the Euler characteristic of M . If M is an orientable closed surface, one can

show that χ is determined uniquely by an integer g ≥ 0, called the genus of M , which

represents the number of “handles” of M ; namely χ = 2(1−g). Two orientable closed

surfaces with the same genus (thus the same Euler characteristic) are homeomorphic:

they can be mapped into one another without changing their topological properties.

In a surface with boundary, the Euler characteristic is given by χ = 2(1 − g) − h,

where h is the number of boundaries or “holes” of M . Thus a sphere, which has no

handles nor boundary (g = h = 0) has χ = 2, while the embedded torus (g = 1 and

h = 0) has χ = 0. A disk, on the other hand, has χ = 1 (g = 0 and h = 1) and

is topologically equivalent to a sphere with one hole. In §2-4 we we discuss ordered

structures on three important topologies: the sphere, the disk and the torus.

In the case of two-dimensional crystals with 6−fold local order Eq. (2.1) can be

rephrased in a form that is particularly useful in describing the presence of defects

in the lowest energy state by defining a topological charge as the departure from the

ideal coordination number of a planar triangular lattice: qi = 6 − ci with ci the

coordination number of the ith vertex. Now, consider a tessellation in which each

face is an n−sided polygon and let k faces meet at each vertex. Since each edge is
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Figure 2.1: Examples of geometrical frustration. (Left) Ising antiferromagnet on a triangular

lattice. Because of the topology of the underlying lattice, no arrangement of the three spins can

minimize the Hamiltonian H = −J∑〈ij〉 SiSj . (Center) Vector field of a sphere. As a consequence

of the Poincaré-Hopf theorem, a vector field must vanish at leat in two points, corresponding to

the north and south pole of the sphere in this example. (Right) Triangulation of the sphere. As

prescribed by the Euler theorem, any triangulation of the sphere must features a number of vertices

of coordination number different than six (i.e. twelve 5−fold vertices in this case).

shared between two faces and links two vertices it follows that:

nF = 2E =
∑

k

kVk ,

where Vk is the number of vertices of degree k. For a triangulation n = 3. From Eq.

(2.1) it follows then:

Q =
V
∑

i=1

qi = 6χ . (2.2)

In the case of a sphere, with χ = 2, Eq. (2.2) implies any triangulation contains a

number of defective sites such that the total topological charge of the lattice is Q = 12.

This can be achieved, for example, by incorporating twelve 5−fold disclinations (with

q = 1) in a network of 6−fold coordinated sites like in a common soccer ball. These

twelve disclinations, whose existence would be suppressed in the lowest energy state

of a planar crystal, are the consequence of the geometrical frustration associated with

the topology of the sphere.

Eq. (2.2) is a special case of geometrical frustration on 2-manifolds where local

orientations are defined modulo π/3. More generally one can consider a p−atic direc-

tor field for which local orientations are defined modulo 2π/p. The topological charge

of a disclination is in this case as q = ∆θ/2π
p

, where ∆θ is the angle the director
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rotates in one counter-clockwise circuit of any closed contour enclosing the defect.

Eq. (2.2) becomes then:

Q =

N
∑

i=1

qi = pχ (2.3)

where N is the total number of defects. The ratio k = q/p is commonly referred to

as the winding number of the disclination. In the case of a simple vector field, for

instance, p = 1 and Eq. (2.3) corresponds to the well known Poincaré-Hopf theorem

according to which the sum of the indices of all the isolated zeros of a vector field on a

oriented differentiable manifold M is equal to the Euler characteristic χ of M . Thus

for a sphere a vector field must have at least one sink and one source, each having

topological charge one, while on a torus (χ = 0) a vector field can be defect free. A

nematic director n, on the other hand, has p = 2 (i.e. physical configurations are

invariant under inversions n → −n). Thus disclinations with ±1 topological charge

correspond to configurations where the director rotates ±π in one circuit enclosing the

defect. These elementary disclinations have semi-integer winding number k = ±1/2.

As a consequence of Eq. (2.3) the total topological charge of a nematic texture on the

sphere is Q = 4, corresponding for instance to the typical baseball texture consisting

of four q = 1 (k = 1/2) disclinations located at the vertices of a regular tetrahedron

[58, 59].

2.2 Mathematical preliminaries and notation

The equilibrium structure of two-dimensional locally ordered systems on curved sub-

strates depends crucially on the existence and arrangement of the defects. Since the

seminal works of Kosterlitz, Thouless, Halperin, Nelson and Young (KTHNY) on

defect mediated melting in two dimensions it has become conventional to adopt a

theoretical framework where the fundamental objects in the system are the defects

themselves and treat the microscopic constituents within a continuum elastic the-

ory. This approach has the advantage of far fewer degrees of freedom than a direct
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Figure 2.2: Example of 5−fold (right) and 7−fold (left) disclinations on a triangular lattice on a

region of positive and negative Gaussian curvature rispectively.

treatment of the microscopic interactions and allows one the explore the origin of

the emergent symmetry observed in non-Euclidean ordered structures as the result

of the interplay between defects and geometry. The latter is one of the fundamental

hallmarks of order on two-dimensional manifolds and leads to the universal features

observed in systems as different as viral capsids and carbon macromolecules. In this

section we will briefly review some concepts of differential geometry, mostly to estab-

lish notation. In the next section we will review some fundamentals of the elasticity

of defects in two dimensions. The coupling mechanism between curvature and defects

will be introduced in §2.4.

Points on a two-dimensional surface S embedded in R
3 are specified by a three-

dimensional vector R(x) as a function of a two-dimensional parameter x = (x1, x2).

For each point of S we define three vectors:

gi = ∂iR i = 1, 2 (2.4)

and n =
g1 × g2

|g1 × g2|
, (2.5)

where ∂i = ∂/∂xi. The vectors gi belongs to TRS, the tangent space of S at R while

n is a normal vector. Note that while n is a unit vector, gi are generally not of unit

length. The metric, or first fundamental form, of S is defined as:

ds2 = gijdx
idxj (2.6)



2.2 Mathematical preliminaries and notation 20

where gij is the metric tensor:

gij = gi · gj (2.7)

The dual tensor is denoted as gij and is such that:

gikg
jk = δji ,

with δji the Kronecker symbol. This allows us to introduce contravariant tangent-

plane vectors gi = gijgj , satisfying gi · gj = δji . Any vector v on the tangent plane

can be expressed as a linear combination of basis vectors gi and gi: v = vigi = vig
i,

where vi = gijv
j . The extrinsic curvature of the surface S is encoded in the tensor of

the second fundamental form bij (also known as the extrinsic curvature tensor):

bij = −gi · ∂jn = n · ∂jgi . (2.8)

The eigendirections of bij at a given point correspond to the principal curvature

directions of S at that point and the associated eigenvalues κ1 and κ2 are the extremal

(or principal) curvatures. The mean curvature H and the Gaussian curvature K are

defined as the sum and the product of the principal curvatures:

2H = κ1 + κ2 = gijb
ij (2.9)

K = κ1κ2 = 1
2
ǫikǫjlbijbkl (2.10)

where ǫij is the dual of the Levi-Civita tensor, whose components are given by:

ǫ11 = ǫ22 = 0

ǫ12 = −ǫ21 =
√
g

where g = det gij. The contravariant form is ǫij = ǫij/g and satisfies ǫikǫ
jk = δji .

Since ǫijv
ivj = 0, where vi is any contravariant vector, it follows that the vector ǫijv

i

is perpendicular to vj. Thus inner multiplication by ǫij rotates a vector by π/2. The

covariant derivative of a vector field v in the ith coordinate direction is defined as
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usual by:

∇iv
k = ∂iv

k + Γkijv
j (2.11a)

∇ivk = ∂ivk − Γjikvj (2.11b)

where Γkij is the Christoffel symbol:

Γkij = 1
2
gkl(∂jgil + ∂iglj − ∂lgij) . (2.12)

Both the metric and the Levi-Civita tensor are invariant under parallel transport.

This translates into:

∇kgij = ∇kg
ij = 0 ∇kǫij = ∇kǫ

ij = 0 .

Much of the elastic theory of defects, either in flat or curved systems, relies on the

calculation of the Green function of the Laplace operator. On a generic 2−manifold

the latter obeys:

∆GL(x,y) = δ(x,y) , (2.13)

where ∆ is the Laplace-Beltrami operator:

∆ =
1√
g
∂i
√
g gij∂j (2.14)

and δ the delta-function:

δ(x,y) =
δ(x1 − y1)δ(x2 − y2)√

g
. (2.15)

The Stokes theorem is frequently invoked when calculating elastic energies of defects.

In covariant form it can be stated as follows: given a vector field v on a 2−manifold

M with boundary ∂M , the following identity holds:

∮

∂M

dxk vk =

∫

M

d2x ǫij∇ivj . (2.16)

For sake of consistency we will adopt covariant notation throughout this paper. When

discussing planar systems, in particular, we have: bij = H = K = 0 and the elements
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of the metric tensor are given in Cartesian coordinates by gxx = gyy = 1, gxy = gyx = 0

and in polar coordinates by grr = 1, gφφ = r2, grφ = gφr = 0.

The definition of orientational order on a surface clearly requires a non-ambiguous

notion of angular distance between vectors on the same tangent plane. This is tra-

ditionally achieved by introducing a pair of orthonormal vectors eα (α = 1, 2) called

vielbin (note that the canonical coordinate vectors gi are generally neither orthonor-

mal nor orthogonal) so that:

eα · eβ = (eα)i(eβ)
i = δαβ , (eα)i(eα)j = gij , (2.17)

where δαβ is the usual Kronecker symbol in the indices α and β. A vector field

v = vigi can be expressed alternatively in the basis eα:

v = vαeα vα = vi(eα)i .

Clearly, since the coordinates vα are locally Cartesian, δαβ = δαβ and there is no

distinction between upper and lower Greek indices: vα = vα. Vielbin are constructed

to be invariant under parallel transport, thus ∇i(eα)j = 0 and:

∇ivα = (eα)j∇iv
j = ∂ivα + Ωiαβvβ ,

where Ωiαβ is the so called spin connection, and is given by:

Ωiαβ = eα · ∂ieβ = Γkij(eα)
j(eβ)k − (eβ)k∂i(eα)

k .

Taking the derivative of the left equation in (2.17) one immediately sees:

(eα)
k∂i(eβ)k = −(eβ)

k∂i(eα)k ,

from which it follows Ωiαβ = −Ωiβα. In two-dimensions this makes possible the

parametrization of the spin-connection Ωiαβ by a single covariant vector Ω (i.e.

because of the antisymmetry under exchange of the Greek indices one has only

d2(d− 1)/2 = 2 independent components in d = 2 dimensions). Namely:

Ωiαβ = ǫαβΩi , (2.18)
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with ǫαβ = δ1
αδ

2
β − δ1

βδ
2
α the antisymmetric symbol.

It is well known how the curvature of a manifold manifests itself when a vector

is parallel transported around a closed path. Taking an infinitesimal square loop of

sides dx and dy, the parallel transported vector v′ differs from the original vector v

by an amount:

v′k − vk = Rk
lijv

ldxidyj , (2.19)

where Rk
lij is the Riemann tensor given in two-dimensions by:

Rl
ijk = Kǫliǫjk . (2.20)

In the orthonormal basis eα, Eq. (2.19) reads:

v′α − vα = Rijαβvβdx
idyj ,

where Rijαβ is the curvature tensor associated with the spin-connection Ωiαβ :

Rijαβ = ∂iΩjαβ − ∂jΩiαβ + ΩiαγΩjγβ − ΩjαγΩiγβ . (2.21)

In two dimensions, using Eq. (2.20), one can write:

Rijαβ = (eα)
k(eβ)

lRijkl = (eα)
k(eβ)

lǫijǫklK = ǫαβǫijK ,

which combined with Eqs. (2.21) and (2.18), can be used to obtain:

Rijαβ = ǫαβ(∂iΩj − ∂jΩi) = ǫαβǫijK , (2.22)

which also implies:

∇× Ω = ǫij∇iΩj = K . (2.23)

2.3 Elasticity of defects on the plane

The XY−model is the simplest setting where particle-like objects emerges form a

purely continuum theory [21–23]. The order parameter is the angular field θ ∈ [0, 2π]
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Figure 2.3: Example of topological defects in a vector field. (a), (b) and (c) have topological charge

q = 1, (d) q = −1 and (e) and (f) have charge q = 3 and q = −3 rispectively.

which may represent the orientation of two-dimensional vectors S = S(cos θ, sin θ) or

the phase of a complex field ψ = |ψ|eiθ. The interaction that tends to minimize the

spatial variations of the order parameter results from the continuum free energy:

Fel =
1

2
KA

∫

d2x |∇θ(x)|2 . (2.24)

Despite its simplicity this model successfully describes several aspects of the physics

of vortices in superfluid 4He or thin superconducting films, where the angle θ is

identified with the phase of the collective wave function. Eq. (2.24) also describes

nematic liquid crystals under the assumption of equal spay and bending stiffness. This

approximation, however, favors q = ±2 (k = ±1) disclinations rather than the more

natural q = ±1 (k = ±1/2) disclinations of nematics and is not particularly suitable

to describe the ground state. At T > 0, thermal fluctuations drive the two elastic

constants to the same value at long wavelengths, so that there is a unique Kosterlitz-

Thouless transition temperature [60]. As discussed by Deem [61], the essential effect

of unequal elastic constants is to create a distinct long-range contribution to the core
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energy of each defect. More generally Eq. (2.24) can be considered as the simplest

phenomenological free energy describing p−atic order (assuming θ defined modulo

2π/p). Calling v = ∇θ, the minimization of the free energy (2.24) leads to the

equilibrium condition:

∆θ = ∇iv
i = 0 . (2.25)

In the presence of a number of disclinations of topological charge qα, θ changes of an

amount (2π/p)
∑

α qα in one circuit along any contour enclosing a total topological

charge
∑

α qα:
∮

dθ =

∮

dxi vi =
2π

p

∑

α

qα . (2.26)

Using the Stokes theorem, Eq. (2.26) can be translated into the requirement:

ǫij∇ivj = ǫij∇i∇jθ = η(x) , (2.27)

where:

η(x) =
2π

p

∑

α

qαδ(x,xα)

is the topological charge density. Using standard manipulations (see for example [62])

a vector field v satisfying Eq. (2.25) with the constraint (2.26) can be found in the

form:

vi(x) = −ǫji∇j

∫

d2y GL(x,y)η(y) (2.28)

where GL(x,y) is the Laplacian Green function. Using Eq. (2.28) in Eq. (2.24) leads

to the well known expression:

Fel = −1

2
KA

∫

d2x d2y GL(x,y)η(x)η(y) . (2.29)

Like charged particles, disclinations interact via a Coulomb potential, which in two

dimensions is proportional to the logarithm of the distance in the plane. As we noted,

this framework is valid for both nematic liquid crystals in the one elastic constant

approximation and superfluids. An important difference between these two systems

lies in the choice of the boundary condition for the field θ. Nematogens are typically
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forced to be normal to boundary of the substrate and this implies a constraint for θ,

while such a constraint doesn’t exist in the case of 4He films, since the wave function

is defined in a different space from that to which superfuild is confined. This difference

is crucial on a curved substrate (see Ref. [63] for a detailed review of the topic).

Eq. (2.29) represents the elastic energy associated with the distortion introduced

by defects in the far field, where the elastic variables change slowly in space. This

expression breaks down in the neighborhood (or core) of a defect, where the order

parameter is destroyed and the actual energetic contribution depends on microscopic

details. In order to describe a defective system at any length scale, Eq. (2.29) must be

corrected by adding a core energy Fc representing the energetic contribution within

the core of a defect, where standard elasticity breaks down. A detailed calculation

of the core energy requires some microscopic model and is usually quite complicated.

Nonetheless its order of magnitude can be estimated by writing:

Fc = πa2fc , (2.30)

where a is the core radius, corresponding to the short distance cut-off of the elastic

theory, and fc is some unknown energy density independent on a. fc can then be

estimated by minimizing the total energy of the system with respect to a. For a

planar system with a single disclination of winding numer k, the total energy can be

easily calculated form Eqs. (2.29) and (2.30) in the form:

F = πKAk
2 log

(

R

a

)

+ πa2fc . (2.31)

Minimizing Eq. (2.31) with respect to a, one finds fc = KAk
2/(2a2) from which:

Fc =
1

2
πKAk

2 = ǫck
2 . (2.32)

The quantity ǫc is the energy needed to increase the number of defects of one unit,

independently on its position.

The elasticity of dislocations and disclinations in solids resembles in many aspects

that of vortex lines in the XY−model. In two dimensional elasticity a pure in-plane
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deformation is encoded in a displacement field ui, i = 1, 2, which maps any point in

the system x to:

x′ = x + uigi (2.33)

where gi is a suitable basis in the coordinates of the undeformed system. If there

are no defects, the displacement field is a single-valued mapping of the plane into

itself. Topological defects introduce an incompatibility in the displacement field, in

the sense that ui is not a single-valued mapping anymore. The elastic stress in the

region surrounding a defect appears at the macroscopic level from the Hooke’s law of

elasticity:

uij =
1 + ν

Y
σij −

ν

Y
gijσ

k
k (2.34)

where Y and ν are the two-dimensional Young modulus and Poisson ratio respectively

and σij is the stress tensor. Eq. (2.34) can obtained, for example, by minimizing the

elastic energy:

F =

∫

d2x
(

1
2
λui 2i + µuiju

ij
)

(2.35)

where λ and µ are the Lamé coefficients in two dimensions:

λ =
Y ν

1 − ν
, µ =

Y

2(1 + ν)
.

In absence of body forces, the force balance equation requires σij to be divergence

free:

∇jσ
ij = 0 . (2.36)

The strain tensor uij represents the variation in the first fundamental form of the

surface due to the deformation field (2.33), namely:

2uij = gij(x + u) − gij(x) = ∇iuj + ∇jui +O(u2) . (2.37)

In the presence of a dislocation line L the function u becomes multivalued so that,

while traversing any closed counterclockwise loop C containing L:

∮

C

du = b , (2.38)



2.3 Elasticity of defects on the plane 28

where b is the Burgers vector representing the amount by which the image of a closed

loop under the mapping (2.33) fails to close in presence of a dislocation line [64, 65].

If L is an isolated straight dislocation with origin at the point x0, Eq. (2.38) implies:

ǫij∇i∇juk = bkδ(x,x0) . (2.39)

Generally speaking, maps such as that of Eq. (2.33), induce variations in both

the length and the orientation of an infinitesimal distance vector dx in the deformed

medium. This statement can be clarified by writing:

dx′i − dxi = (∇jui) dx
j = (uij − ωij) dx

j

where:

ωij = 1
2
(∇iuj −∇jui) (2.40)

is the infinitesimal rotation tensor induced by the deformation Eq. (2.33). In two

dimensions the latter can be conveniently written in the form:

ωij = ǫij Θ (2.41)

with:

Θ = 1
2
ǫik∇iuk . (2.42)

Since the application of ǫij to a vector rotates the vector by π/2 clockwise, the coef-

ficient Θ in Eq. (2.42) can be interpreted as the average rotation of an infinitesimal

line element under a distortion of the form Eq. (2.33). In presence of an isolated

disclination the field Θ becomes multi-valued. If s is the angular deficit associated

with the disclination, integrating along a circuit enclosing the disclination core yields:

∮

C

dΘ = s (2.43)

which again can be rephrased as a statement about commutativity of partial deriva-

tives:

ǫij∇i∇jΘ = s δ(x,x0) , (2.44)
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where x0 the position of the disclination core. In a lattice with n−fold rotational

symmetry, s = (2π/n)q, where q is the topological charge introduced above. A

comparison between Eq. (2.27) and Eq. (2.44) clarifies the common identification of

Θ with the bond angle field of a crystal [66].

Eqs. (2.39) and (2.44) provide a set of relations between the fundamental features

of topological defects in crystals (i.e. the Burgers vector b and the topological charge

q) and the partial derivatives of the displacement field u. Those relations can be now

used to derive an equation for the elastic stress arising in a system as a consequence

of the defects. A simple and elegant way to achieve this task in the context of planar

elasticity relies on the parametrization of the stress tensor via a single scalar field χ

known as the Airy stress function (see for example [67]). Taking advantage of the

commutativity of partial derivatives in Euclidean space, one can write

σij = ǫikǫjl∇k∇lχ (2.45)

so that the force balance condition (2.36) is automatically satisfied. Then, applying

the operator ǫikǫjl∇k∇l to both sides of Eq. (2.34) and using Eq. (2.45) one finds

the following fourth order Poisson-like problem:

∆2χ(x) = Y η(x) , (2.46)

where ∆2 is the biharmonic operator and η is the defect charge density:

η(x) =
2π

n

∑

α

qαδ(x − xα) +
∑

β

ǫijbβi ∇jδ(x − xβ) ,

where sα denotes the topological charge of a disclination at xα and bβ the Burgers

vector of a dislocation at xβ.

Let’s now turn our attention to the case of a planar crystal with local 6−fold

orientational symmetry populated with N disclinations of density:

η(x) =
π

3

N
∑

α=1

qαδ(x,xα) . (2.47)
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Assuming a free boundary (i.e. all the components of the stress tensor are zero along

the boundary and thus χ = ∇χ = 0), the stress function χ can be expressed in the

Green form:
χ(x)

Y
=

∫

d2y G2L(x,y)η(y) , (2.48)

where G2L(x,y) is the biharmonic Green function. The elastic energy of the system

is given by Eq. (2.35) and (2.48) in the form:

Fel =
1

2
Y

∫

d2x d2y G2L(x,y)η(x)η(y) , (2.49)

Eq. (2.24) and (2.49) are the fundamental equations in the elastic theory of defects

in two-dimensional planar p−atics and crystals. In the next section we will see how

a non-zero Gaussian curvature in the underlying medium affects these energies by

effectively screening the topological charge of the defects.

2.4 Coupling mechanisms between curvature and

defects

The elasticity of topological defects on curved substrates equipped with local ori-

entational order was first considered by Nelson and Peliti in the context of hexatic

membranes [19]. It is now part of the core knowledge in the statistical mechanics of

membranes that long range forces appearing as the consequence of a local orientational

order crucially affect the behavior of membranes at finite temperature. The stiffness

associated with orientational correlations leads to an enhancement of the bending

rigidity that counteracts the thermal softening that occurs in fluid membranes. Fur-

thermore, for planar membranes, the stabilizing effect induced by the orientational

stiffness opposes the entropy-driven tendency to crumple, causing a transition be-

tween a flat and crumpled phase at T > 0. In this article we focus on the ground

state properties of ordered structures on curved surfaces and we remind the reader

the specialized literature for a discussion on finite temperature physics [18].
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In this section we will show how an underlying non-zero Gaussian curvature cou-

ples with the defects by screening their topological charge. As a result, topological

defects, whose existence would be energetically suppressed if the same system was

lying on a flat substrate, instead proliferate. The universality of such a curvature

screening mechanism is remarkable in the sense that it occurs in a conceptually iden-

tical fashion in both p−atics and solids, although the kernel of the elastic interactions

between defects differs. As a consequence of curvature screening topological defects

organize themselves on a rigid surface so as to match the Gaussian curvature of the

substrate. On the other hand, if the geometry of the substrate is allowed to change

(for instance by lowering the bending rigidity) the system eventually enters a regime

where the substrate itself changes shape in order to accommodate some preferential

in-plane order. The latter is the fundamental mechanisms behind the buckling of crys-

talline membranes [68] and is believed to be the origin of the polyhedral geometry of

large spherical viruses such as bacteriophages [69].

In the case of manifolds equipped with a pure rotational degree of freedom like

p−atics, the curvature affects the elastic energy through the connection which deter-

mine how vectors change when parallel transported. This statement can be clarified

by rewriting the elastic energy (2.24) in the form:

Fel =
1

2
KA

∫

d2x∇im
j∇imj (2.50)

where m is a p−atic director field which can be conveniently expressed in a local

orthonormal frame eα (α = 1 2):

m = cos θ e1 + sin θ e2 ,

where θ is defined modulo 2π/p. Since ∂imα = −ǫαβmβ∂iθ, using the properties of

vielbin outlined in §2.2, we have:

∇imj = (eα)j(∂imα + Ωiαβmβ) = −ǫαβmβ(eα)j(∂iθ − Ωi) (2.51)
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The elastic energy (2.50) becomes thus:

Fel =
1

2
KA

∫

d2x gij(∂iθ − Ωi)(∂jθ − Ωj) (2.52)

Using Eq. (2.23), the vector field Ω can be expressed as:

Ωi = −ǫji∇j

∫

d2xGL(x,y)K(y) , (2.53)

where GL(x,y) is again the Green function of the Laplace-Beltrami operator (2.14).

Replacing Eq. (2.53) and (2.28) in the expression for the elastic energy (2.52) we

obtain:

Fel = −1

2
KA

∫

d2x d2y GL(x,y)[η(x)−K(x)][η(y) −K(y)] . (2.54)

As anticipated, the Gaussian curvature of the underlying substrate couples with the

defects by screening their topological charge. Eq (2.54) is identical to the Coulomb

energy of a multi-component plasma of charge density η in a background of charge

density −K. Like particles in a plasma, we can expect defects to screen each other’s

charge, thus forming clusters of zero net charge, and matching the charge distribution

of the surrounding background. This implies that disclinations will be attracted by

regions of like-sign Gaussian curvature.

Crystalline surfaces (i.e. non-Euclidean crystals) differs from manifolds equipped

with a p−atic director field because bonds, whose local orientation is encoded in the

field θ in p−atics, can now be compressed and sheared to relieve part of the elastic

stress due to the geometrical frustration provided by the embedding manifold. A first

attempt at describing the elasticity of defects on a two-dimensional curved crystal was

made by Dodgson [70], who studied the ground state of the Abrikosov fulx lattice

in a model thin-film superconductor on a sphere (subject to a field radiating from a

magnetic monopole at the center) and found evidence for twelve 5−fold disclinations

at the vertices of an icosahedron in a otherwise 6−fold coordinated environment (see

§2.5 for a review of spherical crystals). Later, Dodgson and Moore [71] proposed

adding dislocations to the ground state of a sufficiently large spherical vortex crystal
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to screen out the strain introduced by the twelve, topologically required, disclinations.

A general framework to describe the elasticity of defects in non-Euclidean crystals

was proposed by Bowick, Nelson and Travesset (BNT) in 2000 [72]. The BNT model,

obtained from the covariantization of the elastic energy (2.49), relies on the following

expression for the elastic energy of a collection of disclinations in a triangular lattice

of underlying Gaussian curvature K:

Fel =
1

2
Y

∫

d2x d2y G2L(x,y)[η(x)−K(x)][η(y) −K(y)] , (2.55)

where η(x) is the topological charge density (2.47) and G2L(x,y) the Green function

of the covariant biharmonic operator on the manifold. The origin of the coupling

between topological charge and curvature, in this case, is rooted in a profound result

of discrete geometry originally due to Descartes which can be considered the oldest

ancestor of the Gauss-Bonnet theorem of differential geometry. Let P be a convex

polyhedron and define the angular deficit of a vertex v of P as:

k(v) = 2π −
c(v)
∑

i=1

αi(v) , (2.56)

where αi(v) with i ∈ [1, c(v)] are the angles formed by all the faces meeting at v.

Descartes’ theorem states that the sum of the angular deficits of a convex polyhedron

is equal to 4π. More generally:

∑

v∈P
k(v) = 2πχ (2.57)

which is exactly the Gauss-Bonnet theorem for the case in which the Gaussian cur-

vature is concentrated in a finite number of points (vertices) rather than smoothly

distributed across the whole surface. The deficit angle k(v) is thus the discrete ana-

log of the Gaussian curvature. This analogy is not limited exclusively to Eq. (2.56).

Consider, for example, the corner of a cube and imagine to parallel transporting a

vector v along a close loop surrounding the corner (see Fig. 2.4). After parallel trans-

port, the vector has rotated by k(v) = π/2 with respect to its original orientation.
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Figure 2.4: Parallel transport of a vector around a corner of a cube. As a consequence of the

discrete Gaussian curvature, the vector rotate by π/2 after parallel transport.

Analogously, a parallel transported vector along a closed loop on a surface rotates by

an angle

δ =

∫

d2xK(x)

where the integral is extended to the portion of surface enclosed by the loop. Now,

on a triangulated surface α(v) ≈ π/3 and:

k(v) = 2π − π

3
c(v) =

π

3
[6 − c(v)] .

Thus the source term η − K figuring in Eq. (2.55) corresponds to the difference

between the pre-existing Gaussian curvature of the manifold with local 6−fold ori-

entational order and the additional Gaussian curvature induced by a disclination of

topological charge q. A more formal discussion can be found in Ref. [73]. As in the

case of a purely rotational degree of freedom, disclinations in non-Euclidean crystal

arrange in the lattice in such a way to match the Gaussian curvature of the underlying

medium while maximizing their reciprocal distance as a consequence of the repulsive

interaction between like-sign defects. In the next three sections we will see how the

formalism outlined here applies to three physically relevant examples of manifolds:

the sphere, the topological disk and the torus.



2.5 Order on the sphere 35

2.5 Order on the sphere

The two-dimensional sphere S
2 is the simplest example of curved surface. A sphere

of radius R centered at the origin of a three-dimensional Cartesian frame can be

parametrized in the standard form:



















x = R sin θ cos φ

y = R sin θ sinφ

z = R cos θ

, (2.58)

where θ ∈ [0, π] and φ ∈ [0, φ). The coefficient of the metric tensor are given by:

gθθ = R2 , gθφ = 0 , gφφ = R2 sin2 θ .

Both mean and Gaussian curvature are constant and equal to K = H2 = R−2. Be-

cause its exceptional simplicity and, at the same time, its ubiquitous presence in

natural systems, the 2-sphere has played a special role in the study of geometrical

frustration and represented historically the natural play-ground for the development

of most of our knowledge of order in curved space. With no intention of being exhaus-

tive, we review in this section some of the most fundamental concepts of crystalline

and orientational order on the sphere, mostly to give a practical example of the ideas

and mathematical tools previously described in this chapter.

Orientational order on the sphere was initially investigated by MacKintosh, Luben-

sky [74] and Prost [58] in the context of smectic vesicles. As we mention in §1.2.1,

the Lβ phase of phospholipidic membranes is characterized by the fact that the di-

rector N , specifying the average direction of the hydrocarbon tails, is parallel to the

unit normal n to the membrane. At lower temperatures, membranes can undergo a

transition into the L′
β phase, in which molecules tilt relative to the surface normal,

or the hexatic phase, in which the directions between neighboring molecules form a

six-fold rotationally invariant director field with quasi long-range correlation. Both

these liquid crystalline phases can be suitably described by a p−atic free energy of
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the form (2.50) in which the director m plays the role of the normalized projection

of the molecular axis N on the tangent plane of the vesicle:

m =
N − (n · N)n

|N − (n · N)n| , (2.59)

in the case of L′
β vesicles, or a hexatic director field. Thus L′

β and hexatic vesicles can

be described as p−atic phases with p = 1 and p = 6 respectively. Nematic shells (i.e.

p = 2) have also drawn considerable attention recently [59, 75, 76]. Nematic spheres

might be made by coating a droplet with gemini lipids, ABA triblock copolymers or

nanorods. Microfluidic techniques for creating a thin spherical shell of liquid crystal

in a double emulsion have been explored in [77].

As prescribed by Eq. (2.3) the total topological charge of a p−atic director field

on the sphere is given by Q = 2p. Furthermore the energy of an isolated disclination,

both on flat and curved surfaces, is proportional to the square of its topological

charge. It is, therefore, always favorable to form disclinations with the lowest possible

topological charge: q = ±1. In addition, like-sign disclinations repel each other.

These considerations imply that the ground state of a p−atic phase on a sphere

will likely have 2p maximally separated disclinations of topological charge q = 1 or

winding number k = q/p. For p = 1, there will be a source and a sink at the north

and south pole (see Fig. 2.1 center). For p = 2 one expects four k = 1/2 disclinations

at the vertices of a tetrahedron. In the case of hexatics (p = 6) the most suitable

candidate configuration for the ground state will feature twelve k = 1/6 disclinations

at the vertices of a icosahedron.

The elastic energy (2.50) corresponding to these symmetric configurations of a

spherical veiscle with p−atic order, was calculated by Lubensky and Prost with the

result:

Fel = 2πKA

[

1

p
log

(

2R

rc

)

− fp

]

, (2.60)

with rc the core radius and fp a number given by:

fp = 1 +
1

2p2

∑

i6=j
log(sin βij) , (2.61)



2.5 Order on the sphere 37

where βij is the distance between the ith and jth disclination and the sum is carried

over all the defects.

Experimental realizations of spherical crystals, on the other hand, are found in

colloidosomes (see §1.2.2), viral capsids (see §1.2.3) or the C60 Buckmister fullerene.

Historically, the first attempt of understanding the structure of a spherical crystal

consisting of V point-like particles interacting with a Coulomb potential on the surface

of a unit sphere, was performed in 1904 by J. J. Thomson as part of the development

of the plum pudding model of the atom [78] and is now considered a classic and still

unsolved problem of mathematical physics [79, 80]. An almost literal realization of the

Thomson problem is provided by multi-electron bubbles [81, 82]. Electrons trapped

on the surface of liquid helium have long been used to investigate two dimensional

melting [83, 84]. Multi-electron bubbles result when a large number of electrons

(105−107) at the helium interface subduct in response to an increase in the anode

potential and coat the inside wall of a helium vapor sphere of radius 10−100µm.

Typical electron spacings, both at the interface and on the sphere, are of order 2000

Å, so the physics is entirely classical, in contrast to the quantum problem of electron

shells which originally motivated Thomson. Information about electron configurations

on these bubbles can, in principle, be inferred from studying capillary wave excitations

[85, 86]. Similar electron configurations should arise on the surface of liquid metal

drops confined in Paul traps [87].

As already mentioned, at least twelve 5−fold coordinated vertices are topologically

required in any triangulation of the sphere. Using the same argument outlined for

p−atics, one might expect these twelve +1 disclinations to be arranged approximately

at the vertices of a regular icosahedron. Spherical lattices with icosahedral symmetry

(i.e. icosadeltahedral lattices) have been originally investigated and classified by

Caspar and Klug in a classic paper of 1962 [38] (see Fig. 2.1 right). According to the

Caspar-Klug (CK) construction, triangular lattices on the sphere with an icosahedral

defect pattern are classified by a pair of integers (n,m) which specify the distance
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Figure 2.5: Example of (n,m) icosadeltahedra triangulations of the sphere. 5−fold coordinated

vertices are circled in red and the path between neighboring disclinations is marked by a blue dashed

line. From [93].

between neighboring disclinations in units of the lattice spacing a. The path from

one disclination to a neighboring disclination for an (n,m) icosadeltahedral lattice

consists of n straight steps, a subsequent 60◦ turn, and m final straight steps. The

geodesic distance between nearest neighbor disclinations on a sphere of radius R is

d = R cos−1(1/
√

5). The total number of vertices V on the sphere described by this

(n,m)-lattice is given by:

V = 10(n2 +m2 + nm) + 2 . (2.62)

In the case of the Thomson problem, such (n,m) configurations are believed to be

ground states for relatively small numbers (V ≤ 300, say) of particles interacting

through a Coulomb potential [88–92].

The ground state structure of a spherical crystal was studied by Bowick, Nelson

and Travesset by mean of the elastic free energy (2.55). For the case of the sphere,
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Eq. (2.55) can be recasted in the form:

F =
π

36
Y R2

1,N
∑

i,j

qiqjχ(βij) + ǫc

N
∑

i=1

q2
i , (2.63)

where N is the number of disclinations and

χ(βij) = 1 +

∫ (1−cos βij)/2

0

dz
log z

1 − z
, (2.64)

with βij the angular distance between two disclinations at the points (θi, φi) and

(θj , φj) and is such that:

cosβij = cos θi cos θj + sin θi sin θj cos(φi − φj) . (2.65)

A plot of the function χ is shown in Fig. For large core energies (i.e. small particle

number) defects proliferation is generally expensive and one can assume the crystal

to contain only the smallest number of defects compatible with the topology of the

sphere, namely twelve. In this case the energy in Eq. (2.63) is minimized when

the twelve +1 disclinations are located at the vertices of a regular icosahedron. The

elastic energy of such icosahedral configuration is given by:

F = 0.604
( π

36
R2Y

)

+ 12ǫc . (2.66)

When the density of the system is increased icosahedral lattice becomes unstable and

additional defects develop from the initially isolated 5−fold disclinations to lower

the elastic energy. Since the total topological charge must be constant, new defects

generally appear in the form of one or more 5−7 dislocation (of zero total topological

charge) bound to the original 5−fold dislocations, which therefore serve as a “seed”

for the proliferation and growth of more complex defective structures. The number

of excess dislocations radiating from a single seed disclination increases with the

number of vertices V (see later). At the onset of such a structural transition each

seed disclination is bound to a single dislocation, or in other words each isolated

5−fold disclination is replace by a 5−7−5 disclination array. These one-dimensional
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defect clusters have been named “scars” by Bowick et al. [72, 94–96] and represent

now a hallmark of spherical crystallography.

Scars in spherical non-Euclidean crystals are closely related to grain boundaries

in traditional planar systems. Unlike grain boundaries, however, scars generally ter-

minate terminate within the system. This property is due to the fact that local

crystallographic directions rotate when parallel transported on a curved surface. In

planar systems, on the other hand, crystallographic directions are fixed within a grain.

Thus, if somewhere in the system two adjacent regions (grains) have non-parallel crys-

tallographic directions, such a mismatch will necessarily propagate throughout the

system causing a grain boundary line that spans the entire length of the crystal. On

a curved surface, on the other hand, crystallographic directions rotate when parallel

transported along a line and the mismatch is eventually adjusted.

The proliferation of scars in dense non-Euclidean crystals can be understood in

the following way. In §2.4 we explained how the strain field generated by an isolated

disclination is compensated by a non-zero Gaussian curvature in the underlying sub-

strate and viceversa. In dense lattices, however, the region of space surrounding a

defect becomes nearly flat at the length scale of a lattice spacing and the mutual

screening between the strain introduced by a defect and that associated with the

curvature decreases with a consequent growth in the elastic energy. A mechanism to

restore an optimal screening is then to delocalize the topological charge of a discli-

nation on a larger portion of space, thus replacing an isolated disclination with a

one-dimensional defect cluster having the same net topological charge: a scar. On a

surface with constant positive Gaussian curvature, the appearance of scars obviously

occurs simultaneously at the location of each seed disclination once a critical density

is reached. Such a critical density can be estimated by comparing the elastic energy

(2.66) with that of a configuration obtained by replacing every seed disclination with

a 5 − 7 − 5 scar. Such a comparison yields to (a/R)critical ∼ 0.2 corresponding to

V = 305 vertices on a unit sphere [72].
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As we mentioned, the number of excess dislocation Nd within a same scar increases

with the number of vertices V in the lattice. The relation between nd and V can

be determined using the following simple argument [97, 98]. Consider the region

surrounding one of the twelve disclinations, with deficit angle s = 2π/6, centered on

the north pole. As discussed in Ref. [72], we expect the stresses and strains at a

fixed geodesic distance r from the pole on a sphere of radius R to be controlled by

an effective disclination charge

seff(r) = s−
∫ 2π

0

dφ

∫ r

0

dr′
√
g K

=
π

3
− 4π sin2

( r

2R

)

. (2.67)

Here the Gaussian curvature is K = 1/R2 and the metric tensor associated with

spherical polar coordinates (r, φ), with distance element ds2 = d2r+R2 sin2(r/R)d2φ,

gives
√
g = R sin(r/R). Suppose m grain boundaries radiate from the disclination at

the north pole. Then, in an approximation which neglects interactions between the

individual arms, the spacing between the dislocations in these grains is [72]

l(r) =
am

seff(r)
, (2.68)

which implies an effective dislocation density

nd(r) =
1

l(r)
=

1

ma

[

π

3
− 4π sin2

( r

2R

)

]

=
2π

ma

[

cos
( r

R

)

− 5

6

]

. (2.69)

This density vanishes when r → rc, where

rc = R arccos

(

5

6

)

≈ 33.56◦R , (2.70)

which is the distance at which the m grain boundaries terminate. The total number
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of dislocations residing within this radius is thus

Nd = m

∫ rc

0

dr nd(r)

=
π

3a
rc −

4π

a

∫ rc

0

dr sin2
( r

2R

)

=
π

3

[√
11 − 5 arccos

(

5

6

)](

R

a

)

≈ 0.408

(

R

a

)

. (2.71)

The simple geometrical argument outlined above predicts a linear dependence between

the number of excess dislocations per scar and the ratio R/a between the radius of

the sphere and the lattice spacing a, with angular coefficient approximately equal

to 0.41. Such a prediction has been brilliantly confirmed by Bausch et al. in a

beautiful experiment of 2003 [95]. In this experiment spherical crystals were obtained

from the self-assembly of 1-µm-diameter cross-linked polystyrene beads adsorbed on

the surface of spherical water droplets, themselves suspended in a density-matched

toluene-chlorobenzene mixture (20). By changing the radius of the water droplet as

well as the number of polystyrene beads on the surface, the authors of Ref. [95]

imaged the formation of scars and counted the number of excess dislocations per scar

(see Fig.) finding Nd ∼ 0.41R/a.



Chapter 3

Crystalline order on surfaces with

variable Gaussian curvature and

boundary

3.1 Introduction

Under specific experimental conditions amphiphilic molecules in solution, such as

lipids or amphiphilic block copolymers self-assemble in a spectacular variety of shapes

including spherical and cylindrical micelles, vesicles and lamellae, together with more

complex geometries such as uni- and multilamellar vesicles, onion vesicles, toroidal

and cage-shaped micelles. The exact shape and size of these structures has been

observed to depend on both molecular (i.e. molecular size, hydrophilic/hydrophobic

ratio, molecular stiffness) and collective parameters such as the concentration or the

ability of the molecules to diffuse through the solvent.

As noted previously, amphiphilic membranes can exist in different thermodynamic

states according to the amount of orientational and positional order or their molecular

constituents. The L′
β and Pβ phases, which occur in lipid membranes featuring the

phosphatidylcholine (PC) group, have been found, in particular, to exhibit in-plane
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orientational correlations extending over 200 Å, one order of magnitude larger than

the typical spacing between PC groups [24, 99]. Because of thermal fluctuations,

such membranes generally appear in a corrugated conformation with non-constant

Gaussian and mean curvature. Furthermore it is likely for lipid membranes to have

pores providing a passage from the exterior to the interior of a vesicle. It is therefore

natural to ask how variable Gaussian curvature and the presence of one or more

boundaries affects the phenomenology reviewed in the previous section in the case of

the sphere.

In this chapter we discuss crystalline order in two important cases of surfaces with

variable Gaussian curvature and (possibly) boundary, namely the bumpy surface that

is obtained by revolving the graph of a Gaussian function around its symmetry axis

(i.e. a Gaussian bump) and the paraboloid of revolution. The former can be thought

as a gentle deformation of a plane and thus can serve as a playground to analyze

the onset of behavior not occurring in planar systems; the latter is possibly the sim-

plest two-dimensional Riemannian surface having variable Gaussian curvature and

boundary and provides a setting that is simple enough to carry out a full analytical

treatment and analyze also large curvature regimes. Furthermore, since paraboloidal

shapes naturally occur across the air/liquid interface of a fluid placed in a rotating

cylindrical vessel, a direct physical realization of paraboloidal crystals can be con-

structed by assembling monodisperse objects on the surface of a rotating liquid. In

§3.5 we review a simple experiment done in cooperation with H. Shin and C. Thomas

[100] in which such a macroscopic model for a paraboloidal crystal is constructed

by assembling a two-dimensional soap bubble “raft” on the air/liquid interface of

a water-soap solution, thus extending the classic work of Bragg and Nye on planar

bubble rafts. Purely orientational order on the Gaussian bump has been recently

reviewed by Turner et al [63] and won’t be discussed here.
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3.2 Surfaces of revolution and conformal mapping

Before analyzing the ground state structure of a crystalline paraboloid and Gaussian

bump, it is useful to refresh some general concepts in the geometry of surfaces of

revolution. The notion of conformal mapping of Riemannian surfaces will be also

frequently employed in the following and will be briefly reviewed in this section with

special attention on its application to the calculation of Green functions on simply

connected 2−manifolds.

A surface of revolution M is a surface obtained by revolving a two-dimensional

curve around an axis. The resulting surface therefore always has azimuthal symmetry.

The standard parametrization of a surface of revolution is:



















x = ξ(r) cosφ

y = ξ(r) sinφ

z = η(r)

(3.1)

where r ∈ [0, R] (with R possibly infinite) and φ = [0, 2π). The metric of the surface

(3.1) is given by:

ds2 = [(ξ′)2 + (η′)2]dr2 + ξ2dφ2 , (3.2)

where the prime indicate a partial derivative with respect to r. The Gaussian curva-

ture is a function of r only and is given by:

K =
η′(ξ′η′′ − ξ′′η′)

ξ(ξ′2 + η′2)2
(3.3)

In the presence of a boundary ∂M the condition (2.2) for the total topological charge

of any triangulation on M reads:

Q =

V∂M
∑

i=1

(4 − ci) +

VM
∑

i=1

(6 − ci) = 6χ (3.4)

where V∂M and VM are the number of vertices on the boundary and the interior of the

manifold respectively (with V = V∂M+VM the total number of vertices). qi,∂M = 4−ci
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is the topological charge of a vertex of coordination number ci located on the bound-

ary, where the coordination number of a perfect triangular lattice is four rather than

six. A surface of revolution with boundary ∂M = {r = R}× [0, 2π] is homeomorphic

to a disk (g = 0 and h = 1) and has therefore χ = 1 and total topological charge

Q = 6. Such a topological requirement can be fulfilled for instance by placing six iso-

lated 3−fold disclinations along the boundary and keeping the interior of the surface

defect-free or, on the other hand, by placing a 5−fold disclination in the interior and

the remaining five 3−fold disclinations along the boundary.

Let us consider now a generic Riemannian surface M and two curves on S in-

tersecting at some point x0. The angle between the two intersecting curves is, by

definition, the angle between the tangents to these curves at x0. A mapping of a

portion S of a surface onto a portion S∗ is called conformal (or angle-preserving) if

the angle of intersection of every arbitrary pair of intersecting arcs on S∗ is the same

as that of the corresponding inverse images on S at the corresponding point (see for

example [101]). It is not difficult to prove that a mapping from a portion S of a

surface onto a portion S∗ is conformal if and only if, when on S and S∗ the same

coordinate systems have been introduced, the coefficients g∗ij and gij of the metric

tensor of S∗ and S are related by:

g∗ij = w(x)gij , (3.5)

with w a positive function of the coordinates x = (x1, x2). Eq. (3.5) implies indeed

that the angle between any pair of intersecting curves is the same in S∗ and S.

Isometries are a special case of conformal mappings where w = 1 and the mapping

is both distance and angle-preserving.

A special type of conformal mapping is that of a portion S of a surface into a

plane. This may be accomplished by introducing a set of coordinates u = (u1, u2)

such that:

ds2 = w(u)[(du1)2 + (du2)2] . (3.6)
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Coordinates (u1, u2) satisfying Eq. (3.6) are called isothermal (or conformal). In

general, any simply connected Riemannian manifold with a C∞−smooth metric ds2

can be equipped with a set of local isothermal coordinates. This important result can

be stated by saying that any simply connected Riemannian manifold is locally con-

formally equivalent to a planar domain in two-dimensions. In conformal coordinates,

the Gaussian curvature reads:

K = −2∆[logw(u)]

w(u)
(3.7)

Conformal mapping is the fundamental tool behind the celebrated uniformization the-

orem according to which, every simply connected Riemannian surface is conformally

equivalent to the unit disk, the complex plane or the Riemann sphere. This theorem,

first proved by Koebe and Poincaré independently in 1907, extends the Riemann

mapping theorem for simply connected domains in the complex plane to all simply

connected Riemannian surfaces and provides an insightful classification scheme. Its

formidable power lies in the fact that the mapping that allows one to transform a

generic surface into a simpler “irreducible” one is not an arbitrary homeomorphism

but is conformal, and thus preserves part of the geometrical structure of the original

manifold. In the following we will see how this feature has important consequences

in the elastic theory of defects on curved surfaces. The uniformization of Riemannian

surfaces is historically the first example of geometrization. In the case of manifolds

of higher Hausdorff dimension, and 3-manifolds in particular, the latter program has

become, following Thurston, one of the most challenging and fascinating chapters of

modern geometry.

A bounded Gaussian bump and a paraboloid of revolution are both conformally

equivalent to the unit disk D of the complex plane. Calling z = ̺eiφ, the new metric

will be:

ds2 = w(z)(d̺2 + ̺2dφ2) (3.8)

The conformal factor w can be found by equating the metrics (3.2) and (3.8). This
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yields:

w(ρ) =

[

ξ(r)

̺

]2

(3.9)

with ̺ and r related by the differential equation:

d̺

dr
±
√

(ξ′)2 + (η′)2

ξ2
̺ = 0 (3.10)

whose solution is given by:

̺ = exp

{

±
∫

dr

√

(ξ′)2 + (η′)2

ξ2

}

(3.11)

The sign of the exponent and the integration constant in Eq. (3.11) can be tuned to

obtain the desired scale and direction of the conformal map.

The calculation of the Green function of the Laplace and biharmonic operator is

considerably simplified once a surface of revolution has been endowed with a local

system of isothermal coordinates. In this case it is easy to show the Laplace-Beltrami

operator ∆g takes the form:

∆g = w−1∆ (3.12)

where ∆ is now the Laplacian in the Euclidean metric tensor:

γ̺̺ = 1, γ̺φ = 0, γφφ = ̺2, (3.13)

with determinant γ. Since the determinant of the metric tensor undergoes the trans-

formation
√
g → w

√
γ under conformal mapping, the Laplace and biharmonic equa-

tion for the Green function become:

∆GL(z, ζ) = δ(z, ζ) (3.14a)

∆w−1∆G2L(z, ζ) = δ(z, ζ) (3.14b)

where δ(z, ζ) is the standard delta function at the point z = ζ of the unit disk. Eq.

(3.14a) is now the standard Laplace-Green equation. Its associated Dirichlet problem

has the familiar solution:

GL(z, ζ) =
1

2π
log

∣

∣

∣

∣

z − ζ

1 − zζ

∣

∣

∣

∣

(3.15)
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Eq. (3.14b) is known as the weighted biharmonic Green equation. The uniqueness of

its solution requires imposing both Dirichlet and Neumann boundary conditions:










G2L(z, ζ) = 0 z ∈ ∂D

∂n(z)G2L(z, ζ) = 0 z ∈ ∂D

(3.16)

where ∂n(z) denotes the derivative with respect to the variable z along the normal

direction at ∂D. Its solution can be expressed in integral form as:

G2L(z, ζ) =

∫

dσ2GL(z, σ)[GL(σ, ζ) −H(σ, ζ)] (3.17)

where H(σ, ζ) is a harmonic kernel that enforces the Neumann condition. Such a

function depends on the form of the conformal weight w. For radial weights w =

w0(|z|2), such as those obtained by conformally mapping a surface of revolution,

H(σ, ζ) has been calculated explicitly by Shimorin [102]:

H(σ, ζ) = −2

∫ 1

|ζ|

dt

t

∫ t2

0

dsw0(s)k
( s

t2
ζ σ
)

(3.18)

where:

k(z ζ) =
∑

n≥0

(z ζ)n

cn
+
∑

n<0

(z ζ)|n|

c|n|
(3.19)

and the coefficients cn are given by:

cn = 2

∫ 1

0

dt tnw0(t) . (3.20)

3.3 Crystalline order on the Gaussian bump

The most natural way of introducing a non-vanishing Gaussian curvature on an ini-

tially flat medium is to gently deform the medium at one point in such a way that

the curvature introduced by this deformation dies off at infinity. If the initial pla-

nar domain is the entire Euclidean plane R
2, the Euler characteristic is zero and,

independently of the value of the Gaussian curvature, an ordered phase embedded

on it is not topologically required to contain defects. Such a construction is clearly
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ideal to detect the onset of structural behavior not occurring in the ground state of

a planar system such as the appearance of dislocations and disclinations. Vitelli et al

[103, 104] analyzed crystalline and p−atic order on the bumpy surface obtained by

revolving the graph of a Gaussian function about its symmetry axis. The resulting

Gaussian bump has parametrization:



















x = r cos φ

y = r sin φ

z = h exp
(

− r2

2r20

)

(3.21)

with r ∈ [0, R] and φ ∈ [0, 2π). In this parametrization the metric tensor gij (with

determinant g) and the Gaussian curvature are given by:

grr = ℓ(r), grφ = 0, gφφ = r2, (3.22a)

K =
α2e

− r2

r2
0

r2
0 ℓ

2(r)

(

1 − r2

r2
0

)

, (3.22b)

where α = h/r0 is the aspect ratio of the bump and ℓ(r) is given by:

ℓ(r) = 1 +
α2r2

r2
0

e
− r2

r2
0 (3.23)

It is an instructive exercise to verify that the Euler characteristic χ vanishes when

the boundary radius R is set to infinity. Employing the Gauss-Bonnet theorem one

has:

χ =

∫ R

0

dr
√
g K +

1

2π

∮

CR

ds κg (3.24)

where κg, the geodesics curvature of the circular boundary CR of radius R, is given

by:

κg =
1

R
√

ℓ(R)
(3.25)

If the bump is unbounded the second term in Eq. (3.24) disappears and, on taking

R → ∞, one has:
∫ ∞

0

dr
√
g K = 0
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which implies χ = 0. For finite values of R, on the other hand, the first integral in

Eq. (3.24) gives:
∫ R

0

dr
√
g K = 1 − 1

√

ℓ(R)

so that the terms proportional to 1/
√

ℓ(R) cancel each other, yielding χ = 1. Because

the infinite bump has χ = 0 disclinations must appear in pairs and dislocations must

have total Burgers vector zero:

∑

i

qi =
∑

i

bi = 0

Vitelli et al showed that topological defects appear in the ground state when the

aspect ratio α exceeds a critical value αc. Because of the topological constraint,

defects appears initially in the form of a pair of unbound dislocations, roughly located

in the region where K = 0. Upon increasing the aspect ratio, more dislocations

appear. This mechanism clearly resembles the defect proliferation that occurs in

two-dimensional melting and suggests an interpretation of the curvature as a local

effective temperature.

At the onset of defect proliferation, inter-defect interactions are negligible with

respect to the interactions with the “smeared out” topological charge associated with

the curvature of the underlying medium. The dislocation unbinding mechanism is

then described by a non-local function of the Gaussian curvature representing the

defect-curvature interaction part of the elastic energy of Eq. (2.54):

Fint = Y

∫

d2x η(x)

∫

d2y G2L(x,y)K(y) = Y

∫

d2x η(x)ϕ(x) , (3.26)

where Fint is the curvature-defect interaction part of the elastic energy and ϕ(x) can

be interpreted as a geometric potential associated with the Gaussian curvature of the

embedding manifold:

∆2ϕ(x) = K(x) . (3.27)

Thus

ϕ(x) =

∫

d2z d2y GL(x,y)[GL(y, z)K(z) + U(y)] , (3.28)
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Figure 3.1: (Color online) Curvature-defect interaction energy of an isolated disclination for a

Gaussian bump of aspect ratio α = 0.5. Open symbols represent the data from a numerical mini-

mization of a fixed connectivity harmonic model. The lower and upper branch are obtained from

Eq. (3.30) by setting θ = ±π/2 and letting Λ equal 4 (blue curve) and 8 (red curve). [Courtesy of

V. Vitelli, University of Pennsylvania, Philadelphia, PA].

where U(y) is a harmonic function which enforces the boundary conditions. The

Laplacian Green function has the form (3.15) with the conformal distance ρ = |z|
given here by:

̺ =
r

R
exp

{

−
∫ R

r

dr′
√

ℓ(r′) − 1

r′

}

(3.29)

For a single dislocation of Burgers vector b, Fint has the form [103]:

Fint =
1

8
hbα2Y sinφ

(

e−λ
2 − 1

λ
+

λ

Λ2

)

, (3.30)

where λ = r/r0 and Λ = R/r0. The first term in Eq. (3.30) corresponds to the

R → ∞ geometric potential, while the second is a finite size correction arising from a

circular boundary of radius R. A plot of the function (3.30) is shown in Fig. 3.1. The

profile of the function Fint can be elucidated by regarding a dislocation as bound pair

of disclinations of opposite topological charge. Each one of the disclinations interacts

with a potential of the form (3.27). For small r, positive (negative) disclinations
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Figure 3.2: (Color online) Dislocation unbinding. (a) Critical aspect ratio αc as a function of r0/b.

The theoretical estimate (3.31) is plotted versus r0/b for core energies Ed = 0 (dashed line) and

Ec = 0.1B2Y (solid line). Circles are obtained from a numerical minimization of a fixed connectivity

harmonic model. On right the logarithm of the numerically calculated strain energy for a (c) defect-

free configuration on a bump of r0 = 10b and α = 0.7 > αc and (d) the defective configuration

shown in the inset. [Courtesy of V. Vitelli, University of Pennsylvania, Philadelphia, PA].

are attracted (repelled) by the center of the bump. As a consequence disclinations

experience a force which increases linearly with r. Thus if the positive disclination in

the dipole is closer to the top, it will experience a force that is opposite and slightly

less than that acting on the negative disclination that is further away from the top.

As a result an effective “tidal” force will push the dislocation downhill. For large r,

however, the geometric potential saturates and the attractive force exerted on the

positive disclination takes over and drags the dislocation toward the center of the

bump. The minimum of the elastic energy corresponding to the equilibrium between

these two competing forces is obtained for λ ≈ 1.1. The origin of these forces is the

Peach-Koehler force fk = ǫkjbiσij acting on a dislocation of Burgers vector bi in an

external stress field σij . In the case of a two-dimensional crystal on a substrate with

preexisting Gaussian curvature, dislocations couple with the internal stress due to the

curvature of the medium producing a similar effect.

Unbound dislocations occur in the ground state of a crystalline Gaussian bump
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when the aspect ratio α exceeds a critical value. For nearly flat landscapes, indeed, the

energetic cost of a pair of unbound dislocations is larger than that due to the distortion

of the medium and the system is favoured to be defect free. Upon increasing the aspect

ratio, however, the resulting elastic strain can be partially relieved by introducing a

pair of dislocations with equal and opposite Burgers vector. The transition occurs

when the energy gain from placing each dislocation in the minimum of the potential

energy Fint outweights the total work needed to tear them apart plus the core energies

2Ed. The resulting critical aspect ratio is given by:

α2
c ≈

b

2r0
log
(r0
b′

)

, (3.31)

where b′ = (b/2)e−8πEc/(Y b2) . Upon increasing the aspect ratio, the number of un-

bound dislocations increases and elementary 5−7 dislocations start clustering in more

complicated structures of zero net Burgers vector. Fig. 3.2 shows a plot of the critical

aspect ratio αc as the function of the dimensionless parameter r0/b from Ref. [103],

as well as density plots of the strain energy corresponding to a defect-free bump (c)

and a configuration featuring two unbound dislocations (b).

The interaction between defects and curvature also has some remarkable stabi-

lizing effects on defect dynamics. Dislocation dynamics consists of two distinct pro-

cesses: glide and climb. The former is motion along the direction of the Burgers

vector and it implies only local rearrangement of atoms and thus requires a very low

activation energy which makes it dominant at low temperatures. The latter consists

of motion in the direction perpendicular to the Burgers vector, it requires diffusion

of vacancies and interstitials and is usually suppressed relative to glide. As a con-

sequence of the underlying curvature, however, a gliding dislocation experiences a

“recalling” force frecall ≈ kd|y|, where y is the transverse displacement and kd is a

position-dependent effective spring constant. At leading order in y and α, the latter

is given by:

kd(r) =
bα2Y

4r0

[

1 − (1 + λ2)e−λ
2

λ3

]

. (3.32)
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Figure 3.3: (Color online) Dislocation glide. (a) Recalling potential 1

2
kdy

2 acting on dislocations

gliding in the direction y (expressed in units of the lattice spacing a) for r0/a = 10, λ = 0.5 (at

y = 0), Λ = 8 and α = 0.1 (dark blue), 0.3 (blue), 0.5 (orange) and 0.7 (red). The energy is

scaled by 10−4. Effective spring constant for r0 = 10a and α = 0.5. The ordinate axis is scaled by

10−2. Filled and empty circles represent numerical data obtained from a fixed connectivity harmonic

model. [Courtesy of V. Vitelli, University of Pennsylvania, Philadelphia, PA].

This effective recaling force is not due to any external field nor to the interaction of dis-

locations with other defects, but exclusively to the coupling of the gliding dislocation

with the curvature of the substrate. As expected the effective spring constant (3.32)

vanishes for planar crystals (i.e. α→ 0). Since Y b2 can be hundreds of kBT , at finite

temperature the harmonic potential 1
2
kdy

2 associated with the recalling force raises

the activation energy of thermally induced dislocation glide. The harmonic recalling

potential and the effective spring constant (3.32) are ploted in Fig. 3.3, together with

numerical data obtained from a fixed connectivity harmonic model [103].

Spatial curvature also provides an effective potential in the thermal diffusion of

interstitials and vacancies. These can be constructed by grouping three dislocation

dipoles. The elastic energy associated with a single interstitial/vacancy can be derived

from Eq. (3.26) in the form

Fint(x) ≈ 1

2
Y ΩV (x) , (3.33)

where V = ∆ϕ and Ω is the area excess or deficit associated with the defects. As a
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result, interstitials tend to climb to the top of the bump while vacancies are pushed

into the flat regions. Like a disclination of positive topological charge, an interstitial

is attracted to regions of positive Gaussian curvature while a vacancy is attracted to

regions of negative Gaussian curvature.

Figure 3.4: (Color online) Delaunay triangulation of 780 particles on a Gaussian bump. (a) and (b)

Top view of the lattice containing two dislocations of opposite Burgers vector on a bump of aspect

ratio α = 0.82. (c) and (d) Three dislocations arranged around a bump of aspect ratio α = 0.95. (e)

and (f) A more complex arrangements of dislocations on a bump of aspect ratio α = 1.58. [Courtesy

of Alexander Hexemer, UC Santa Barbara, Santa Barbara, CA. Currently at Lawrence Berkeley

National Lab., Berkeley, CA].
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The crystalline structure arising on a Gaussian bump has been investigated nu-

merically by Hexemer et al [105]. By means of smart Monte Carlo (SMC) simulations,

the authors analyzed the ground state configuration of a system of N point-like parti-

cles (with N up to 780) interacting on a Gaussian bump of variable aspect ratio with

a Yukawa potential of the form U(r) = exp(−κr)/r with r the Euclidean distance

between two particles in R
3. In the first approximation such a potential describes

the interaction between charged particles in solution with counter-ions and κ−1 is

the Deybe-Hückel screening length. Starting from an initially defect-free lattice and

relaxing it with order 105 SMC iterations, Hexemer et al observed the appearance of

defects for increasing aspect ratio. Fig. 3.4 shows the arrangement of 780 particles

for increasing aspect ratios. As predicted by the elastic theory, the proliferation of

defects starts with the appearance of a pair of isolated dislocations (Figs. 3.4a and

b). They are sitting at λ = 1.46 from the center and are rotated by 180◦, giving rise

to a configuration with total Burgers vector close to zero. Upon increasing the aspect

ratio, a third dislocation is observed (Fig. 3.4c and d). The three dislocations are

rotated by 120◦ with respect to each other. The green and blue circles in Fig. 3.4c

and d mark the region of zero Gaussian curvature and the minimum of the geometric

potential at 1.1 r0. As shown in the figure, for α = 0.95 two of the three dislocation

are not sitting at 1.1 r0 as one might expect. One is deep inside the area of positive

Gaussian curvature while the other is in the region of negative Gaussian curvature.

Hexemer et al excluded this discrepancy was due to a misconvergence of the algorithm

and argued it is to be attributed to the finite size of the system.

Fig. 3.4e and f show the lowest energy state on a bump of aspect ratio α = 1.58.

In this situation dislocations appear arranged in the form of grain boundaries. This

phenomenon has a simple interpretation. The total elastic energy of a collection of

defects on a curved surface consists of three parts: the curvature-defect interaction

discussed above, that tends to localize the defects where the geometric potential is

minimal, a defect-defect interaction which is repulsive for like-sign defects and attrac-
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Figure 3.5: Total number of disclinations in the ground state as a function of the aspect ratio α.

[Courtesy of Alexander Hexemer, UC Santa Barbara, Santa Barbara, CA. Currently at Lawrence

Berkeley National Lab., Berkeley, CA].

tive for defects of opposite sign and an additional contribution due to the curvature

alone. For a small number of dislocations, inter-defect interactions are negligible if

compared with curvature-defect interactions and dislocations tend to gather where

Fint is minimal. As shown from the data in Fig. 3.5, however, the total number

of dislocations in the bump is linearly proportional to the aspect ratio. When the

total number of dislocations on the bump exceeds some threshold value the repulsive

interaction takes over and dislocations start spreading. Dislocations with parallel (an-

tiparallel) Burgers vector are organized in such a way as to maximize (minimize) their

reciprocal distance while still taking advantage of the Gaussian curvature screening.

The final result of this competition are the Y−shaped grain boundaries shown in Fig.

3.4. The branching allows the dislocations to lower their potential energy by keeping

a large number of dislocations close to the 1.1 r0 circle.
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3.4 Paraboloidal crystals

3.4.1 Elastic energy of disclinations on the paraboloid

A paraboloid of revolution is possibly the simplest surface with both variable Gaussian

curvature and boundary. Its standard parametrization is given by:


















x = r cosφ

y = r sin φ

z = h
R2 r

2

(3.34)

with r ∈ [0, R] and φ = [0, 2π]. Here h is the height of the paraboloid and R the

maximum radius. In the following we will call κ = 2h/R2 the normal curvature of

the paraboloid at the origin. The metric tensor gij and the Gaussian curvature are

given respectively by:

grr = 1 + κ2r2, grφ = 0, gφφ = r2 , (3.35a)

K =
κ2

(1 + κ2r2)2
(3.35b)

The problem of finding the optimal arrangement of disclinations in the ground state

of paraboloidal crystals has been considered by the authors of this review article

[106, 107]. As in the case of a Gaussian bump, when the maximal Gaussian curvature

exceeds some critical value (depending on κ and R) defects proliferate in an initially

defect-free configuration. Unlike the Gaussian bump, however, the Gaussian curva-

ture on a paraboloid is strictly positive and only vanishes at infinity. Positive isolated

disclinations are thus energetically preferred to dislocation dipoles and the defect pro-

liferation mechanism consists of a “migration” of one of the six topologically required

+1-disclinations from the boundary to the origin of the paraboloid. Dislocations, on

the other hand, appear in the system clustered in the form of grain boundary scars in

the high density regime as in spherical crystals. Since the Gaussian curvature is not

constant throughout the manifold, however, this transition is preceded by a regime

in which isolated disclinations and scars coexist in the crystal.
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Let ρ(x) be the effective topological charge density of a system of N disclinations

on a background of Gaussian curvature K(x):

ρ(x) =
π

3

N
∑

i=1

qiδ(x,xi) −K(x) (3.36)

If free boundary conditions are choosen, the elastic energy (2.55) can be written as:

Fel =
1

2Y

∫

d2xΓ2(x) (3.37)

where Γ(x) = ∆χ(x), and χ(x) satisfies the inhomogeneous biharmonic equation:

∆2χ(x) = Y ρ(x) (3.38)

with boundary conditions:










χ(x) = 0 x ∈ ∂M

νi∇iχ(x) x ∈ ∂M
(3.39)

where νi is the ith component of the tangent vector ν perpendicular to the boundary.

In the parametrization (3.34), the normal vector ν is simply given by gr/|gr| with gr

the basis vector associated with the coordinate r. The stress function Γ(x) can thus

be expressed as:
Γ(x)

Y
=

∫

d2y GL(x,y)ρ(y) + U(x) . (3.40)

GL(x,y) is given in (3.15) and U(x) is a harmonic function on the paraboloid that

enforces the Neumann boundary conditions in Eq. (3.39). The conformal distance

on the paraboloid is given by:

̺(r) = λ
re

√
1+κ2r2

1 +
√

1 + κ2r2
. (3.41)

with λ a scale factor which ensures that ̺(R) = 1. The Green’s function GL(x,y),

and hence the entire elastic free energy, depends only on the coefficients of the first

fundamental form of the surface (i.e. the metric tensor gij). Thus the elastic energy

associated with the defect interactions and thus the crystalline order is an intrinsic
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Figure 3.6: (Color online) The function Γs(r) and Uκ,R for different values of κ.

property of the manifold and so is invariant under local isometries. This observation,

which might appear obvious in the case of isometric surfaces such the Euclidean plane

and the cylinder, is quite remarkable when applied to more sophisticated isometric

manifolds such as the catenoid and the helicoid or Scherk surfaces.

Using Eq. (3.41) and (3.15) in Eq. (3.37), the elastic energy Fel of a collection of

N disclinations in a paraboloidal crystal can be expressed as:

Γ(x)

Y
=
π

3

N
∑

i=1

qiGL(x,xi) − Γs(|x|) + U(x) , (3.42)

where the first term represents the bare contribution of the defects to the energy

density and the second corresponds to the screening effect of the Gaussian curvature.

Explicitly:

Γs(|x|) = log

(

αe
√

1+κ2r2

1 +
√

1 + κ2r2

)

, (3.43)

where r = |x| and

α =
1 +

√
1 + κ2R2

exp
(√

1 + κ2R2
) (3.44)

is a normalization constant depending on boundary radius R and the ratio κ. Fig.

3.6a shows a plot of the screening function Γs(r) for different values of κ ∈ [1, 2]. As

expected, the contribution due to Gaussian curvature is maximum at the origin of

the paraboloid and drops to zero at the boundary.
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The calculation of the harmonic function U(x) requires a little more effort. If the

crystal was defect-free (or populated by a perfectly isotropic distribution of defects)

the function U(x) would be azimuthally symmetric and constant on the boundary.

By the maximum principle of harmonic functions, U(x) would then be constant on

the whole manifold and depend only on κ and the radius R: U(x) = Uκ,R. This

constant can be determined by integrating ∆χ(x) = Γ(x) and imposing the second

boundary condition in Eq. (3.39). This gives:

Uκ,R =
2π

A

∫ R

0

dr
√
g Γs(r), (3.45)

where A is the area of the paraboloid:

A =
2π

3κ2

[

(

1 + κ2R2
)

3

2 − 1
]

. (3.46)

As shown in Figure 3.6b, the value of Uκ,R quickly approaches the linear regime as

the size of the radius increases:

Uκ,R ≈ −1

4
κR+

1

3
· (3.47)

Then, for a defect-free configuration, the contribution of the boundary to the en-

ergy density is a constant offset that persists even for large radii. In the presence of

disclinations, on the other hand, the function χ(x) is no longer expected to be az-

imuthally symmetric and the harmonic function U(x) will not be constant throughout

the paraboloid. In this case U(x) can be expressed in the integral form:

U(x) = −
∫

d2y H(x,y)ρ(y), (3.48)

where H(x,y) is the harmonic kernel (3.18).

3.4.2 Large core energies: pyramidal lattices

In the regime of large core energies Fc ≫ Fel, the creation of defects is strongly

penalized and the lattice necessarily has the minimum number of disclinations allowed
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by the topology of the paraboloidal substrate. From symmetry considerations, we

might expect the optimal distribution of defects to consist of b +1−disclinations

arranged along the boundary at the base vertices of a b-gonal pyramid and a b-fold

apex (of topological charge q0 = 6 − b) at the origin. The homogeneous boundary

conditions adopted require the first term in Eq. (3.42) to vanish at the boundary. In

the minimal energy configuration then, the system has the freedom to tune the total

number of defects along the boundary to minimize the elastic energy Eq. (3.37) for

any given value of the ratio κ. This behavior is exclusive to manifolds with boundary

and doesn’t have any counterpart in crystals on compact surfaces like the sphere and

the torus. In the following, we will see how this minimization leads to properties

which we believe to hold, in the most general sense, on any surface with boundary.

We will label a pyramidal configuration by Yb, where b denotes the number of base

+1−disclinations. The coordinates (r, φ) of the vertices are given by:

Yb :

{

(0, any),

(

R,
2πk

b

)

1≤k≤b

}

. (3.49)

Using the Euler theorem one can show that it is possible to construct infinite families

of polyhedra with the symmetry group Cbv from the pyramidal backbone Yb. The

number of vertices is given by:

V = 1
2
bn(n + 1) + 1, (3.50)

where n is a positive integer which represents the number of edges (not necessarily of

the same length) of the polyhedron which separates two neighboring disclinations. In

the following we will refer to these polyhedra with the symbol Yb,n. Fig. 3.7 illustrates

two Yb,n lattices for the cases b = 4 and n = 7 (with V = 113), and b = 5 and n = 10

(V = 276). By a numerical minimization of the energy Eq. (3.37) one can establish

that the Yb are indeed equilibrium configurations for b ∈ [3, 5], for some range of the

parameters κ and R. The cases of b = 5, 6 are particularly significant because they

are characterized by an equal number of defects (N = 6) of the same topological
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Figure 3.7: (Color online) Two examples of Yb,n triangulations of the paraboloid (Y4,7 on the top

and Y5,10 on the bottom). Plaquettes with disclinations are highlighted in red, for +1−disclinations,

and green for +2−disclinations.

charge (q = 1). The two configurations will be associated therefore with the same

core energy Fc and this introduces the possibility of a structural transition between

Y5 and Y6 governed by the curvature ratio κ and the boundary radius R. For fixed R

and small values of κ the 6−fold symmetric configuration Y6 is the global minimum

of the free energy Eq. (3.37). For κ larger than some critical value κc(R), however,

the Y6 crystal becomes unstable with respect to the 5−fold symmetric configuration
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Y5. A numerical calculation of the intersection point between the elastic energies of

Y5 and Y6 for different values of κ and R allow us to construct the phase diagram

shown in Fig. 3.8. The word “phase” in this context refers to the symmetry of the

ground state configuration as a function of the geometrical system parameters κ and

R. In principle, if we keep increasing the curvature we might expect the crystal to

undergo a further transition to the Y4 phase. In this case, however, the core energy

will also increase by a factor 4/3 and so this is not generally possible in the regime

in which Fc ≫ Fel. For intermediate regimes (i.e. Fc ∼ Fel), Y5 → Y4 and Y4 → Y3

transitions are also possible. The critical value of the parameters κ and R, however, is

not universal and will depend on the precise values of the core energy and the Young

modulus.

Figure 3.8: (Color online) Phase diagram in the large core energy regime. For small κ the lattice

preserves the 6−fold rotational symmetry of the flat case. As the curvature at the origin increases

the system undergoes a transition to the Y5 phase.

The scenario depicted in Fig. 3.8 can be understood heuristically by imagining

a system of spherically symmetric equally sized subunits initially arranged on the

surface of a planar disk (κ = 0). The most efficient packing of this system is clearly

the one in which the subunits are arranged in a triangular lattice with six 3−fold
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sites on the boundary at the vertices of a hexagon. If now we slightly deform the disk

into a low-curvature paraboloid (κ > 0) we might expect the hexagonal configuration

to persist for small values of κ. When the deformation is more pronounced, however,

the curvature at the origin will be enough to support the existence of a 5−fold vertex

and the system will undergo a structural transition from the Y6 to the Y5 phase. In

principle, if we keep increasing the curvature we might expect the crystal to undergo

a further transition to the Y4 phase. In this case, however, the core energy will also

increase by a factor 4/3 and so this is not generally possible in the regime in which

Fc ≫ Fel. For intermediate regimes (i.e. Fc ∼ Fel), Y5 → Y4 and Y4 → Y3 transitions

are also possible. The critical value of the parameters κ and R, however, is not

universal and will depend in detail on the values of the core energy and the Young

modulus.

3.4.3 Small core energies: scars and coexistence

When the core energy Fc is small, the elastic energy Eq. (3.37) can be lowered by

creating additional defects. Let us assume that a fivefold disclination is sitting at

the point x0 = (r0, φ0). We can introduce a notion of distance on the paraboloid by

setting up a system of geodesic polar coordinates (s, ϕ) with origin at x0. We expect

that the stress introduced by the defect is controlled by an effective disclination charge

inside a circular domain CL of geodesic radius L:

qeff = q −
∫ 2π

0

dϕ

∫ L

0

ds
√
gK(s, ϕ), (3.51)

where q = π/3 is the charge of the isolated defect and the integral measures the

screening due to the total Gaussian curvature within the domain. The metric tensor

and the Gaussian curvature of a generic Riemannian manifold can be expressed in
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geodesic polar coordinates in the form (see for example Do Carmo [108]):

gss = 1, gsϕ = 0, gϕϕ = G, (3.52a)

K(s, ϕ) = −∂
2
s

√
G√
G

, (3.52b)

where G = gϕ · gϕ. Furthermore, an expansion of the metric around the origin (0, ϕ)

yields:
√
G = s− 1

6
K0s

3 + o(s5).

For small distance from the origin, Eq. (3.51) becomes:

qeff = q +

∫ 2π

0

dϕ

∫ L

0

ds ∂2
s

√
G (3.53)

= q − πK0L
2 + o(L4). (3.54)

The right hand side of Eq. (3.54) is a very general expression for the effective discli-

nation charge at small distance and doesn’t depend on the embedding manifold. If

a grain boundary is radiating from the original disclination, we expect the spacing

between consecutive dislocations to scale like a/qeff, with a the lattice spacing [72].

When qeff → 0+ the dislocation spacing diverges and the grain boundary terminates.

Since the Gaussian curvature is not constant, the choice of the origin (i.e. the po-

sition of the central disclination along the grain boundary) affects the evaluation of

qeff. One can identify upper and lower bounds by observing that:

max
r
K(r) = K(0) = κ2, (3.55a)

min
r
K(r) = K(R) =

κ2

(1 + κ2R2)2
· (3.55b)

Unlike the case of surfaces of constant Gaussian curvature, the phase diagram for

paraboloidal crystals consists of three regions separated by the curves:

K0L
2 =

1

3
K0 = Kmin, Kmax. (3.56)
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Figure 3.9: (Color online) Defect phase diagram for a paraboloidal crystal of radius R = 1.

The two phase boundaries that separate the isolated disclinations (ID) regime from the coexistence

regime and the coexistence regime from the scar phase correspond to the solutions of Eq. (3.57) for

K0 = Kmin and K0 = Kmax, respectively.

When L−L(Kmin) → 0+ the effective disclination charge goes to zero and the distance

between two consecutive dislocations diverges at any point. On the other hand if

L−L(Kmax) → 0−, the disclination charge will prefer to be delocalized in the form of

grain boundary scars. For L(Kmax) < L < L(Kmin) the paraboloid will be equipped

with regions where the Gaussian curvature is high enough to support the existence

of isolated disclinations as well as regions where the screening due to the curvature

is no longer sufficient and the proliferation of grain boundary scars is energetically

favored. This leads to a three region phase diagram in which the regime of isolated

disclinations is separated from the delocalized regime of scars by a novel phase in

which both isolated disclinations and scars coexist in different parts of the paraboloid

according to the magnitude of the Gaussian curvature.

It is useful to measure the distance Lc in terms of the lattice spacing a and rephrase

Eq. (3.56) as a condition on a (or equivalently on the number of vertices V ). To do

this we note that in order for the domain CL to completely screen the topological
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charge of the shortest scar possible (i.e. 5 − 7 − 5), the geodesic radius L has to be

large enough to enclose the entire length of the scar. Calling ℓ the geodesic distance

associated with a single lattice spacing a, we will then approximate L ∼ 3ℓ. This leads

to the following expression for the lattice spacing a at the onset of scar formation:

a2 ≈ 2

K0

(

1 − cos
1

3
√

3

)

. (3.57)

The lattice spacing a can be approximately expressed as a function of the number of

vertices of the crystal by dividing the area A of the paraboloid by the area of a hexag-

onal Voronoi cell of radius a/2 with a2 ≈ A/
√

3
2
V . The phase diagram arising from

the solution of Eq. (3.57) is sketched in Fig. 3.9 for the case R = 1. The two phase

boundaries that separate the isolated defects (ID in the plot) regime from the coexis-

tence regime and this one from the grain boundaries phase correspond, respectively,

to the solutions for K0 = Kmin and K0 = Kmax . The simplicity of the criteria used

to derive Eqs. (3.56) doesn’t allow us to predict the regions surrounding the phase

boundaries with high numerical accuracy, but does provide a semi-quantitative pic-

ture of the novel phenomenology of defects in non-Euclidean crystals that is generally

supported by the numerical results presented in §3.4.4.

3.4.4 Paraboloidal Coulomb crystals

In the following section I report the results of a numerical minimization of a system of

V classical particles interacting via a Coulomb potential E =
∑

i<j 1/|xi−xj | on the

surface of a paraboloid. The equilibrium configuration arising from this optimization

problem can be viewed as a direct realization of a paraboloidal crystal and thus

provides a testing ground for our analytical results.

The determination of the equilibrium properties of complex systems is complicated

by the rich topography of the energy landscape, with its many, often deep, local

minima (valleys) separated by high barriers (passes). The number of local minima

grows rapidly with system size, making it increasingly difficult, or impossible, to find



3.4 Paraboloidal crystals 70

Figure 3.10: (Color online) Voronoi lattice and Delaunay triangulations for ten selected systems

from numerical simulations with R = 1. The first row corresponds to V = 200 and κ = 1.6, while the

second row is for V = 200 and κ = 0.8. In the bottom four rows V = 150 , 100 , 80 , 60 , 50 , 30 , 20 , 16

and κ = 1.6. From [107].



3.4 Paraboloidal crystals 71

the global minimum. The effort in solving a given global optimization problem is

described by computational complexity theory. Locating the global minimum for a

potential energy surface belongs to the class of problems known as NP-hard, for which

there is no known algorithm that is certain to solve the problem within a time that

scales as a power of the system size.

The Thomson problem [78–80, 89–92, 109] of finding the optimal configuration of

V interacting charges on a 2-sphere represents, in this context, a celebrated example

of a hard optimization problem. The existence of novel arrays of topological defects

in minimal energy configurations provides further insight into the structure of the

energy landscape. Computer experiments on the Thomson problem indicate that,

in the range 70 ≤ V ≤ 112, the number of local minima for each value of V grows

exponentially: N ≃ 0.382 exp(0.0497V ) [90]. This trend is believed to continue for

larger values of V , making the determination of the global minimum a formidable

computational challenge. In the case of the paraboloid we believe the prefactor in

this scaling law is larger due to the additional constraint of the boundary.

To construct equilibrium lattice configurations we adopted a parallel implementa-

tion of Differential Evolution (DE) [106, 110] (see Appendix 3.A for an introductory

description of the algorithm together with the parallelization strategy). The ini-

tial pool of candidate solutions is generated at the beginning of the simulation by

randomly creating NP = 20V configurations uniformly distributed over the whole

search space {r ∈ [0, R]} ⊗ {φ ∈ [0, 2π]}. The population is then evolved by 3 · 105

DE iterations on ten processors working in parallel.

In Fig. 3.10 we show the Voronoi lattice and the Delaunay triangulations for

five selected systems up to V = 200 particles. The lowest energy seen, together

with the number of n−fold vertices, for each one of these lattices is reported in Table

3.4.4. In all the systems observed disclinations always appear clustered in either grain

boundary scars or dislocations with the exception of isolated +1−disclinations which

appearing in the bulk as expected from the curvature screening argument discussed
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V V−2 V−1 V0 V1 Energy

10 0 0 4 6 36.94485696974016

20 0 4 6 10 179.5291483377297

30 0 6 12 12 439.0497473530407

40 2 5 18 15 818.8300625504069

50 4 4 24 18 1321.878894548272

60 2 10 28 20 1949.230291403783

70 2 16 26 26 2701.959660541221

80 3 17 31 29 3581.110585181344

90 2 16 46 26 4588.364706108566

100 3 15 55 27 5722.503370970009

150 1 30 81 38 13323.70617345018

200 3 35 115 47 24173.21580330549

Table 3.1: Numerical data for twelve selected lattices. The quantities Vq represent the number of

vertices in the crystal with topological charge q.
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in §3.4.1. The complex aggregation of defects along the boundary together with the

presence of negatively charged clusters indicates that the effect of the boundary, in the

case of relatively small systems like the ones simulated, is more drastic than predicted

by the homogeneous boundary conditions Eq. (3.39). Even in the computationally

expensive case of V = 100, the distance between the origin and the boundary of the

paraboloid is only four lattice spacings. In this situation we expect the distribution

of particles along the boundary to play a major role in driving the order in the bulk.

For larger systems, such as V = 200 (top of Fig. 3.10), the behavior of the particles

in the bulk is less affected by the boundary and the crystalline order reflects more

closely the free-boundary problem discussed in §3.4.1. A comparison of the lattices

in the first two rows of Fig. 3.10, in particular, reveals substantial agreement with

the scenario described in Sec. 3.4.2. For κ = 0.8 and V = 200, the defects are all

localized along the boundary with the exception of one length-3 scar in the bulk at

distance r ≈ 0.63 from the center. For κ = 1.6, the pattern of defects in the bulk is

characterized by the coexistence of an isolated +1−disclination at the origin and a

length-5 W−shaped scar displaced along a parallel one lattice spacing away from the

central disclination. Apart from the evident difficulty in comparing the structures of

small systems with those predicted from continuum elasticity theory, this behavior

is consistent with the simple picture sketched in the phase-diagram of Fig. 3.9. The

local 5−fold symmetry at the origin of the κ = 1.6 configuration, compared with

6−fold symmetry for κ = 0.8, suggests, as in the case of spherical crystals [111], that

the complicated structure of defect clusters appearing in large systems is the result

of the instability of the simpler Yb,n configurations from which they partially inherit

their overall symmetry. A more accurate numerical verification of our theory remains

a challenge for the future.

The symmetry of the configurations presented in Fig. 3.10 deserves special atten-

tion. As for any surface of revolution, the circular paraboloid belongs possesses the

symmetry group O(2) of all rotations about a fixed point and reflections in any axis
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through that fixed point. Any given triangulation of the paraboloid may destroy the

full rotational symmetry completely or just partially, leaving the system in one of the

following two subgroups: the pyramidal group Cnv or the reflection symmetry group

Cs. In general we found the latter symmetry group for system sizes up to V = 200

particles. The symmetry for larger system sizes is under investigation.

3.5 Experimental realization of paraboloidal crys-

tals

Some sixty years ago Bragg and Nye used bubble rafts to model metallic crystalline

structures [112]. A carefully made assemblage of bubbles, floating on the surface of a

soap solution and held together by capillary forces, forms an excellent two-dimensional

replica of a crystalline solid, in which the regular triangular arrangement of bubbles

is analogous to the close packed structure of atoms in a metal. Feynman considered

this technique to be important enough that the famous Feynman lectures in physics

include a reproduction of the original Bragg-Nye paper in its entirety [113]. Bubble

rafts can be made easily and inexpensively, equilibrate quickly, exhibit topological

defects such as disclinations, dislocations and grain boundaries, and provide vivid

images of the structure of defects. Bubble raft models have been used to study

two-dimensional polycrystalline and amorphous arrays [114], nanoindentation of an

initially defect-free crystal [115], and the dynamic behavior of crystals under shear

[116]. In this section we review the experimental realization of a bubble-raft model

for a paraboloidal crystal done in collaboration with H. Shin and C. Thomas [100] by

assembling a single layer of millimeter-sized soap bubbles on the surface of a rotating

liquid, thus extending the classic work of Bragg and Nye on planar soap bubble rafts.

As we mentioned in the introduction, paraboloidal shapes naturally occur across

the air/liquid interface of a fluid placed in a rotating cylindrical vessel. It is simple

to verify that the height z of such an interface above the xy−plane of a system of
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Figure 3.11: (Color online) Lateral and top view of a computer reconstruction of two paraboloidal

rafts with κ1 ≈ 0.15 cm−1 (a, b) and κ2 ≈ 0.32 cm−1 (c, d). The number of bubbles is N1 = 3813 and

N2 = 3299 respectively. The color scheme highlights the 5−fold (red) and 7−fold (blue) disclinations

over 6−fold coordinated bubbles (yellow). From Ref. [100].

Cartesian coordinates is given by:

z =
ω2

2g
r2 + C , (3.58)

where ω is the angular velocity and g the gravitational acceleration and C = D −
ω2R2/4g is an integration constant following from the requirement that the volume

of the liquid during rotation be equal to the volume of the liquid at rest (D is its

height) [117]. Thus the normal curvature at the origin is given by κ = ω2/g.

To make the bubble rafts, we pump air through a needle into soapy water. Because

the larger bubble sizes we prefer are most easily made when the vessel is still, we first

make the bubbles and only later spin the vessel to make the paraboloid (cf. Bragg and

Nye [112], who spun their system in order to generate smaller bubbles but stopped

the spinning to look at the bubbles on a flat surface). To image the bubbles, we

mount a CCD digital camera on the top of the vessel, with lighting from a ring



3.5 Experimental realization of paraboloidal crystals 76

around the (clear) vessel to eliminate glare. The camera rotates along with the whole

system so that the shutter speed is unimportant in imaging the bubbles. We use a

second camera to find the aspect ratio of the paraboloid. We equilibrate the system

and eliminate stacking of bubbles by imposing small perturbations of the angular

frequency to mimic the role of thermal noise. The vessel has radius R = 5 cm; the

height of paraboloids varies from h = 0–4 cm. The bubble diameter, extracted from

the Delaunay triangulation of our images, is a = 0.84(1) mm with monodispersity

∆a/a ≈ 0.003. The normal curvature κ of the paraboloid at the origin varies from

0–0.32 cm−1. In addition to the flat disk, we observe two different curvature regimes:

small curvature κ1 ≈ 0.15 cm−1 and large curvature κ2 ≈ 0.32 cm−1. In each curvature

class we collected several data sets with qualitatively similar results.

Fig. 3.11 shows a computer reconstruction of two bubble rafts with κ = κ1 and κ2

respectively. We extract two dimensional coordinates from the images with a bright-

ness based particle location algorithm through the IDL platform [118]. Data sets

are then processed to correct possible imprecisions and finally Delaunay triangulated.

The adjacency list obtained from the Delaunay triangulation is then used to deter-

mine the valency and the position of disclination defects. We choose to exclude from

the triangulation the first 3–4 bubble rings formed along the boundary of the cylin-

drical vessel, where the sharp concave meniscus due to the surface tension combined

with the native curvature of the paraboloid was observed to produce a stacking of

bubbles in a narrow double layer surrounding the perimeter of the vessel. This is the

only significant boundary effect we observe in our system and does not hamper the

identification of disclinations in the bulk.

To characterize the order of the crystalline raft, we measure the translational and

orientational correlation functions g(r) and g6(r) [119]. The former gives the proba-

bility of finding a particle at distance r from a second particle located at the origin.

The function is normalized with the density of an equivalent homogeneous system

in order to ensure g(r) = 1 for a system with no structure. Interactions between
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Figure 3.12: (Color online) Translational and orientational correlation functions (g and g6, re-

spectively) for rafts with (a,b) κ ≈ 0.32 cm−1, a = (0.8410± 0.0025) mm, and (c,d) κ ≈ 0.15 cm−1,

a = (0.9071 ± 0.0037) mm. All the curves are plotted as functions of r/a, where r is the planar

distance from the center and a is the bubble radius. The envelope for the crystalline solid decays al-

gebraically (dashed line), while the orientational correlation function approaches the constant value

0.8. From Ref. [100].

particles build up correlations in their position and g(r) exhibits decaying oscilla-

tions, asymptotically approaching one. For a two-dimensional solid with a triangular

lattice structure the radial correlation function is expected to exhibit sharp peaks in

correspondence with the sequence r/a =
√
n2 + nm+m2 = 1,

√
3, 2, 2

√
3 . . . while

the amplitude of the peaks decays algebraically as r−η with η = 1/3 (dashed line in

Fig. 3.12). Within the precision of our data, the positional order of the paraboloidal

crystals assembled with the bubble raft model reflects this behavior, although with

more accurate measurements, one might see dependence of the exponent η on the

curvature (because of the proliferation of defects with curvature).

The orientational correlation function g6(r) is calculated as the average of the
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product 〈ψ(0)ψ∗(r)〉 of the hexatic order parameter over the whole sample. For each

bubble (labeled j) that has two or more neighbors, ψj(r) = (1/Zj)
∑Zj

k=1 exp(6iθjk),

where Zj is the number neighbors of i and θjk is the angle between the j − k bonds

and a reference axis. One expects g6(r) to decay exponentially in a disordered phase,

algebraically in a hexatic phase and to approach a non zero value in the case of a

crystalline solid. In the systems studied g6(r) approaches value 0.8 in the distance of

5–6 lattice spacings.

Of particular interest is the structure of the grain boundaries appearing in the

paraboloidal lattice for different values of the curvature parameter κ. Grain bound-

aries form in the bubble array during the growing process as a consequence of geo-

metrical frustration. As noted, any triangular lattice confined in a simply connected

region with the topology of the disk is required to have a net disclination charge

Q = 6. In absence of curvature, however, the elastic stress due to an isolated discli-

nation is extremely high and defects are energetically favored to cluster in the form

of a grain boundary consisting of one-dimensional arrays of tightly bound (5, 7)−fold

disclinations pairs. In a planar confined system, grain boundaries typically span the

entire length of the crystal, but if a non-zero Gaussian curvature is added to the

medium, they can appear in the form of scars carrying a net +1 topological charge

and terminating in the bulk of the crystal.

Prominent examples of grain boundaries are visible in the two lattices shown in

Fig. 3.11. For a gently curved paraboloid (with κ ≈ 0.15 cm−1), grain boundaries

form long (possibly branched) chains running from one side to the other and passing

through the center. As the curvature of the paraboloid is increased, however, this

long grain boundary is observed to terminate in the center (see Fig. 3.11d; a close-

up version of this image is seen in Fig. 3.13). For R = 5 cm, the elastic theory of

defects predicts a structural transition at κc = 0.27 cm−1 in the limit of large core

energies. In this limit the creation of defects is strongly penalized and the lattice

has the minimum number of disclinations required by the topology of the embedding
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Figure 3.13: (Color online) An enlarged view of the terminating grain boundary scar shown in

Fig 3.11d for a system with large Gaussian curvature. The scar starts from the circular perimeter

of the vessel and terminates roughly in the center carrying a net +1 topological charge. The image

of the bubbles (left) shows that they may deform slightly to better fill space, whereas the computer

reconstruction of the lattice (right) uses perfect spheres of uniform size. From Ref. [100].

surface. In a low curvature paraboloid (κ < κc) these disclinations are preferentially

located along the boundary to reduce the elastic energy of the system. When the

aspect ratio of the paraboloid exceeds a critical value κc(R), however, the curvature

at the origin is enough to support the existence of a 5−fold disclination and the

system undergoes a structural transition. In the limit of large core energies, when

only six disclinations are present, such a transition implies a change from the C6v to

the C5v rotational symmetry group.

Together with the theoretical argument reviewed in the previous section, these

experimental observations point to the following mechanism for scar nucleation in a

paraboloidal crystal. In the regime in which the creation of defects is energetically

inexpensive, geometrical frustration due to the confinement of the lattice in a simply

connected region is responsible for the formation of a long side-to-side grain boundary.

However, when the curvature of the paraboloid exceeds a critical value dependent on

the radius of the circular boundary , the existence of a +1 disclination near the

center is energetically favored. Such a disclination serves as a nucleation site for



3.A Optimization via Parallel Differential Evolution 80

5 7 dislocations and the side-to-side grain boundary is replaced by a terminating

center-to-side scar. Above the critical curvature the elastic theory outlined in §3.4

also predicts a regime of coexistence of isolated disclinations and scars due to the

variable Gaussian curvature. For dense systems (i.e. number of subunits larger than

a few hundred for our geometry), the coexistence is suppressed because the embedding

surface will appear nearly flat at the length scale of a lattice spacing. The bulk of the

system is thus populated uniquely by scars. This is consistent with our experimental

observation.

Away from the center of the paraboloid, we have compared the crystalline direc-

tions with the geodesics starting from a given reference point (see Fig. 3.14). Near the

boundary, the directions of both first and second neighbors (in red and blue respec-

tively), are reasonably aligned with the geodesics. The alignment becomes decorre-

lated after roughly five lattice spacings with the decorrelation more pronounced in the

radial direction (maximal principal curvature) where the normal curvature is largest.

As one gets closer to the center, the geodesic correlation becomes weaker and almost

completely vanishes along the radial direction. Along the angular direction (minimal

principal curvature), on the other hand, the crystalline axes appear aligned with the

geodesic directions.

Appendix 3.A Optimization via Parallel Differen-

tial Evolution

Many of the techniques proposed to determine the crystalline structure of systems

of interacting particles, as in the Thomson problem, are based on local optimiza-

tion procedures such as steepest descent, conjugate gradient and the quasi-Newton

method. Such methods belong to the class of line-search algorithms for multidimen-

sional non-linear programming problems. They can be described, in general, as a

sequence of line minimizations of an objective function along a set of directions that
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Figure 3.14: (color online) Delaunay triangulation of a portion of the paraboloidal lattice with

κ ≈ 0.32 cm−1 near the center (top) and the boundary (bottom). Red (lighter) and blue (darker)

lines represent the geodesics directed toward first and second neighbors, respectively.

are generated differently in different algorithms. Besides the well known local con-

vergence properties of these methods, they are generally unable to locate the global

minimum since they inherently approach the closest local minimum for a given set of

initial conditions.

To avoid the misconvergence problem described we adopt the Differential Evolu-

tion (DE) algorithm of Storn and Price [110]. This algorithm, which has been suc-

cessfully applied to several optimization problems in engineering [120], belongs to the

family of evolutionary algorithms which are considerably faster than other stochas-
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Figure 3.15: (Color online) CPU-Time and speedup (i.e. the time employed by n processors to

accomplished a given number of iterations divided by the time employed by a single machine to

achieve the same task).

tic optimization methods, such as simulated annealing and genetic algorithms, and

more likely to find the correct global minimum. These methods heuristically mimic

biological evolution by implementing natural selection and the principle of “survival

of the fittest”. An adaptive search procedure based on a population of candidate

solutions is used. Iterations involve a competitive selection that drops the poorer

solutions. The remaining pool of candidates are perturbed (or mutated) in order to

generate trial individuals and then recombined with other solutions by a swap of the

components. The recombination and mutation moves are applied sequentially; their

aim is to generate new solutions that are biased towards subsets of the search space

in which good, although not necessarily globally optimized, solutions have already

been found.

An essential feature of Differential Evolution is the establishment of genetic diver-

sity, which helps to maximize the probability of finding the true global minimum and

to avoid misconvergence. One begins with a large population of individuals uniformly

distributed in the search space. A good choice, in practice, is to choose the number

of individuals to be an order of magnitude more than the number of variables in the
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problem. The price one pays is a dramatic slowing down of the algorithm when ap-

plied to large scale optimization. Considerable effort has therefore been made in the

past ten years to develop parallel implementations of evolutionary algorithms aimed

at reducing the overall time to completion of the task by distributing the work on

different processors working in parallel. More recently some researchers have conjec-

tured that some parallelizations of a task improve the quality of the solution obtained

for a given overall amount of work (e.g. emergent computation).

The Island Model is a popular choice among parallelization strategies and is imple-

mented within a message passing model. It consists of dividing the initial population

into several sub-populations and letting each of them evolve independently on a single

machine for a predetermined number of iterations (called the epoch). The exchange

of genetic information is promoted by swapping individuals between different sub-

populations at the end of each epoch. In the present work the migration strategy

consists in swapping the best individual of each sub-population with a randomly se-

lected individual on another island with the ring topology chosen for the connectivity

between islands. This choice allowed us to achieve a substantial reduction of the CPU

time and a linear speedup (see Fig. 3.15).

Appendix 3.B The function Γs(x) on the paraboloid

To obtain the expression for Γ(x) given in Eq. (3.43) one has to calculate the integral:

Γs(x) =

∫

d2y GL(x,y)K(|y|) = Γs,1(x) − Γs,2(x), (3.59)

having called:

Γs,1(x) =
1

2π

∫

dφ′ dr′
√
g K(r′) log |z − ζ |, (3.60a)

Γs,2(x) =
1

2π

∫

dφ′ dr′
√
g K(r′) log |1 − zζ |. (3.60b)
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For this purpose one can use the expansion:

log |z − ζ | = log ̺> −
∞
∑

n=1

1

n

(

̺<
̺>

)n

cosnδφ, (3.61)

where ̺> (̺<) represents the largest (smallest) modulus between z and ζ , while

δφ = φ− φ′. The factorization of the angular variables in Eq. (3.61), together with

the pure radial dependence of the Gaussian curvature and
√
g, makes the angular

dependence of Γs,1 vanish, so that we have:

Γs,1(x) = log ̺(r)

∫ r

0

dr′
κ2r′

(1 + κ2r′2)
3
2

+

∫ R

r

dr′
κ2r′

(1 + κ2r′2)
3
2

log ̺(r′), (3.62)

which integrated by parts gives:

Γs,1(x) = log

(

αe
√

1+κ2r2

1 +
√

1 + κ2r2

)

. (3.63)

Using an expansion similar to (3.61) it is also possible to prove that

log |1 − zζ | = −
∞
∑

n=1

1

n
(̺̺′)n cos δφ, (3.64)

which integrated over the surface of the paraboloid gives Γs,2 = 0. This last conclu-

sion, combined with Eq. (3.63), yields Eq. (3.43).



Chapter 4

Crystalline and p−atic order in

toroidal geometries

4.1 Introduction

Circa twenty years afer their first observation in partially polymerized diacetylenic

phospholipid membranes by Mutz and Bensimon [121], self-assembled toroidal ag-

gregates are now considered the progenitors of a magnificent cornucopia of complex

structures, also featuring branched network and micellar surfaces of high genus. The

existence of such complex structures has become an experimental fact thanks to the

enormous work in the past decade on the study of self-assembly of amphiphilic com-

pounds such as lipids, surfactants and amphiphilic block copolymers. After the work

of Eisenberg and coworkers [122–124] it became clear that block copolymer in partic-

ular afford access to a variety of complex structures spanning an unexpectedly vast

range of topologies and geometries. More recently, several experimental studies have

been performed on di- and triblock copolymers with the intent of unraveling the origin

of morphological complexity in copolymer surfactants and some possible pathways for

micelle and vesicle formation have been proposed.

Jain and Bates, for instance, reported the formation of several non-simply-connected
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micellar structures from the self-assembly of diblock copolymer poly(1,2-butadiene-

b-ethylene oxide) (PB-PEO) [125] (see Fig. 4.1). These polymers self-assemble in

Y−shaped junctions and these form the building blocks for more complex micel-

lar structures via re-assembly. Later, Pochan et al. [126] found that almost all

of the microstructures assembled from poly(acrylic acid-b-methyl acrylate-b-styrene)

(PAA99-PMA73-PS66) triblock copolymers are ringlike or toroidal micelles. The

route to toroidal micelles in block copolymers, however, is believed to be different

from that to more complex network structures suggested by Jain and Bates, since

residual Y−shaped aggregates are very rarely found in the sample. According to the

authors of Ref. [126], the formation of toroidal micelles has to be attributed primarly

to the collapse of cylindrical micelles. On the other hand, mere end-to-end connection

of cylindrical micelles doesn’t appear to be the exclusive ring-forming mechanism in

triblock systems since the average circumference of the self-assembled tori appears

smaller than the contour length of the average cylindrical micelles. It seems some

more complicated process, possibly involving interactions and exchange of matter

between neighboring cylinders.

Toroidal micelles have also been observed in recent experiments by Kim et al [127]

from the self-assembly of amphiphilic dumbbell molecules based on a aromatic rod

segment that is grafted by hydrophilic polyether dendrons at one end and hydrophobic

branches at the other end. Molecular dumbbells dissolved in a selective solvent self-

assemble in an aggregate structure due to their amphiphilic character. This process

has been observed to yield coexisting spherical and open-ended cylindrical micelles.

These structures, however, change slowly over the course of a week to toroidal micelles

which thus appear more stable. The formation of ring-like structures was explained

in this case as result of the coalescence of spherical micelles occurring to reduce the

contact between hydrophobic segments and water molecules.

An alternative pathway for the self-assembly of toroidal structures in copolymer

solutions has been proposed and numerically tested by He and Schimd [128]. In this
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Figure 4.1: Complex non-simply connected structures from self-assembly of diblock copolymer

poly(1,2-butadiene-b-ethylene oxide) (PB-PEO). From Ref. [125].

pathway, the micelles do not coalesce, but simply grow by attracting copolymers from

the solution. Once a critical micelle size is exceeded, copolymers start to flip-flop in

such a way that the micelle core becomes itself solvent-philic (semi-vesicle state).

Finally the solvent diffuses inside the core and the semi-vesicle swells into a vesicle.

The existence of toroidal aggregates in amphiphilic compounds was suggested the-

oretically for smectic-C (SmC) membranes, based on the argument that orientational

order is not frustrated on a surface with zero Euler characteristic and thus a toroidal

topology may be energetically favoured in p−atic membranes with large order param-

eter coupling compared with the bending rigidity [58, 129]. This hypothesis was tested

by Evans in 1995 with the result that a toroidal topology is indeed prefered over the

spherical one for wide range of geometrical and mechanical parameters in defect-free

p−atic tori. The role of disclinations in p−atic tori was investigated systematically

by Bowick, Nelson and Travesset nine years after the original work of Evans with the

conclusion that, even if not required by topological constraints, unbound disclinations

can be energetically convenient even in very dense systems [130]. The precise number

of unbound disclinations is controlled primarly by the aspect ratio of the torus. The

existence of defects in the ground state of an ordered phase on the torus becomes
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Figure 4.2: (Color online) The standard parametrization of a circular torus of radii R1 and R2.

crucial for toroidal crystals where it leads to some unique structural features as well

as a spectacular example of a curvature-driven transition to a disordered, liquid-like,

state in the limit the aspect ratio approaches to one [131, 132]. In the remainder of

this section we will review these three examples of order on embedded tori.

4.2 Geometry of the torus

The standard two-dimensional axisymmetric torus embedded in R
3 is obtained by

revolving a circle of radius R2 about a coplanar axis located at distance R1 ≥ R2

from its center. Choosing the symmetry axis as the z direction of a Cartesian frame,

a convenient parametrization can be found in terms of the polar angle ψ along the

revolving circle and the azimuthal angle φ on the xy−plane:



















x = (R1 +R2 cosψ) cosφ

y = (R1 +R2 cosψ) sinφ

z = R2 sinψ

, (4.1)

where ψ , φ ∈ [−π, π). These coordinates satisfy the Cartesian equation:

(

R1 −
√

x2 + y2
)2

+ z2 = R2
2 (4.2)
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In this parametrization the metric tensor gij and Gaussian curvature K are given by:

gψψ = R2
2 , gψφ = 0 , gφφ = (R1 +R2 cosψ)2 , (4.3)

K =
cosψ

R2(R1 +R2 cosψ)
. (4.4)

The Gaussian curvature is therefore positive on the outside of the torus, negative

on the inside and zero along the two circles of radius R1 at ψ = ±π/2 (see Fig.

4.2). Moreover K is maximally positive along the external equator at ψ = 0 and

maximally negative on the internal equator at ψ = ±π. The Gauss-Bonnet theorem

requires the total topological charge and the integrated Gaussian curvature to be zero

on the torus:
N
∑

k=1

qk =

∫

d2xK(x) = 0 (4.5)

A global measure of the curvature of the embedded torus is provided by the aspect

ratio r = R1/R2. Our discussion will be limited to the case r ≥ 1. A “fat” torus

with r = 1 is obtained by taking R1 = R2 and is characterized by a singularity

in the Gaussian curvature along the internal equator at ψ = ±π. The case r < 0

corresponds to a self-intersecting torus whose symmetry axis lies in the interior of

the revolving circle. The “skinny” torus limit, r → ∞, can be obtained either by

taking R2 → 0 with finite R1 or by letting R2 stay finite and taking R1 → ∞. The

Gaussian curvature diverges in the first case and goes to zero in the second. Neither

case, however, reflects a real physical situation since the area A = (2π)2R1R2 of the

torus becomes zero or infinite rispectivelly.

Non-axisymmetric tori can be generated in various ways by deforming the surface

of revolution (4.1). A special and physically relevant transformation consists in an

inversion at the unit sphere, a translation about a vector β and a second inversion.

Thus a point R on the surface is mapped onto:

R′ =
R

R2 + β

| R

R2 + β|2 (4.6)
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This map is conformal and transforms an axisymmetric shape to a non-axisymmetric

one if the vector β is not parallel to the symmetry axis [133]. As β is increased in

magnitude, the asymmetry increases until, in the limit, the torus becomes a perfect

sphere with an infinitesimal handle. The physical importance of mapping (4.6) relies

on the fact that it leaves the bending energy κ
∫

d2xH2 invariant with significant

consequences for the equilibrium shape and stability of fluid toroidal membranes.

As in any closed manifold the traditional Green-Laplace equation doesn’t have

a solution on the torus. An alternative Green function, can be obtained from the

modified equation:

∆gGL(x,y) = δg(x,y) −A−1 (4.7)

As usual the calculation of the Green function can be simplified considerably by con-

formally mapping the torus to a domain of the Euclidean plane via a suitable system

of isothermal coordinates. Intuitively the torus is conformally equivalent to a rectan-

gular domain described by a system of Cartesian coordinates. To make this explicit,

one can equate the metric of the torus in the coordinates (ψ, φ) to a conformally

Euclidean metric in the coordinates (ξ, η):

ds2 = R2
2dψ

2 + (R1 +R2 cosψ)2dφ2 = w (dξ2 + dη2) ,

where w is a positive conformal factor. Taking η = φ and w = (R1 + R2 cosψ)2, the

coordinate ξ is determined by the differential equation:

dξ

dψ
= ± 1

r + cosψ
, (4.8)

where r = R1/R2, the aspect ratio of the torus, may be taken greater or equal to

one without loss of generality. Choosing the plus sign and integrating both sides of

Eq. (4.8) we find:

ξ =

∫ ψ

0

dψ′

r + cosψ′ . (4.9)

Taking ψ ∈ [−π, π), the integral (4.9) yields:

ξ = κ arctan

(

ω tan
ψ

2

)

,



4.2 Geometry of the torus 91

where

κ =
2√
r2 − 1

, ω =

√

r − 1

r + 1
. (4.10)

In the transformed coordinate system (ξ, η) the modified Green-Laplace equation

reads:

∆GL(x,y) = δ(x,y) − w

A
, (4.11)

where ∆ and δ are now the Euclidean Laplacian and delta function. The function

GL(x,y) can be expressed in the form:

GL(x,y) = G0(x,y) − 〈G0(x, · )〉 − 〈G0(· ,y)〉+ 〈G0(· , · )〉 ,

where G0(x,y) is the Laplacian Green function on a periodic rectangle and the an-

gular brackets stand for the normalized integral of the function G0(x,y) with respect

to the dotted variable:

〈G0(x, · )〉 =

∫

d2y

A
G0(x,y) . (4.12)

Analogously the function 〈G0(· , · )〉 is given by

〈G0(· , · )〉 =

∫

d2x d2y

A2
G0(x,y)

and ensures the neutrality property:

∫

d2xGL(x,y) =

∫

d2y GL(x,y) = 0 . (4.13)

The modified Laplacian Green function on a periodic rectangle of edges p1 and p2 can

be conveniently calculated in the form:

G0(x,y) =
∑

λ6=0

uλ(x)uλ(y)

λ
, (4.14)

where uλ is the eigenfunction of the Laplace operator with periodic boundary condi-

tions:

∆uλ(x) = λuλ(x) , (4.15)
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such that:










uλ(0, η) = uλ(p1, η)

uλ(ξ, 0) = uλ(ξ, p2)

.

In Cartesian coordinates the eigenfunctions are simple plane waves of the form:

uλ(ξ, η) =
ei(λnξ+µmη)

√
p1p2

, (4.16)

where λn and µm are given by:

λn =
2πn

p1

µm =
2πm

p2

n, m = 0, ±1, ±2 . . .

and the eigenvalue λ is given by:

λ = −λ2
n − µ2

m . (4.17)

Calling for simplicity x = (x, y) and y = (ξ, η), the function G0 is given by:

G0(x,y) = − 1

p1p2

∑

(n,m)6=(0,0)

eiλn(x−ξ)eiµm(y−η)

λ2
n + µ2

m

. (4.18)

Summing this series eventually leads to [132]:

G0(x,y) =
log 2

6π
− 1

2 p1p2

|y − η|2 +
1

2π
log

∣

∣

∣

∣

∣

∣

ϑ1(
z−ζ
p1/π

| ip2
p1

)

ϑ
′ 1
3

1 (0| ip2
p1

)

∣

∣

∣

∣

∣

∣

, (4.19)

where ϑ1(u|τ) is the Jacobi theta function [134, 135] defined as:

ϑ1(u|τ) = 2q
1
4 sin u

∞
∏

n=1

(

1 − 2q2n cos 2u+ q4n
) (

1 − q2n
)

, (4.20)

with q = exp(iπτ), z = x+ iy and ζ = ξ+ iη. A step-by-step derivation of Eq. (4.19)

is reported in Appendix 4.B.

4.3 Defect-free p−atic textures and genera transi-

tion

There has been much effort in recent years to shed light on possible pathways in

the self-assembly of toroidal micelles and vesicles from block copolymer solutions and
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other amphiphilic compounds. In particular, the spontaneous formation of structure

of genus g ≥ 1 from preexisting spherical objects, a mechanism which is in common

to several different scenarios proposed in the literature, has attracted the most atten-

tion and debate because of its exotic character. The simplest question one can ask in

this context is whether a vesicle can be energetically favored to change its topology

from spherical to toroidal once, the total surface area and therefore the number of

constituent molecules in the vesicle, is specified. Evans addressed this problem in

1995 [129] and showed how such a transition between genera is indeed possible in

fluid membranes and is even enhanced if the membrane is endowed with in-plane

orientational order. Although oversimplified if compared to the great complexity of

the real self-assembly mechanism, Evans’ calculation provides insight into the deli-

cate problem of stability of toroidal vesicles as well as a good starting point for our

discussion of order on the torus.

Let θ be the local orientation of a p−atic director field on a surface as defined in

Sec. 2. A standard orientational order parameter is given by scalar field:

ψ(x) = 〈eipθ(x)〉 , (4.21)

where 〈·〉 deontes a thermal average. The total elastic energy of the vesicle consists of

a pure bending term Fb, describing the elasticity of the membrane in the liquid state,

and a term Fp associated with the internal p−atic order. Thus F = Fp + Fb, with:

Fp =

∫

d2x
(

τ |ψ|2 +
u

2
|ψ|4 + C|(∇− ipΩ)ψ|2

)

(4.22a)

Fb =

∫

d2x
(

2κH2 + κgK
)

(4.22b)

where κ and κg are the bending and Gaussian rigidity respectively1 and the operator

∇− ipΩ is obtained from the covariant derivative of a p−atic tensor order parameter

1The expression of the bending energy used in Eq. (4.22b) is that originally gave by Helfrich for

a membrane with zero pre-existing curvature [136]. Often the equivalent expression
∫

d2x (1

2
κH2 +

κgK) is found in the literature. In this case, however, the mean curvature H is defined as the sum

of the principal curvatures rather than their average.
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expressed in a local orthonormal frame as described in Sec. 2.4, with Ω the covariant

vector of Eq. (2.53) that parametrizes the spin-connection. The free energy (4.22a)

is invariant under rotations of the local reference frame by an arbitrary angle χ:

ψ → ψ eipχ (4.23a)

Ωi → Ωi − ∂iχ , (4.23b)

which is a typical gauge transformation. The gradient term in Eq. (4.22a) is the same

of Eq. 2.52, upon identifying KA = p2C. As observed by Park et al. [137], Eq. (4.22a)

and (4.22b) closely resemble the Landau-Ginzburg Hamiltonian of a superconductor

in an external magnetic field:

H =

∫

d3x

{

∣

∣

∣

∣

(

∇− 2ie

~c
A

)

ψ

∣

∣

∣

∣

2

+ τ |ψ|2 +
u

2
|ψ|4 +

1

8π
|∇ × A − H|2

}

. (4.24)

When exposed to an external magnetic field, a super-conducting material can undergo

a second order mean-field transition from a metal to a super-conductor characterized

by an Abrikosov lattice of vortices whose density is determined by the temperature

and the applied magnetic field H . The magnetic field, in particular, is conjugate to

the vortex number Nv since:

∫

d3x∇× A = φ0LNv , (4.25)

where L is the length of the sample in the direction of H and φ0 = hc/2e is the flux

quantum. In this context the vector potential associated with the applied magnetic

field is replaced by the covariant vector Ω whose curl is the Gaussian curvature.

Morover, on a closed surface:

∫

d2x∇× Ω =

∫

d2xK =
2π

p

N
∑

i=1

qi .

Thus a p−atic phase on a closed 2−manifold is analogous to an Abrikosov phase with

a fixed total vorticity rather than a fixed applied magnetic field.
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The transition to an ordered phase in controlled by the parameter τ in Eq. (4.22a).

For τ above a critical value τc (τc = 0 on a flat surface), ψ = 0 and the system is in

the isotropic phase. In this regime the only contribution to the energy is determined

by the shape of the vesicle as expressed by the bending term (4.22b). For τ < τc,

on the other hand, the gauge symmetry is spontaneously broken and ψ 6= 0, with

the exception of a number of isolated defective points. Within a meanfield approach,

thermal fluctuations can be neglected and the preferred configuration of the system

corresponds to the minimum of the free energy. A ground state configuration for the

p−atic order parameter can be found by rewriting the gradient energy term in Eq.

(4.22a) as:

∫

d2x |(∇− ipΩ)ψ|2 =

∫

dx1 dx2√g DkψD∗
kψ

∗

= −
∫

dx1 dx2 ψ∗ (Dk√g Dk

)

ψ ,

with Dk = ∂k − ipΩk, and expressing ψ in the basis of eigenfunctions of the operator

in parentheses:

ψ =
∑

n

anϕn (4.26)

with ϕn satisfying the Hermitean equation:

− 1√
g
Dk (

√
g Dk)ϕn =

4πλ

A
ϕn (4.27)

with the normalization condition:

∫

d2xϕ∗
nϕm =

A

4π
δnm (4.28)

The complex coefficients ak are then determined by minimization of the free energy

F . The eigenfunctions are sometimes referred to as “Landau levels” and are typically

degenerate. If ψ is expandend in this complete set of eigenfunctions then, in meanfield,

the partition function is dominated by configurations involving only Landau levels

with the lowest eigenvalue λ0. Taking lowest levels only, the p−atic free energy
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(4.22a) becomes:

Fp =

∫

d2x

[(

τ +
4πλ0C

A

)

|ψ|2 +
u

2
|ψ|4

]

(4.29)

To find the lowest energy configuration of the field ψ one now has to solve the eigen-

value problem (4.27) to determine the lowest eigenvalue λ0 and minimize the free

energy with respect to the parameters of the linear combination (4.26). Notice that

the mean field transition has been lowered form τc = 0 to τc = −4πλ0C/A. On flat

surface λ0 = 0, but is finite and positive-definite on a surface with finite Gaussian

curvature [129].

For a sphere of unit radius parametrized in standard spherical coordinates (θ, φ),

the eigenvalue problem (4.27) is solved by λ0 = p and ϕn of the form [138]:

ϕn =

√

2p+ 1

4π(p+ n)!(p− n)!
sinp+n

(

θ

2

)

cosp−n
(

θ

2

)

einφ (4.30)

for integer values of n between −p and p. These functions have 2p zeros, corresponding

to topological defects of unitary charge and winding number 1/p. Because of the

lowest Landau level approximation used to derive Eq. (4.29), eigenfunctions (4.30)

are degenerate to quadratic order in ψ. This implies the freedom to place defects

anywhere on the sphere with no additional energy cost of order ψ2. The ψ4 term, on

the other hand, lifts this degeneracy and make the defects repel.

For axisymmetric, tori the eigenvalue problem (4.27) was solved numerically by

Evans with the result shown in Fig. 4.3. Eigenvalues are plotted as a function of

the aspect ratio r of the torus for various p−atic textures labelled pn with 0 ≤ n ≤
p. Eigenfunctions ϕn have 4n zeros corresponding to 2n disclinations of topological

charge q = 1 (winding number 1/n) and 2n disclinations of topological charge q = −1

(winding number −1/n). Except for vector order (p = 1), defective configurations

are energetically favored for small aspect ratios and the number of disclination pairs

increases with r as a consequence of the larger (in magnitude) Gaussian curvature.

Carrying out the integrals in Eq. (4.22a) and (4.22b) in the lowest Landau level

approximation, the total elastic free energy of spherical and toroidal vesicles can be
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Figure 4.3: (Color online) Eigenvalues λ versus the aspect ratio r for varius p−atic configurations

(labelled pn) on the axisymmetric torus. The number of disclination pairs for each configuration is

2n. Data are taken from [129].

written as:

Fsphere = 4π(2κ+ κg) − 2π

(

C2

uA

)

[

τA
4πC

+ p
]2

Jsphere(p)
(4.31a)

Ftorus = κ
2π2r2

√
r2 − 1

− 2π

(

C2

uA

)

[

τA
4πC

+ λ0(r)
]2

Jtorus(p, r)
(4.31b)

where J is the minimal value of the integral of |ψMF|4 and

ψMF =











∑p
n=−p anϕn sphere

a+ϕp + a−ϕ−n torus

is the linear combination of eigenfuctions that are degenerate to quadratic order

in ψ. The second term in Eqs. (4.31a) and (4.31b) disappears in the isotropic

phase when τ > −4πλ0C/A due to the intrinsic orientational order on the manifold.

Even in this case, Eqs. (4.31a) and (4.31b) reveal the existence of a transition line
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Figure 4.4: (Color online) Phase diagram for vesicles of constant area of genus zero and one with

intrinsic vector (top left), nematic (top right), tetradic (bottom left) and hexatic (bottom right)

order. The position of the transition line depends on the value of κg/κ. Toroidal vesicles that exist

in the shaded region are non-axisymmetric. Data are taken from [129].

between spherical and toroidal shape. In the absence of in-plane orientational order

the bending energy term in Eq. (4.31b) is minimized by the so called Clifford torus

with r =
√

2. In this case Ftorus = 4π2κ, which is smaller than Fsphere = 4π(2κ+ κg)

when κg/κ > π− 2. Toroidal vesicles with r =
√

2 are therefore energetically favored

in the fluid phase for large values of κg/κ. This argument cannot be invoked to

explain the complex self-assembly of toroidal structures from homogeneous solutions

mentioned in the introduction, but does provide a simple (but non-trivial) example

of a situation where a toroidal shape is energetically preferred to a spherical one.

The critical value of κg/κ of the genera transition is lowered for vesicles equipped
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with in-plane p−atic order. This is displayed in the phase diagrams of Fig. 4.4 for

the case of vector (p = 1), nematic (p = 2), tetradic (p = 4) and hexatic (p = 6)

order. The lines, whose position depends on κg/κ, separate spheres (above the line)

from tori (below the line). Even for simple vector order, stable toroidal vesicles

exist as well for κg/κ < π − 2. For κg/κ > π − 2, furthermore, transition lines are

closed, with spheres on the inside and tori on the outside. In the shaded regions

non axisymmetric tori are favored over symmetric ones. The hexatic phase diagram

(bottom right corner of Fig. 4.4) deserves special attention. The shaded region is split

in two parts. That on the right contains spheres if κg/κ < π−2 and non-axisymmetric

tori otherwise, while that on the left contains spheres above the transition line and

non-axisymmetric tori below. The white region of the phase diagram is also divided in

two parts. The part in the top left of the diagram behaves as described above, while

the other part is characterized by closed lines separating spheres (outside) and small

tori (inside). These last class of tori exhibit ten pairs of q = ±1 disclinations with

positive disclinations distributed on the external equator of the torus and negative

disclinations along the internal equator. This last feature is an important property

sheared by toroidal objects with in-plane order and will be clarified in the following

sections. The results reviewed here are valid within the mean-field approach and the

lowest Landau level approximation, which both hold deep in the ordered phase that

we are most interested in. At higher temperatures Evans proved the approximations

are still valid away from the transition line and for C/A ≫ κ/kBT ≫ 1 [129]. The

latter condition is generally fulfilled by several systems (i.e. κ/kBT = 1− 10 for lipid

bilayers).

4.4 Defective ground states in hexatics

Evans’ analysis, summarized in the previous section, indicates that disclinations, even

if not required by topological constraints, can nonetheless appear in the ground state
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of p−atic tori as a consequence of the coupling between in-plane orientational order

and spatial curvature. The occurrence of defects in the ground state of toroidal hexatic

vesicles was systematically investigated by Bowick, Nelson and Travesset based on the

formalism outlined in Sec. 2 [130]. Before embarking on a detailed analysis of the

elasticity of defects in hexatic tori, it is instructive to obtain a rough estimate of

how many pairs of ±1-disclinations would be required to achieve a perfect screening

of the background topological charge associated with the Gaussian curvature of the

torus. Consider a wedge of angular width ∆φ on the outside wall of positive Gaussian

curvature. The net curvature charge associated with this region is:

seff =

∫ φ0+∆φ
2

φ0−∆φ
2

dφ

∫ π
2

−π
2

dψ
√
g K = 2∆φ . (4.32)

Upon equating seff to 2π/6, the charge of a single disclination, one finds that ∆φ =

2π/12, independently of R1 and R2. Thus, 2π/∆φ = 12 positive disclinations would

be required to completely compensate the negative curvature of the inner wall. This

simple argument neglects core energies and interactions between disclinations, effects

which will cause the preferred number of defect pairs to be less than twelve.

The total elastic energy of a toroidal hexatic vesicle containing N disclinations of

topological charge qi (i = 1 . . . N) takes the form:

F

KA

=
π2

9

1,N
∑

i<j

qiqjQ(xi,xj) −
π

3

N
∑

i=1

qiL(xi)

+
2π2

r +
√
r2 − 1

+
κ

KA

2π2r2

√
r2 − 1

+
ǫc
KA

N
∑

i=1

q2
i (4.33)

where the first two terms represent the contributions due to the pair interaction

between defects and the interaction of defects with the topological charge of the

substrate associated with the Gaussian curvature. The third term in Eq. (4.33) is the

spin-wave part of the frustrated hexatic energy while the last two terms represents the

bending energy and the defect core energy respectively. The defect-defect interaction
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potential has been calculated in Ref. [130]:

Q(xi,xj) = − 1

4π
log

∣

∣

∣
ϑ1

(

φi−φj

2π
+ i

2π

αi−αj√
r2−1

∣

∣

∣

i√
r2−1

)∣

∣

∣

2

4π2

∣

∣

∣
η
(

i√
r2−1

)∣

∣

∣

6

+
1

2
√
r2 − 1

(

αi − αj
2π

)2

(4.34)

where α is related to the polar angle ψ on a cross-section of the torus by:

cosψ =
r cosα− 1

r − cosα
(4.35)

and η is the Dedekind eta function:

η(τ) = e
2πiτ
24

∞
∏

n=1

(1 − e2πinτ ) . (4.36)

The one-body interaction between defects and curvature, on the other hand, is ex-

pressed via the potential energy:

L(xi) = log

(

1

r − cosαi

)

. (4.37)

For opposite sign disclinations, the defect-defect interaction, determined by the

function Q(xi,xj), is attractive for all separations at contrast φ. If only this term

was present, the attraction would bring both charges as close as possible, binding all

dislcinations into dipoles which have a higher energy than a defect-free configuration.

Thus if no other terms were present, the ground state configuration would be defect

free. The defect-curvature interaction term L(xi), however, favors the appearance of

additional defects. This term acts like an electric field pulling the positive (negative)

disclinations into regions of positive (negative) Gaussian curvature.

The elastic energy (4.33) was analyzed numerically in Ref. [130] for various aspect

ratios and defect core energies. A plot of the energy of configurations obtained by

placing a ring of (N/2) +1-disclinations equally spaced along the same parallel on

the outside of the torus and a second ring of (N/2) −1-disclinations on the inside, is
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Figure 4.5: (Color online) The total energy (in units of KA/2 of hexatic tori of aspect ratio r =
√

2

(left) and r = 2.6926) for varying number of defects. The bending energy at fixed r is subtracted

off. The disclination core energy is set to 0.1KA, which is 0.2 in the above units.

shown in Fig. 4.5 for variousN and variable angular separation ∆ψ between the rings.

The disclination core energy is taken to be ǫc = cKA, with c a numerical constant

taken equal to 0.1 in the plots. The energy at the maximum separation (∆ψ = π)

first decreases and then increases with N . The optimal number of defect pairs N/2

is 6 and 7 (the latter curve is not shown in the plot) for r =
√

2 and r = 2.6926

respectively.

The existence of defects in the ground state of a toroidal vesicle with hexatic

order is also affected by the total number of molecules N forming the hexatic phase.

In Ref. [130] it was found that defects disappear in the limit N → ∞, but are

present for numbers of molecules as large as N = 1010. This number is several

orders of magnitude larger than the typical number of molecules of biological vesicles

such as red-blood cells (i.e. N ∼ 108). To make this estimate, one considers a pair of

opposite sign disclinations that have been pulled apart from the circle of zero Gaussian

curvature to the equators in the regions of like sign Gaussian curvature; thus ψ+ = 0

and ψ− = π. Upon approximating the defect-pair energy by its flat space value, the
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total energy reads:

F = −π
3
KA log

(

r + 1

r − 1

)

+
π

18
KA log

(

R2

a0

)

+ 2ǫc , (4.38)

where a0 is the lattice spacing. Eq. (4.38) changes sign when

R2

a0

= e
− 36ǫc

KA

(

r + 1

r − 1

)6

. (4.39)

Taking

N ≈ A
√

3
2
a2

0

=
8π2

√
3 r
(

R2

a0

)2

leads to the conclusion that defects are favored for:

N <
8π2

√
3
e
− 72ǫc

πKA

[

r

(

r + 1

r − 1

)12
]

≈ 4.6 r

(

r + 1

r − 1

)12

(4.40)

where the last identity has been obtained by taking ǫc/KA = 0.1. This result estab-

lishes that defects are present in the ground state of a hexatic tours for any fixed

number of molecules provided the torus is sufficiently fat. For the energetically fa-

vored Clifford torus with r =
√

2, Eq. (4.40) predicts a critical number of molecules

to be order N ∼ 1010.

In absence of defects the ratio between the hexatic stiffness KA and the bending

rigidity κ dictates the optimal shape of the toroidal vesicle. Taking qi = 0 in Eq.

(4.33) one obtains in this case:

F =
2π2KA

r +
√
r2 − 1

+ κ
2π2r2

r2 − 1
. (4.41)

The first term represents the energetic cost associated with the distortion of the

hexatic director field due to the Gaussian curvature alone. In the limit of large and

small hexatic stiffness Eq. (4.41) is minimized by:

r =
√

2 KA ≪ κ

r =
√

KA

2κ
KA ≫ κ
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which provides a compelling example of the interplay between order and geometry:

if the stiffness associated with the intrinsic hexatic order is much smaller than the

bending rigidity, the Clifford torus is the optimal geometry; if on the other hand, the

hexatic stiffness dominates, then a thin torus, similar to a bicycle tire, is optimal.

4.5 Toroidal crystals

Crystalline assemblages of identical sub-units packed together and elastically bent in

the form of a torus have been found in the past ten years in a variety of systems

of surprisingly different nature, such as viral capsids, self-assembled monolayers and

carbon nanomaterials. In the introduction we mentioned the self-assembly of toroidal

micelles and vesicles from homogeneous solutions of amphiphilic molecules such as

oligomers of aromatic compounds or block copolymers. Toroidal geometries also

occur in microbiology in the viral capsid of the coronavirus torovirus [139]. The

torovirus is an RNA viral package of maximal diameter between 120 and 140 nm and

is surrounded, as other coronaviridae, by a double wreath/ring of cladding proteins.

Carbon nanotori form another fascinating and technologically promising class of

toroidal crystals [48] with remarkable magnetic and electronic properties. The inter-

play between the ballistic motion of the π electrons and the geometry of the embedding

torus leads to a rich variety of quantum mechanical properties including Pauli para-

magnetism [140] and Aharonov-Bohm oscillations in the magnetization [141]. Ring

closure of carbon nanotubes by chemical methods [142] suggest that nanotubes may

be more flexible than at first thought and provides another technique of constructing

carbon tori. In this section we review some recent developments in the study of the

geometry and the elasticity of toroidal crystals. Additional details can be found in

Refs. [131, 132].
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4.5.1 Geometry of toroidal polyhedra

Before analyzing the defect distribution arising from the elastic theory, it is neces-

sary to understand the geometry of triangulated tori. Reconciling the predictions of

a continuum elastic theory with the intrinsically discrete nature of crystallography

requires an understanding of the possible lattices that can be embedded on the torus

and the associated defects. The problem of classifying the possible triangulations

of the 2−torus has received considerable attention from mathematicians, physicists

and chemists over the past twenty years. Lavrenchenko [143] proved in 1984 that all

the triangulations of the torus can be generated from 21 irreducible triangulations

by certain sequences of operations called vertex splitting2. After the discovery of

carbon nanotubes in 1991 and the subsequent theoretical construction (later followed

by the experimental observation) of graphitic tori, many possible tessellations of the

circular torus have been proposed by the community [144–153]. In this section we

review the construction of a defect-free triangulated torus and we show how the most

symmetric defective triangulations can be generally grouped into two fundamental

classes corresponding to symmetry groups Dnh and Dnd respectively.

For the sake of consistency with the existing literature we adopt here the language

developed to describe the structure of carbon nanotubes. The structure of a triangu-

lated cylinder can be specified by a pair of triangular lattice vectors c and t, called

the chiral and translation vector respectively, which together define how the planar

lattice is rolled up. In the canonical basis a1 = (1, 0) and a2 = (1
2
,
√

3
2

), the vector c

has the form:

c = na1 +ma2 n, m ∈ Z . (4.42)

The translation vector t, on the other hand, can be expressed as an integer multiple

t = let l ∈ Z (4.43)

2Analogously it can be proved that the number of irreducible triangulations is one for the sphere

and two for the projective plane. The extraordinary larger value obtained for the torus should be

indicative of the high structural complexity of a crystalline torus.
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Figure 4.6: (Color online) Construction of a defect-free triangulation of the torus. On top planar

map of the triangulated torus corresponding to the (n,m, l) configuration (6, 3, 1). On the bottom

(6, 3, 6) chiral torus. The edges of each one of the six tubular segments has been highlighted in red.
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of the shortest lattice vector et perpendicular to c. The vector et is readily found to

be of the form:

et =
(n + 2m)a1 − (2n+m)a2

(n+ 2m : 2n +m)
,

where (a : b) denotes the greatest common divisor of a and b and enforces the minimal

length. The three-dimensional structure of the torus is obtained by connecting the

edge OT of the rectangle in Fig. 4.6 (top) to O′C and OC to O′T . The edge OT is

then mapped to the external equator of the torus while the edge OC to the φ = 0

meridian. The resultant toroidal lattice has characteristic chirality related to the

initial choice of the vector c. In the nanotubes literature armchair referes to the

lattice obtained by choosing n = m, zigzag to that obtained for m = 0 and chiral to

all other lattices. An example of a (n,m, l) chiral torus is shown in Fig. 4.6 (bottom)

for the case n = 6, m = 3 and l = 6. The chirality is extremely important in graphitic

carbon nanotube or nanotori, where it determines whether the electronic behavior of

the system is metallic or semiconducting.

By Euler’s theorem one can prove that the number of triangular faces F and the

number of vertices V of a triangular toroidal lattice is given by:

V = 1
2
F .

Denoting AR the area of the rectangle with edges c and t and AT the area of a

fundamental equilateral triangle, the number of vertices of a defect-free toroidal tri-

angulation is then:

V =
AR
2AT

=
2l (n2 + nm+m2)

(n + 2m : 2n+m)
. (4.44)

The planar construction reviewed above allows only lattices with an even number of

vertices. Defect-free toroidal deltahedra with an odd number of vertices are also pos-

sible and their construction is generally achieved by assembling congruent octahedral

building blocks. An example of this scheme will be briefly discussed in Sec. 4 for the

case V = 87 and r = 6. We refer the reader to Ref. [154] for an comprehensive review

of the topic.
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The embedding of an equal number of pentagonal and heptagonal disclinations

in the hexagonal network was first proposed by Dunlap in 1992 as a possible way to

incorporate positive and negative Gaussian curvature into the cylindrical geometry of

carbon tubules [144]. According to the Dunlap construction the necessary curvature

is incorporated by the insertion of “knees” (straight cylindrical sections of the same

diameter joined with a kink) in correspondence with each pentagon-heptagon pair

arising from the junction of tubular segments of different chirality (see Fig. 4.8). In

Figure 4.7: (Color online) Voronoi lattices of a TPn prismatic (top) and TAn antiprismatic (bot-

tom) toroids with R1 = 1 and R2 = 0.3.

particular, a junction between a (n, 0) and a (m,m) tube can be obtained by placing a

7−fold disclination along the internal equator of the torus and a 5−fold disclination

along the external equator. Since the radii of the two segments of a junction are

different by construction, the values of n and m are commonly chosen to minimize

the ratio |c(n,0)|/|c(m,m)| = n/
√

3m. By repeating the 5 − 7 construction periodically

it is possible to construct an infinite number of toroidal lattices with an even number

of disclinations pairs and dihedral symmetry group Dnh (where 2n is the total number

of 5 − 7 pairs, Fig 4.9). The structure of the lattice is described by the alternation

of two motifs with crystalline axes mutually rotated by 30◦ as a consequence of the

connecting disclination. One of the fundamental aspects of Dunlap’s construction is

that all the disclinations are aligned along the two equators of the torus where the
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like-sign Gaussian curvature is maximal. As we will see below, this feature makes

these arrangements optimal in releasing the elastic stress due to curvature.

Figure 4.8: (Color online) Dunlap knees obtained by joining two straight tubular segments with

(n, 0) and (m,m) chirality. [Courtesy of A. A. Lucas and A. Fonseca, Facultés Universitaries Notre-

Dame de la Paix, Namur, Belgium].

Figure 4.9: (Color online) Five-fold polygonal torus obtained by joining (5, 5) and (9, 0) tubular

segments via ten pairs of 5 − 7 rings. This structure was originally proposed by the authors of

Ref. [155] as a possible low-strain configuration for carbon nanotori. [Courtesy of A. A. Lucas and

A. Fonseca, Facultés Universitaries Notre-Dame de la Paix, Namur, Belgium].
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Another class of crystalline tori with dihedral antiprismatic symmetry Dnd was

initially proposed by Itoh et al [145, 151, 152] shortly after Dunlap. Aimed at repro-

ducing a structure similar to the C60 fullerene, Itoh’s original construction implied ten

disclination pairs and the point group D5d. In contrast to Dunlap tori, disclinations

are never aligned along the equators in antiprismatic tori, instead being staggered at

some angular distance δψ from the equatorial plane. Hereafter we will use the sym-

bol TAn to refer to toroidal deltahedra with 2n disclination pairs and Dnd symmetry

group.

A systematic construction of defected triangulations of the torus can be achieved

in the context of planar graphs [143, 156, 157]. A topological embedding of a graph

in a two-dimensional manifold corresponds to a triangulation of the manifold if each

region of the graph is bounded by exactly three vertices and three edges, and any two

regions have either one common vertex or one common edge or no common elements

of the graph. The simplest example of toroidal polyhedra with Dnd symmetry group,

featuring only 5−fold and 7−fold vertices, can be constructed by repeating n times

the unit cell of Fig. 4.11a. These toroidal antiprisms 3 have V = 4n vertices and can

be obtained equivalently from the edge skeleton of a n−fold antiprism by attaching

at each of the base edges a pentagonal pyramid and by closing the upper part of

the polyhedron with n additional triangles. By counting the faces one finds F =

5n + 2n + n = 8n from which V = 4n. The simplest polyhedron of this family has

V = 12 and D3d symmetry group (see top left of Fig. 4.10) and corresponds to the

“drilled icosahedron” obtained by removing two parallel faces of an icosahedron and

connecting the corresponding edges with the six lateral faces of an antiprism with

triangular base (i.e. a prolate octahedron). Starting from this family of toroidal

antiprisms a number of associated triangulations having the same defect structure

can be obtained by geometrical transformations such as the Goldberg inclusion [38,

3Although we presume this class of toroidal polyhedra is not discussed here for the first time, we

couldn’t find any previous reference in the literature.
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Figure 4.10: (Color online) First six toroidal antiprisms obtained by repeating the unit cell of

Fig. 4.11. The first polyhedron on the left is the “drilled icosahedron”.

158, 159]. Such transformations, popularized by Caspar and Klug for the construction

of the icosadeltahedral structure of spherical viruses [38], consist in partitioning each

triangular face of the original graph into smaller triangular faces in such a way that

old vertices preserve their valence and new vertices have valence six. The partition

is obtained by specifying two integer numbers (L,M) which define how the original

vertices of each triangle are connected by the new edges so that the total number of

vertices is increased by a factor T = L2 + LM +M2.

A general classification scheme for Dnd symmetric tori was provided by Berger

and Avron [156, 157] in 1995. Their scheme is based on the construction of unit

graphs comprising triangular tiles of different generations. In each generation, tiles

are scaled in length by a factor 1/
√

2 with respect to the previous generation. This

rescaling approximates the non-uniformity of the metric of a circular torus.

Dunlap toroids can be obtained from unit cells such as those shown in Fig. 4.12.
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Figure 4.11: (a) Unit cell for toroidal antiprisms. 5−fold vertices are circled and 7−fold vertices

are boxed. (b) Unit cell of a Dnd torus in the Berger-Avron construction. The graph consists of four

generation of tiles and the internal equator of the torus is mapped into the horizontal line passing

to the mid-point between the 6th and the 7th vertex.

Figure 4.12: (Color online) Unit cells for Dunlap toroids of type (2, 1, 3, 1) and (3, 1, 3, 1) according

to the classification scheme given here. Highlighted regions correspond to the central polygon.

The geometrical properties of these graphs can be described in different ways. A

particularly intuitive way, in the spirit of this work, consists in specifying the distances
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between 5− and 7−fold pairs. One starts by drawing the smallest convex loop passing

through defective sites. This identifies a central polygon whose upper vertices (v1 and

v2 in Fig.4.13) have degree five and lower vertices (v5 and v6 in Fig. 4.13) have degree

seven. Then calling a the distance between 5−fold vertices v1 and v2, b that between

7−fold vertices v5 and v6 and c the length of the segment v3v4 (d = a for a trapezoid),

we can express the total number of triangles enclosed by the central polygon as:

f = 2c2 − a2 − b2 .

Each 7−fold vertex sits at the apex of a diamond-shaped complex of f ′ = 7 triangles.

Each 5−fold vertex, on the other hand, is at the apex of a triangular region of

f ′′ = (c− a+ 1)2 triangles. The graph is completed by a rectangle of height c− a+ 4

and base of arbitrary length 2d containing:

f ′′′ = 4d(c− a + 4)

triangles. The total number of vertices is

Vg = f + f ′ + f ′′ + f ′′′/2

= c2 − b2 + 2(c− a)(c+ d+ 1) + 8(d+ 1) . (4.45)

The final triangulation of the torus is obtained by repeating the prismatic unit cell l

times and therefore has V = lVg vertices. This scheme provides direct information on

the arrangement of defective sites. Thus for instance an (a, b, c, d) = (2, 1, 3, 1) unit

cell (see top of Fig. 4.12) has 5−fold vertices separated by two lattice spacings and

7−fold vertices by one lattice spacing. On the other hand the integers n and m giving

the chirality of the two segments of the junction (n, 0)/(m,m) are given directly by

as:

n = c− a+ 4

m = 2c− a− b .
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Figure 4.13: (Color online) Central polygon (right) and rectangular (zig-zag) region in our con-

struction scheme of Dunlap’s toroids. In this example (a, b, c, d) = (2, 1, 3, 1).

Figure 4.14: Unit cells for TP(2)n and TP(3)n toroids.

Thus the (2, 1, 3, 1) cell of Fig. 4.12 is obtained from the junction between a (5, 0)

and a (3, 3) tubular segment.

Dunlap’s toroids are not the only examples of defective triangulations of the torus

with dihedral prismatic symmetry group Dnh. With the help of numerical simulations

(see Sec. 4) we found two other classes whose unit cell is shown in Fig. 4.14. Unlike

Dunlap’s toroids, the 7−fold vertices in these prismatic triangulations are not aligned

along the internal equator of the torus, but rather grouped in dimers normal to the
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Figure 4.15: (Color online) (a) TP5a and (b) TP7b toroids with V = 35 and 49 obtained by

repeating the unit cells of Fig. 4.14. 7−fold vertices form dimers normal to the equatorial plane

while 5−fold vertices are (a) distributed along the external equator or (b) form a double ring above

and below the equatorial plane.

equatorial plane. 5−fold vertices are distributed along the external equator in the

graph of Fig. 4.14a or form a double ring above and below it in the case of the

graph Fig. 4.14b. Toroidal deltahedra obtained by embedding the prismatic graphs

of Fig. 4.14 on a circular torus are shown in Fig. 4.15 for the case of a 5−fold symmetric

toroid with V = 35 and a 7−fold symmetric toroid with V = 49. In the rest of the

paper we will reserve the symbol TPn for Dunalp’s toroids and refer with TPna and

TPnb to the other two classes of toroids with symmetry group Dnh and unit cell of

as shown in Fig. 4.14a and Fig. 4.14b respectively.

All defective triangulations presented so far are characterized by an even number

of disclination pairs. Regular tessellations of the torus comprising an odd number of

defects pairs are also possible. Such tessellations are obtained by combining segments
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Figure 4.16: (Color online) Voronoi diagram of a toroidal lattice with r = 10/3 and V = 200

vertices. The lattice exhibits 11 disclination pairs and has Cs symmetry group.

of prismatic and antiprismatic lattices with a consequent loss of dihedral symmetry.

Fig. 4.16 shows the Voronoi diagram of a toroidal lattice, with r = 10/3 and V = 200

vertices, containing 11 disclination pairs. For an angular length of approximately

∆φ = 7/5 π the lattice is a prismatic D5d toroid while in the remaining 3/5 π the

local structure is that of an antiprismatic toroid. The global structure has only

bilateral symmetry about a sagittal plane dividing the lattice in two mirror halves

and thus point group Cs.

In the past few years, alternative constructions of triangulated tori have been

proposed as well as novel geometrical and graph-theoretical methods to express the

coordinates of their three-dimensional structures (see for example Kirby [146], László
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at al [147, 153, 160], Diudea et al [148, 161]). Here we choose to focus on the defect

structure associated with the two most important class TPn and TAn with groups

Dnh and Dnd.

4.5.2 Elasticity of defects on the torus

Isolated defects regime

The total free energy of a toroidal crystal with N disclinations can be expressed as

usual as:

F =
1

2Y

∫

d2xΓ2(x) + ǫc

N
∑

i=1

q2
i + F0 (4.46)

where Y is the two dimensional Young modulus and:

Γ(x) =
π

3

N
∑

k=1

qkΓd(x,xk) − Γs(x) , (4.47)

The defect part of the stress function Γ(x) can be found by integrating the Green

function (4.19) and takes the form:

Γd(x,xk)

Y
=

κ

16π2
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2

κ
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)2

− 1

4π2κ
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2 +
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4π2r
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∣

∣

∣

ϑ1

(

z − zk
κ

∣

∣

∣

∣

2i

κ

)∣

∣

∣

∣

, (4.48)

where Li2 is the usual Eulerian dilogarithm and

α =
√
r2 − 1 − r . (4.49)

The function Γs(x) representing the stress field due to the Gaussian curvature of the

torus, on the other hand, is given by:

Γs(x)

Y
= log

[

r +
√
r2 − 1

2(r + cosψ)

]

+
r −

√
r2 − 1

r
. (4.50)

A derivation of the functions Γd(x,xk) and Γs(x) will be given in Appendices 4.C,

4.D and 4.E.
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To analyze the elastic free energy (4.46) we start by considering the energies of two

opposite sign disclinations constrained to lie on the same meridian. The elastic free

energy of this system is shown in Fig. 4.17 as a function of the angular separation

between the two disclinations. The energy is minimized for the positive (5−fold)

disclination on the external equator (maximally positive Gaussian curvature) and the

negative (7−fold) disclination on the internal equator (maximally negative Gaussian

curvature). The picture emerging from this simple test case suggests that a good

ansatz for an optimal defect pattern is a certain number p of equally spaced +1

disclinations on the external equator matched by the same number of equally spaced

−1 disclinations on the internal equator. We name this configuration with the symbol

Tp, where p stands for the total number of disclination pairs.

Tp :

{

(

0,
2πk

p

)

1≤k≤p
;

(

π,
2πk

p

)

1≤k≤p

}

, (4.51)

where the two pairs of numbers specify the (ψ, φ) coordinates of the positive and

negative disclinations respectively. A comparison of the energy of different Tp config-

urations, as a function of aspect ratio and disclination core energy, is summarized in

the phase diagram of Fig. 4.18. We stress here that only Tp configurations with p even

have an embedding on the torus corresponding to lattices of the TPp
2

class. Neverthe-

less a comparison with p−odd configurations can provide additional information on

the stability of p−even lattices. For small core energies, moreover, thermally excited

configurations with a large number of defects and similar p−polar distributions of

topological charge are expected to exhibit an elastic energy comparable in magnitude

with that of these minimal constructions. The defect core energy has been expressed

here in the form:

Fc = ǫc

2p
∑

i=1

q2
i = 2pǫc . (4.52)

The core energy ǫc of a single disclination depends on the details of the crystal-forming

material and the corresponding microscopic interactions. A simple phenomenological
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Figure 4.17: (Color online) Elastic energy of a 5 − 7 disclination dipole constrained to lie on the

same meridian, as a function of the angular separation. In the inset, illustration of a circular torus

of radii R1 > R2. Regions of positive and negative Gaussian curvature have been shaded in red and

blue respectively.

argument (see for example Ref. [162]) gives

ǫc
Y

∼ a2

32π
,

where a the lattice spacing. Taking a2 = A/
√

3
2
V , with A the area of the torus, yields:

ǫc
AY

∼ 1

16
√

3πV
∼ 10−2

V
. (4.53)

For a system of order V = 103 subunits, then, the dimensionless core energy on the

left hand side of Eq. (4.53) is of order 10−5. This estimate motivates our choice of

the scale for ǫc/(AY ) in Fig. 4.18.

For dimensionless core energies below 4 · 10−5 and aspect ratios r between 3.68

and 10.12 the ground state structure is the TP5 lattice corresponding to a double ring

of +1 and −1 disclinations distributed on the external and internal equators of the

torus as the vertices of a regular decagon (the T10 configuration). The TP5 lattice

has dihedral symmetry group D5h. That this structure might represent a stable

configuration for polygonal carbon toroids has been conjectured by the authors of



4.5 Toroidal crystals 120

Figure 4.18: (Color online) Phase diagram for Tp configurations in the plane (r, ǫc/AY ). For

r ∈ [3.68, 10.12] and ǫc ∼ 0 the structure is given by a T10 configuration with symmetry group D5h.

Ref. [155], based on the argument that the 36◦ angle arising from the insertion of

ten pentagonal-heptagonal pairs into the lattice would optimize the geometry of a

nanotorus consistently with the structure of the sp2 bonds of the carbon network

(unlike the 30◦ angle of the 6−fold symmetric configuration originally proposed by

Dunlap). In later molecular dynamics simulations, Han [163, 164] found that a 5−fold

symmetric lattice, such as the one obtained from a (9,0)/(5,5) junction (see Fig. 4.9),

is in fact stable for toroids with aspect ratio less then r ∼ 10. The stability, in this

case, results from the strain energy per atom being smaller than the binding energy of

carbon atoms. Irrespective of the direct experimental observation of such disclinated

toroidal crystals, which is still open, we show here how continuum elasticity predicts

that a 5−fold symmetric lattice indeed constitutes a minimum of the elastic energy

for a broad range of aspect ratios and defect core energies.

For small aspect ratios the 5−fold symmetric configuration becomes unstable and

is replaced by the 9−fold symmetric phase T9. As we mentioned, however, this

configuration doesn’t correspond to a possible triangulation of the torus. It is likely
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that the ground sate in this regime consists of ten skew disclination pairs as in the

antiprismatic TAn lattice. The latter can be described by introducing a further degree

of freedom δψ representing the angular displacement of defects from the equatorial

plane:

TAn :

{

(

(−1)2kδψ,
2πk

n

)

1≤k≤n
;

(

(−1)2k(π − δψ),
2πk

n

)

1≤k≤n

}

(4.54)

A comparison of the TP5 configuration and the TA5 configuration is shown in Fig. 4.19

for different values of δψ. The intersection points of the boundary curves with the

δψ−axis has been calculated by extrapolating the (r, δψ) data points in the range

δ ∈ [0.07, 0.8] with ∆(δψ) = 2.5π ·10−3. For small δψ and r ∈ [3.3, 7.5] the prismatic

TP5 configuration is energetically favored. For r < 3.3, however, the lattice under-

goes a structural transition to the TA5 phase. For r > 7.5 the prismatic symmetry

of the TP5 configuration breaks down again. In this regime, however, the elastic

energy of both configurations rapidly rises because of the lower curvature and defects

disappear.

Defect free tori

For aspect ratio r & 11 the TP5 phase is replaced by a defect free configuration (T0

in Fig. 4.18) so that configurations with defects are no longer energy minima. Any

toroidal crystal with aspect ratio larger than ∼ 11 is than energetically favored to

be defect-free. In the thin torus limit the ground state structure is directly related

to the simple problem of finding the most efficient packing of congruent equilateral

triangles on the torus of a given aspect ratio. Given V subunits (vertices) one seeks

the densest packing of equilateral triangles of edge-length a = (A/
√

3
2
V )1/2 on the

torus with aspect ratio r, such that each vertex has valence six. Using the planar

construction described in §4.5.1, the optimal choice of the indices (n,m, l), can be

translated into the minimization of the following quantity:

∆n,m(r, V ) = n2 + nm+m2 −
√

3
2
r−1V , (4.55)



4.5 Toroidal crystals 122

Figure 4.19: (Color online) Phase diagram of a 5−fold symmetric lattice in the plane (r, δψ). For

small δψ and r in the range [3.3, 7.5] the prismatic TP5 configuration is energetically favored. For

r < 3.3 the system undergoes a structural transition to the antiprismatic phase TA5.

obtained by equating the magnitude of the chiral vector c with that of the sectional

circumference of the embedding torus, under the constraints:











l = V
2

(n+2m:2n+m)
n2+nm+m2

n, m, l ∈ Z

. (4.56)

This construction successfully predicts the structure of the lattices of Fig. 4.20.

So far we have studied the elasticity of toroidal crystals exclusively in terms of

interacting topological defects on a rigid toroidal substrate. Thus the elastic strain

due to defects and curvature takes the form of pure stretching on the tangent plane

of the torus and no out-of-plane deformation takes place. In a more realistic scenario,

a crystalline torus would undergo both in-plane stretching and out-of-plane bending.

The latter implies an energy cost:

Fb =
κb
2

∫

d2xH2(x) = κb
2π2r2

√
r2 − 1

, (4.57)
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Figure 4.20: (Color online) Two examples of defect free “crop circle” toroids with r = 20 and

V = 180 (left) and 220 (right).

with H the mean curvature (see Ref. [130]). The case of defect-free tori is simple

enough to incorporate bending in the problem and see what the optimal aspect ratio

of a defect-free torus would be as a function of the Föppl-von Kármán number γ =

AY/κb representing the ratio of the stretching energy scale to the bending rigidity.

In absence of defects the only source of stress is given by the curvature. Thus

Fs =
1

2Y

∫

d2xΓ2
s(x) = AY

{1 + 4r(r2 − 1)
1
2 [1 − log(2 + 2rα)]

2r2
+ Li2(α

2) − 2
}

.

Summing Eq. (4.57) and (4.58) and taking the derivative with respect to r (assuming

constant area), one obtains the following equation for the optimal value of r:

2π2 r(r
2 − 2)

(r2 − 1)
3
2

− γ

r3

[

1 + 2rα− 2r(r2 − 1)
1
2 log(2 + 2rα)

]

= 0 . (4.58)

The optimal aspect ratio r as obtained form Eq. (4.58) is shown in Fig. 4.21 as a

function of γ. For γ ∼ 0, when the major contribution to the elastic energy is given
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Figure 4.21: (Color online) Optimal value of the aspect ratio r as function of the Föppl-von

Kármán number γ = AY/κb. For γ ∼ 0 the Clifford torus with r =
√

2 is optimal. Larger values of

γ favour instead a “skinnier” torus.

by the bending, the optimal geometry is given by the Clifford torus (r =
√

2). If,

on the other hand, the in-plane stretching dominates, a “skinny” torus (large r) is

energetically favoured.

Scars and coexistence

In the regime of large particle numbers, the amount of curvature required to screen

the stress field of an isolated disclination in units of lattice spacing becomes too large

and disclinations are unstable to grain boundary “scars” consisting of a linear array

of tightly bound 5 − 7 pairs radiating from an unpaired disclination [72, 106]. In a

manifold with variable Gaussian curvature this effects leads to a regime of coexistence

of isolated disclinations (in regions of large curvature) and scars. In the case of the

torus the Gaussian curvature inside (|ψ| > π/2) is always larger in magnitude than

that outside (|ψ| < π/2) for any aspect ratio and so we may expect a regime in

which the negative internal curvature is still large enough to support the existence

of isolated 7−fold disclinations, while on the exterior of the torus disclinations are

delocalized in the form of positively charged grain boundary scars.
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Figure 4.22: (Color online) Isolated defects and scar phases in the (r, V ) plane. When the number

of vertices V increases the range of the screening curvature becomes smaller than one lattice spacing

and disclinations appear delocalized in the form of a 5 − 7 − 5 grain boundary mini-scar.

This hypothesis can be checked by comparing the energy of the TP5 lattice pre-

viously described with that of “scarred” configurations obtained by decorating the

original toroid in such a way that each +1 disclination on the external equator is

replaced by a 5− 7− 5 mini-scar. The result of this comparison is summarized in the

phase diagram of Fig. 4.22 in terms of r and the number of vertices of the triangular

lattice V (the corresponding hexagonal lattice has twice the number of vertices, i.e.

Vhex = 2V ). V can be derived from the angular separation of neighboring discli-

nations in the same scar by approximating V ≈ A/AV , with AV =
√

3
2
a2 the area

of a hexagonal Voronoi cell and a the lattice spacing. When the aspect ratio is in-

creased from 1 to 6.8 the range of the curvature screening becomes shorter and the

number of subunits required to destroy the stability of the TP5 lattice decreases.

For r > 6.8, however, the geodesic distance between the two equators of the torus

becomes too small and the repulsion between like-sign defects takes over. Thus the
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trend is inverted.

4.5.3 Numerical simulation of toroidal crystals

In this section we report the result of a numerical minimization of a system of V point-

like particles constrained to lie on the surface of a torus and interacting via a pair

potential of the form Uij = 1/|xi−xj |3 where |·| denotes the Euclidean distance in R
3.

The problem of finding the minimal energy configuration of repulsively interacting

points on a 2-manifold has become a standard problem of potential theory and has

its paradigm in the classical Thomson problem on the sphere. The choice of the cubic

potential is motivated here by the so called “poppy seed bagel theorem” [80], according

to which the configuration of points that minimizes the Riesz energy E =
∑

i<j 1/|xi−
xj|s on a rectifiable manifold of Hausdorff dimension d is uniformly distributed on

the manifold for s ≥ d. In the case of a torus of revolution this implies that for small

s the points are mostly distributed on the exterior of the torus (the interior becomes

completely empty in the limit V → ∞). As s is increased, however, the points cover

a progressively larger portion of the surface. The distribution becomes uniform for

s ≥ 2. On the other hand, since the number of local minima of the Riesz energy

increases with s, it is practical to choose a value not much larger than two. The

choice s = 3 has the further advantage of modelling a real physical system of neutral

colloidal particles assembled at an interface [35] and is therefore suitable for direct

comparison with experiments on colloidal suspensions.

To construct low energy configurations we adopt an carefully designed hybrid op-

timization algorithm named Tapping (TA). Like other hybrid algorithms, TA consists

in a combination of fast local optimizations and global stochastic moves designed to

release the system from the local minimum to which it is confined at the end of a

local minimization step. A more detailed description of our algorithm is reported in

Appendix 4.A We study four different aspect ratios: r = 3 , 4 , 6 and 20. For each

aspect ratio we consider several different particle numbers up to V = 1000 and each
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simulation is performed for 105 to 106 TA iterations.

The lowest energies configurations found are shown in Fig. 4.23. Additional in-

formations, including energies and defect structures of the lattices shown here, are

available as electronic-only material. The complete set of data produced in our sim-

ulations together with a collection of interactive 3D graphics for each low energy

configuration studied can be found on-line [165].

The lattices are best presented using a Voronoi construction corresponding to the

dual lattice of the Delaunay triangulation. Here pentagonal faces are colored in red

while heptagonal faces are colored in blue. For fewer than V ∼ 180 particles the

results of our numerical minimization are in good agreement with the continuum

elastic theory. In particular for 180 < V < 500 and r = 3, 4 and 6, we always find

minimal energy configurations consisting of ten 5−fold disclinations on the outside of

the torus and ten 7−fold disclinations in the inside as predicted by the elastic theory

in the regime of ǫc/(AY ) ∼ 0. For r = 20 and V > 110 we also find the lowest energy

configurations to be defect free.

For small numbers of particles we don’t expect the continuum approximation to

accurately describe the lowest energy structure of the toroidal clusters presented in

Fig. 4.23. Loosely speaking the limit of validity of the elastic theory can be quantified

by requiring the average lattice spacing a = 2π[R1R2/(
√

3
2
V )]1/2 to be much smaller

than the radius R2 of the torus. This condition requires V to be of order 500 particles

for a torus with aspect ratio r = 3. Remarkably, good agreement between the theory

and simulations is found starting from much smaller values of V and in some cases

(see the following discussion on the configuration with r = 3 and V = 130), we

already observe the onset of the ideal behavior predicted by theory for a ∼ R2.

The occurrence of a ground state configuration with exact prismatic or antiprismatic

symmetry, in particular, is only possible when the number of particles V belongs to

a specific sequence of “magic numbers” described in §4.4. Nevertheless for V outside

such a sequence it is still possible to observe in the ground state a predominant
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prismatic or antiprismatic character depending on the aspect ratio.

V rmin ± 0.05 rmax ± 0.05

16 1.0 1.6

20 1.4 2.6

24 1.8 3.4

28 2.4 4.0

32 2.9 4.6

Table 4.1: Maximum and minimum aspect ratio for which the toroidal antiprisms are a global

minimum.

Some configurations deserve special attention. For V = 16, 20, 24, 28 and 32 and

r within a specific range (see Table 4.1) the global minima are represented by the

second to sixth toroidal antiprims discussed in §4.5.1. The drilled icosahedron, on

the other hand, would require the aspect ratio be less than one, as can be understood

from Table 4.1, and is therefore never a minimum for V = 12. We next describe the

salient features of the four aspect ratios simulated.

r = 3

The smallest minimal energy state with D5h symmetry is obtained for V = 35. It

features ten disclination pairs and belongs to the class of TP5a graphs. For V = 42,

a TP6b lattice is obtained with no defects along the two equators. Two 6−fold chiral

configurations are obtained for V = 60 and 126. The global minimum obtained for

V = 130 displays a fascinating example of 5−fold antiprismatic symmetry with the

ten isolated negative disclinations in the interior of the torus replaced by a simplicial

complex consisting of five triangles with a common 5−fold apex and four 7−fold

coordinated vertices along the base. A peculiar example is also represented by the

minimum obtained for V = 180. The lattice exhibits the typical pattern of a TPn

graph with (3, 1, 4, 7)−type unit cell. The angular distance between neighboring
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disclinations is δφ ∼ 2π/9. Since a prismatic graph cannot have an odd number

of disclination pairs the toroidal lattice is closed by a simplicial complex consisting

of two positive disclinations on the exterior of the torus at the opposite sides of the

external equator and two negative disclinations in the interior arranged similarly. The

total number of disclination pairs is therefore ten. The typical pattern of the 5−fold

antiprismatic toroid can be found in all configurations with V > 200. A single 5−7−5

scar appears in the r = 3 configurations at V = 420, while larger lattices (i.e V = 460

and 500) also feature 4−fold disclinations in the interior of the torus. It is not clear,

however, whether the presence of disclinations with topological charge |q| > 1 is a

genuine property of the ground state or rather an artifact due to a misconvergence of

our algorithm.

r = 4

An interesting feature is observed at V = 42. As in the case of r = 3 we also

find a minimum with D6h symmetry group, but unlike the latter configuration, it

belongs to the TP6a class and has 5−fold disclinations along the external equator.

A TP7b configuration is obtained again for V = 49. For V = 66 and V = 104

the global minimum is achieved by two spectacular antiprismatic configurations with

D11d and D13d symmetry group respectively. These toroids can be obtained from the

toroidal antiprisms discussed in §4.5.1 by splitting 4 one or more times the initial

set of 5−fold vertices. Thus starting from a 11−fold toroidal antiprism with V =

4×11 = 44 vertices and splitting all 22 5−fold vertices one obtains V = 44+22 = 66

vertices. Splitting twice all 26 5−fold vertices of a 13−fold toroidal antiprism with

V = 4 × 13 = 52, on the other hand, we have V = 52 + 2 × 26 = 104. For V = 120

the global minimum is represented by a fascinating lattice of TP5a type. Lattices

4Vertex splitting is a standard operation to generate larger triangulations from an irreducible one.

It consists in dividing an existing vertex v in two such that the total number of vertices is increased

by one. The two newly created vertices have coordination number c− 1, with c is the coordination

number v, while two of the c neighbors of v gain a bond.
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with V = 121 , 125 and 126 resemble very closely the structure of a TP5 graph while

for V = 260 the lattice has a more antiprismatic character with ten defect pairs.

r = 6

Three defect-free configurations are found at V = 87, 112 and 116. The case V = 87

is a particular example of a defect-free lattice that cannot be obtained form the planar

construction reviewed in §4.5.1. It consists of 29 octahedra connected in the form of a

chain. Since each octahedron is attached to other two, it contributes with six faces to

the total face count. Thus F = 6×29 = 174 and V = 174/2 = 87. For 180 ≤ V < 460

we always find configurations with ten disclination pairs as expected from continuum

elasticity. For V > 460 the regime of coexistence between isolated disclinations and

scars described in §4.5.2 is observed. The delocalization of isolated disclinations into

scars, however, doesn’t take place at each defective site simultaneously and the regime

of coexistence between positively charged scars and isolated 7−fold disclinations is

preceded by a phase with isolated 5− and 7−fold disclinations and scars. For tori

with aspect ratio as large as r = 20 we find defect-free ground states every time it

is possible to construct a purely 6−valent toroidal graph with the same number of

vertices V .
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Figure 4.23: (Color online) Selected low energy configurations for toroidal lattices of aspect ratio

r = 3, 4, 6 and 20. Lattices are labeled by (r, V ), with V the number of particles.
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Table 4.2: Low energy configuration for a selected number of toroidal lattices with aspect ratios

r = 3, 4, 6 and 20. For each aspect ratio the table displays the number of particles V , the lowest

energy found and the number of k−fold vertices Vk with k = 4–8.

r V V4 V5 V6 V7 V8 Energy

3

32 0 16 0 16 0 505.086593

35 0 10 15 10 0 637.633663

42 0 12 18 12 0 1020.466912

120 0 14 92 14 0 14671.476332

121 0 20 81 20 0 14981.224344

125 0 19 87 19 0 16255.583992

126 0 12 102 12 0 16586.793347

130 0 20 90 20 0 17930.955152

180 0 10 160 10 0 40623.325218

220 0 10 200 10 0 67176.585493

260 2 16 222 20 0 102100.926892

300 1 10 277 12 0 146139.605664

340 0 10 320 10 0 199812.441922

420 0 11 398 11 0 339147.966681

460 2 14 426 18 0 425754.968401

500 2 16 462 20 0 524508.172150

1000 1 17 963 19 0 2965940.674307

4

66 0 22 22 22 0 4905.964854

104 0 26 52 26 0 15598.534409

105 0 15 75 15 0 15984.990289

113 0 19 75 19 0 19237.981548

117 0 22 73 22 0 21007.172188

119 0 12 95 12 0 21914.283713

120 0 10 100 10 0 22371.402771

121 0 12 97 12 0 22859.735385

125 0 10 105 10 0 24816.591295

126 0 10 106 10 0 25311.298095

180 0 10 160 10 0 62142.129092

220 0 10 200 10 0 102919.127703

260 0 10 240 10 0 156499.285669

300 0 10 280 10 0 223997.341297

340 0 10 320 10 0 306568.539431

420 0 13 394 13 0 520431.653442

460 0 11 438 11 0 653485.181907

500 0 14 472 14 0 805206.972227

Continue to the next page . . .
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r V V4 V5 V6 V7 V8 Energy

6

87 0 0 87 0 0 17765.124942

108 0 12 84 12 0 30894.374674

112 0 0 112 0 0 33902.717714

115 0 0 115 0 0 36254.709031

116 0 0 116 0 0 37074.949162

180 0 10 160 10 0 112810.451302

220 0 10 200 10 0 187146.462245

260 0 10 240 10 0 284907.016076

340 0 10 320 10 0 559161.546358

420 0 10 400 10 0 950488.931696

500 0 13 474 13 0 1471923.063515

1000 0 30 940 30 0 8351619.696538

20

160 0 0 160 0 0 463967.242489

170 0 0 160 0 0 543799.839326

180 0 0 180 0 0 631751.371902

220 0 0 220 0 0 1065625.748639

260 0 0 260 0 0 1636942.532923

300 0 0 300 0 0 2370110.403872

4.5.4 The Fat Torus Limit

We have seen that disclination defects, forbidden in the lowest energy state of a

planar crystal, may be energetically favored on a substrate of non-vanishing Gaus-

sian curvature. It is therefore natural to ask whether large curvature can completely

destroy crystalline order by driving the proliferation of a sufficiently high density

of defects. The resulting state would be amorphous. The problem of generating

amorphous structures by tiling a two-dimensional curved space with identical rigid

subunits has drawn attention over the years, particularly through the connection to

the structure of such disordered materials as supercooled liquids and metallic glasses.

Since the work of Frank [166] the notion of geometrical frustration arises frequently

in investigations of supercooled liquids and the glass transition. A paradigmatic ex-

ample is represented by the icosahedral order in metallic liquids and glasses which,

although locally favored, cannot propagate throughout all of three-dimensional Eu-

clidean space. A two-dimensional analog, consisting of a liquid of monodisperse hard
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disks in a 2-manifold of constant negative Gaussian curvature (the hyperbolic plane)

was first proposed by Nelson and coworkers in 1983 [16]. In such a system the impos-

sibility of covering the entire manifold with a 6-fold coordinated array of disks mimics

many aspects of the geometrical frustration of icosahedral order in three dimensions.

In all these models of geometrical frustration, however, the origin of the disorder is

primarily due to the short-range nature of the potential between the subunits. In a

more realistic setting, part of the frustration is relieved by the fact that hexagonal

unit cells can compress in order to match the underlying geometry.

The embedding of a triangular lattice on an axisymmetric torus, provides a par-

ticularly suitable playground to study curvature-driven disorder. When r → 1 the

Gaussian curvature on the inside of the torus grows like 1/(r−1) and diverges on the

internal equator at ψ = π. We thus expect a high density of defects in the vicinity of

the curvature singularity and a resultant loss of the local 6−fold bond orientational

order. In this regime the system will have crystalline regions on the outside of the

torus and amorphous regions near the curvature singularity.

In this section we substantiate this claim analytically based on the elastic theory

of continuous distributions of edge dislocations on a “fat” torus. Our argument is

based on the following construction. As a consequence of the curvature singularity

the surface area of an arbitrary wedge of angular width ∆φ becomes smaller and

smaller as the sectional angle ψ increases and vanishes at ψ = π. If a defect-free

lattice is embedded on such a wedge, Bragg rows will become closer and closer as the

singularity is approached with a consequent rise in the elastic energy (see Fig. 4.24).

An intuitive way to reduce the distortion of the lattice is to recursively remove Bragg

rows as one approaches the point ψ = π (see Fig. 4.25). This is equivalent to

introducing a growing density of edge dislocations. This dislocation “cloud” will

ultimately disorder the system by destroying the local 6−fold bond orientational

order. One might therefore view the curvature as playing the role of a local effective

temperature which can drive “melting” by liberating disclinations and dislocations.
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Figure 4.24: (Color online) Top view of a defect free triangulation of a fat torus with (n,m, l) =

(10, 10, 20) and V = 400. The corresponding elastic energy becomes very high in the interior of the

torus where the triangles are more compressed to match the reduction of surface area.

In two-dimensional non-Euclidean crystals at T = 0, however, the mechanism for

dislocation proliferation is fundamentally different from the usual thermal melting.

While the latter is governed by an entropy gain due to unbinding of dislocation pairs,

the amorphization at T = 0 is due to the adjustment of the lattice to the geometry

of the embedding manifold via the proliferation of defects and the consequent release

of elastic stress. A similar phenomenon occurs in the disorder-driven amorphization

of vortex lattices in type-II and high-Tc superconductors [167].

Since the shrinking area per plaquette on the inside of the torus necessitates a high

density of dislocations we may approximate the dislocation cloud in this region by

a continuous distribution of Burgers vector density b. Minimizing the elastic energy

with respect to b yields a variational equation from which the optimal dislocation

density can be calculated as a function of the ratio ǫd/(Y R
2) between the dislocation

core energy ǫd and elastic energy scale Y R2 with R = R1 = R2.

As a starting point, we calculate the Green function GL(x,y) in the fat torus limit
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Figure 4.25: (Color online) A schematic example of a dislocation pile-up on a square lattice

resulting from the shrinking of the area on a regular wedge of a fat torus.

r → 1 (i.e. κ → ∞ and ω → 0, see Eq. (4.10)). The conformal angle ξ in this limit

is:

lim
r→1

ξ = tan
ψ

2
,

and to leading order of κ we have:

κ

16π2

(

ψ − 2

κ
ξ

)2

→ κ

16π2
ψ2 − ψ

4π
tan

ψ

2
,

κ

4π2
Re{Li2(αe

iψ)} → κ

16π2
ψ2 +

1

2π2
log

(

cos
ψ

2

)

.

To handle the limit of the Jacobi theta function we can take u = ∆z/κ, q = eiπτ =

e−
2π
κ and calculate the limit q → 1. This can be done by using the modular transfor-

mation properties of Jacobi functions [134, 135]:

ϑ1

(

u
τ
| − 1

τ

)

= −i(−iτ) 1
2e

iu2

πτ ϑ1(u|τ) . (4.59)

Thus τ ′ = −1/τ = iκ/2, u′ = u/τ = ∆z/(2i) and q′ = eiτ
′

= e−
πκ
2 , where:

lim
q→1

ϑ1(u, q) = lim
q′→0

i

(

i

τ ′

)− 1
2

e
iu′2

πτ ′ ϑ1(u
′, q′) .
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This is easily evaluated by means of the expansion:

ϑ1(u, q) = 2q
1
4 sin u+ o

(

q
9
4

)

.

Taking the logarithm and neglecting irrelevant constant terms, we obtain:

log

∣

∣

∣

∣

∣

ϑ1

(

z − z′

κ

∣

∣

∣

∣

∣

2i

κ

)∣

∣

∣

∣

∣

∼ log

∣

∣

∣

∣

sinh

(

z − z′

2

)∣

∣

∣

∣

,

which finally leads to:

GL(ψ, φ, ψ
′, φ′) ∼ − ψ′

4π2
tan

ψ′

2
+

1

2π
log

∣

∣

∣

∣

sinh

(

z − z′

2

)∣

∣

∣

∣

(4.60)

with z = tan(ψ/2)+ iφ. With the Green function in hand, we can calculate the effect

of the curvature singularity at ψ = π on the distribution of defects. Let b be the

Burgers vector density of the dislocation cloud. Hereafter we work in a local frame,

so that:

b = bψgψ + bφgφ , (4.61)

with gi = ∂iR a basis vector in the tangent plane of the torus. R is a three-

dimensional surface vector parameterizing the torus and its Cartesian components

are given in Eq. (4.1). The quantity b has to be such that:

∫

D

d2x b(x) = bD ,

with bD the total Burger’s vector in a generic domainD. Because on a closed manifold

dislocation lines cannot terminate on the boundary, extending the integration to the

whole torus we have:
∫

d2x b(x) = 0 . (4.62)

Since the basis vectors gi in Eq. (4.61) have the dimension of length, contravariant

coordinates bi have dimensions of an inverse area. Assuming all defects to be paired

in the form of dislocations (i.e. qi = 0 everywhere), the total energy of the crystal

reads:

F =
1

2Y

∫

d2xΓ2(x) + ǫd

∫

d2x |b(x)|2 , (4.63)
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where ǫd is the dislocation core energy and

|b|2 = gijb
ibj = gψψ(b

ψ)2 + gφφ(b
φ)2 .

The function Γ(x) encoding the elastic stress due to the curvature and the screening

contribution of the dislocation cloud obeys

1

Y
∆gΓ(x) = ǫik∇ib

k(x) −K(x) , (4.64)

where ∇i is the usual covariant derivative along the coordinate-direction i and ǫik is

the Levi-Civita antisymmetric tensor on the torus:

ǫψφ = −ǫφψ =
√
g , ǫji = gikǫ

jk .

The stress function Γ(x) can be expressed in the form Γ(x) = Γd(ψ, φ) − Γs(ψ) with

Γs(ψ)

Y
= log

[

1

2(1 + cosψ)

]

+ 1 , (4.65a)

Γs(ψ, φ)

Y
=

∫

d2y ǫik∇ib
k(y)GL(x,y) . (4.65b)

Taking advantage of the closeness of the torus we can integrate Eq. (4.65b) by parts

so that:
Γd(ψ, φ)

Y
= −

∫

d2y ǫikb
k(y)∂iGL(x,y) . (4.66)

Now we want reduce the integral term in Eq. (4.66) to a more friendly functional

of b, suitable for a variational approach. Given the azimuthal symmetry we assume

that all dislocations are aligned along b = bφgφ. Even though not necessarily true,

we argue this to be a reasonable work hypothesis as well as a solid starting point to

capture the essential physics of the fat limit. In this case Γd(ψ, φ) = Γd(ψ) can be

recast in the form

Γd(ψ)

Y
=

1

2π

∫ π

−π
dψ′√g bφ(ψ′) [ψ′ + sinψ′ + π sgn(ψ − ψ′)] . (4.67)
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Substituting Eq. (4.67) and (4.65a) in Eq. (4.63) and minimizing with respect to bφ

we can now write the variational equation:

4ǫdR
2(1 + cosψ)2bφ(ψ) +

∫ π

−π
dψ

√
g Γd(ψ

′) sgn(ψ − ψ′)

=

∫ π

−π
dψ

√
g Γs(ψ

′) sgn(ψ − ψ′) . (4.68)

By inverting the order of integration in the integral on the right hand side, Eq (4.68)

can be expressed in the form of a Fredholm equation of the second kind:

λB(ψ) −
∫ π

−π
dψ′B(ψ′)K(ψ, ψ′) = f(ψ) , (4.69)

where λ = ǫd/(Y R
2), B(ψ) = R2(1 + cosψ)2bφ(ψ) and the kernel K(ψ, ψ′) is given

by:

K(ψ, ψ′) =
1

4(1 + cosψ′)

{

π−1(ψ′ + sinψ′)(ψ + sinψ)

+ |ψ − ψ′| + 2 cos
ψ + ψ′

2
sin

|ψ − ψ′|
2

}

. (4.70)

The function f(ψ) on the right hand side of Eq. (4.69) is given by:

f(ψ) = −1

4

∫ ψ

−ψ
dψ′ (1 + cosψ′) Γs(ψ

′)

=
1

2

{

[log 2(1 + cosψ) − 2] sinψ − 2 Cl2(ψ + π)
}

(4.71)

where Cl2 is the Clausen function (see Ref. [168], pp. 1005-1006) defined as:

Cl2(x) = −
∫ x

0

dx log

(

2 sin
t

2

)

=
∞
∑

k=1

sin kx

k2
.

As previously noted the dislocation core energy is ǫd is much smaller than the

elastic energy scale Y R2. Eq (4.69) is then suitable to be solved in powers of the

dimensionless number λ:

B(ψ) = B0(ψ) + λB1(ψ) + λ2B2(ψ) + · · ·
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Figure 4.26: (Color online) The Burgers vector component b(ψ) for different choices of λ.

The corrections to the zero-order term B0(ψ) can be calculated recursively by solving

a set of Fredholm equations of the first kind:

Bk−1(ψ) =

∫ π

−π
dψ′Bk(ψ)K(ψ, ψ′) k ≥ 1 .

The function B0(ψ) associated with the Burgers vector density of the dislocation cloud

in the limit λ → 0, on the other hand, can be calculated directly from Eq. (4.64) by

setting the effective topological charge density on the right hand side to zero:

ǫik∇ib
k(x) −K(x) = 0 . (4.72)

For a torus of revolution the only nonzero Christoffel symbols are

Γφφψ = Γφψφ = − R2 sinψ

R1 +R2 cosψ
,

Γψφφ = R−1
2 sinψ(R1 +R2 cosψ) .

Since bψ = 0 by assumption, the first term in Eq. (4.72) can be expressed as:

ǫik∇ib
k = ǫψφ(∂ψb

φ + Γφψφb
φ) + ǫφψΓψφφb

φ

= (1 + cosψ)∂ψb
φ − 2 sinψ bφ ,
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and Eq. (4.72) becomes an ordinary differential equation

∂ψb
φ − 2 sinψ

1 + cosψ
bφ =

cosψ

R2(1 + cosψ)2
, (4.73)

whose solution is given by

bφ =
sinψ

R2(1 + cosψ)2
, (4.74)

so that B0(ψ) = sinψ. The Burgers vector density bφ obtained by a numerical solution

of Eq. (4.69) is shown in Fig. 4.26 for different values of λ. The Burgers vector density

is measured in units of R−2. The function bφ has cubic singularities at ψ = ±π and

is approximately zero on the outside of the torus. The solid blue curve in Fig. 4.26

represents the zeroth order solution of Eq.(4.74).

Now, in the theory of dislocation mediated melting a system at the solid liquid

phase boundary is described as a crystalline solid saturated with dislocations. In

three-dimensions, in particular, there is a strong experimental evidence of the exis-

tence of a critical dislocation density at the melting point ρ(Tm) ≈ 0.6b−2 where b is

the length of the length of the smallest perfect-dislocation Burgers vector [169]. Sev-

eral theoretical works have motivated this evidence both for three-dimensional solids

and vortex lattices in super conductors [167]. On the other hand, given the existence

of such a critical density, its value can be empirically used to determine whether a

system is in a solid or liquid-like phase in the same spirit as the Lindemann criterion.

With this goal in mind we can calculate the dislocation density by requiring |b| = ρa

with ρ the density of single lattice spacing dislocations. This yields:

ρ(ψ, V )a2 = 2π

(√
3

2
V

)− 1
2
∣

∣

∣

∣

tan
ψ

2

∣

∣

∣

∣

+ o(λ) (4.75)

Solving ρ(ψ, V )a2 = 0.6 as a function of ψ and V we obtain the diagram of Fig. 4.27.

As expected the inside of the torus contains an amorphous region whose angular size

decreases with the number of vertices V as a consequence of the reduction of the

lattice spacing.
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Figure 4.27: (Color online) Phase diagram for curvature driven amorphization. The inside of the

torus contains an amorphous region whose angular size decreases with the number of vertices V as

a consequence of the reduction of the lattice spacing.

Appendix 4.A Cluster optimization via Tapping

The Tapping Algorithm (TA) is a hybrid algorithm designed to find the optimal

crystalline structure of particle systems constrained to lie on a curved surface and in-

teracting with a long range potential of the form Uij = 1/|ri−rj|s. Hybrid algorithms,

such as Basin-Hopping [170] and Minima-Hopping [171], have been successfully em-

ployed throughout the years to predict the crystalline structure of molecular clusters

and proteins. In general they combine fast local minimizations with global moves

whose goal is to release the system from the local minimum it is confined at the end

of a local minimization step.

A typical hybrid optimization routine can be summarized in the following two

steps: 1 ) after all the independent variables have been randomly initialized, a local

optimization is performed and a local minimum x is determined; 2 ) from x a new

configuration y is constructed by applying a global (generally stochastic) move. The

new configuration y is then used as starting point for a new local optimization step.

The two steps are iterated until a stopping criterion is satisfied. The goal is thus
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to explore the largest possible number of local minima and avoid visiting the same

minimum too often.

The crucial point in designing an effective hybrid algorithm is clearly the choice of

the global move. There is no general rule to identify a successful global transformation

x→ y and physical intuition and prior experience are typically the only guidelines. In

the case of Basin-Hopping, for instance, the global transformation consists in a Monte

Carlo move in which all the particles of the system are randomly displaced in order

to construct a new initial configuration from which a new trial minimum is obtained.

The step is accepted with probability exp(−β∆V ), where ∆V is the energy difference

between the new and previous minimum and β is an inverse temperature adjusted

to obtain a 50% acceptance ratio. In the case of Minima-Hopping the escape step

is performed by a short Molecular Dynamics simulation by assigning the particles a

fixed kinetic energy.

The global move adopted in TA is inspired by the process of close packing of spher-

ical objects by tapping and is motivated by the well established role of topological

defects in determining the order of two-dimensional non-Euclidean crystals as well as

the picture of the potential energy surface (PES) of such systems as a multi-funnel

landscape. Consider a system of say spherical objects confined in a two-dimensional

box with an initial disordered configuration. A common way to bias the system to-

ward a close-packed configuration is to provide it kinetic energy by gently tapping

the box. If the system is populated by locally ordered regions (i.e. grains) separated

by clusters of defects, the primary effect of tapping is to produce a glide of defects

inside the crystals with a subsequent rearrangement of grains. This mechanism can

be reproduced numerically in the following way. The algorithm starts with a random

distribution of particles and rapidly quenches the system by performing a fast local

minimization. Once particles are trapped in a local minimum, defects are identified

by a Delaunay triangulation of the lattice. Then the system is tapped by adding to

the defect positions a random displacement. The magnitude of the displacement is
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given by the typical spacing associated with the particles number times a factor λ

which represents the tapping strength. This factor is initially set to 10−3. After de-

fects have been moved a new local minimization is performed in order to construct the

trial configuration y. The energy of this configuration is compared with the energy of

the previous minimum and the move is accepted if their difference is larger than some

tolerance factor ǫE . If, on the other hand, the energy difference is smaller than ǫE ,

the system has relaxed again to the same minimum. In this case the tapping strength

is increased of a factor 10 and the process is repeated until the system successfully

hops to a new minimum. The tapping strength λ is then set to its initial value. The

process is iterated until the rate of discovery of new global minima drops below some

threshold value or a maximum number of iterations is reached.

In the current implementation of the algorithm, the local minimization step is

performed using the Fletcher-Reeves conjugate gradient algorithm [172]. Analytic

expressions for the energy gradient and the Hessian matrix are coded in the program

in order to reduce the number of evaluations of the objective function during the

relaxation step to one single event. The Delaunay triangulation is calculated via

the Dwyer’s divide and conquer algorithm with alternate cuts [173], which runs in

O(N log logN) time, making the identification of the defects particularly fast.

The main difference between TA and other hybrid algorithms (including Basin-

Hopping) is that the escape move consists of adaptive displacements of defects only,

rather than of the entire system. In the case of non-Euclidean crystals, where the con-

formation of the energy landscape is subtly related to the arrangement of topological

defects, this mechanism is believed to explore the PES more accurately. In systems

as Lennard-Jones clusters or spin-glasses, the PES is characterized by an exponential

number of local minima separated by energy barriers. For this reason the majority

of the algorithms are specifically designed to allow the system to overcome a barrier

by providing it a significant amount of energy. If the energy landscape, however, is

characterized by the presence of multiple narrow funnels, as believed in this case, the
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Figure 4.28: Possible pathways is a funneled landscape.

previous methods become ineffective. A funnel represents the basin of attraction of a

given local minimum. If the global minimum is also located at the bottom of a fun-

nel, an algorithm that is attempting to locate it via a sequence of local minimization

steps has a chance to find it exclusively by starting from a configuration already at

the muzzle of the funnel. Such possibility, however, is ruled out if all the particles are

displaced simultaneously during the escape move and the system is abruptly moved

to a completely different place in the energy landscape. On the other hand, by adap-

tively tapping the defects it is possible to achieve a much finer inspection of the PES

and possibly locate the funnel associated with the global minimum.

Appendix 4.B The doubly periodic Green func-

tion

In this Appendix I provide a step-by-step proof of Eq. (4.19). Starting from Eq.

(4.18) we can notice that all sinusoidal terms cancel when the summation is carried
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out. Eq. (4.18) becomes then:

G0(x,y) = − 1

p1p2

∑

(n,m)6=(0,0)

cosλn(x− ξ) cosµm(y − η)

λ2
n + µ2

m

= − 2

p1p2







∞
∑

m=1

cos 2πm
p2

(y − η)
(

2πm
p2

)2 +
∞
∑

n=1

∞
∑

m=−∞

cos 2πn
p1

(x− ξ) cos 2πm
p2

(y − η)
(

2πn
p1

)2

+
(

2πm
p2

)2






. (4.76)

An equivalent expression can be obtained by isolating the m = 0 contribution in the

sum rather then the n = 0 one. The first sum in Eq. (4.76) can be evaluated easily

by using:
∞
∑

k=1

cos kx

k2
=
π2

6
− π|x|

2
+
x2

4
(4.77)

Thus we have:

H(y−η) = − 2

p1p2

∞
∑

m=1

cos 2πm
p2

(y − η)

(2πm
p2

)2
= − 1

2 p1p2

(

p2
2

6
− p2|y − η| + |y − η|2

)

(4.78)

The second sum in Eq. (4.76) can be evaluated with the help of the Poisson summa-

tion formula in the form:

∞
∑

m=−∞
f(m) cos pm =

∞
∑

k=−∞

∫ ∞

−∞
dt f(t) cos(2kπ + p) t (4.79)

In particular if we choose:

f(m) =
1

(

2πn
p1

)2

+
(

2πm
p2

)2 p =
2π

p2

(y − η)

we can write the second sum in the (4.76) as:

K(x− ξ, y − η) = − 2

p1p2

∞
∑

n=1

cos
2πn

p1
(x− ξ)

∞
∑

m=−∞

cos 2πm
p2

(y − η)
(

2πn
p1

)2

+
(

2πm
p2

)2

= − 2

p1p2

∞
∑

n=1

cos
2πn

p1
(x− ξ)

∞
∑

k=−∞

∫ ∞

−∞
dt

cos(2πk + p) t
(

2πn
p1

)2

+
(

2πt
p2

)2 (4.80)
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The integral can be easily done by remembering:

∫ ∞

0

dx
cosωx

a2 + x2
=

π

2a
e−ωa

and then:

∫ ∞

−∞
dt

cos(2πk + p) t
(

2πn
p1

)2

+
(

2πt
p2

)2 =
p1p2

4πn
exp

[

−
(

2πn

p1

)

|p2k + y − η|
]

Therefore, Eq. (4.80) becomes:

K(x− ξ, y − η) = − 1

2π

∞
∑

k=−∞

∞
∑

n=1

e
− 2πn

p1
|p2k+y−η|

n
cos

2πn

p1
(x− ξ) (4.81)

The sum in n can be calculated by taking into account:

∞
∑

n=1

e−2πnx

n
cos(2πny) = − log |1 − e−z| (4.82)

where z is the complex number:

z = 2π(x± iy)

with x > 0 and an arbitrary choice of the sign. To use Eq. (4.82) is convenient to

separate positive and negative k in Eq. (4.81):

−2πK(x− ξ, y − η) =

∞
∑

n=1

e
− 2πn

p1
|y−η|

n
cos

2πn

p1
(x− ξ)

+

∞
∑

k=1

∞
∑

n=1

e
− 2πn

p1
|p2k+y−η|

n
cos

2πn

p1
(x− ξ)

+
∞
∑

k=1

∞
∑

n=1

e
− 2πn

p1
|−p2k+y−η|

n
cos

2πn

p1
(x− ξ) (4.83)

Now, because y, η ∈ [0, p2] we have y − η ∈ [−p2, p2] which allow us the write the

modulus in the following way:

|p2k + (y − η)| = p2k + (y − η)

| − p2k + (y − η)| = p2k − (y − η)











∀k ≥ 1
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Introducing the complex variable:

σ±
k = 2π(a±k ∓ ibk)

with:

a±k =
p2k ± (y − η)

p1
bk =

x− ξ

p1

and using Eq. (4.82), we can rewrite Eq. (4.83) as:

2πK(x− ξ, y − η) = log
∣

∣1 − e−σ0
∣

∣ +

∞
∑

k=1

log
∣

∣

∣
1 − e−σ

+
k − e−σ

−

k + e−(σ+
k

+σ−
k

)
∣

∣

∣

= log
∣

∣

∣
1 − e

2πi
p1

(z−ζ)
∣

∣

∣
+

∞
∑

k=1

log

∣

∣

∣

∣

1 − 2q2k cos
2π

p1
(z − ζ) + q4k

∣

∣

∣

∣

(4.84)

having called:






z = x+ iy

ζ = ξ + iη
and q = e

−πp2
p1

The second term in Eq. (4.83) can be expressed in terms of the Jacobi theta function

ϑ1(u, q) defined as:

ϑ1(u, q) = 2q
1
4 sin u

∞
∏

n=1

(

1 − 2q2n cos 2u+ q4n
) (

1 − q2n
)

Another useful relation can be obtain by taking the derivative of ϑ1(u, q) with respect

to u:

lim
u→0

ϑ1(u, q)

sin u
= lim

u→0

ϑ′1(u, q)

cosu
= ϑ′1(0, q)

So it is easy to evaluate:

ϑ′1(0, q) = lim
u→0

ϑ(u, q)

sin u
= 2q

1

4

∞
∏

k=1

(

1 − 2q2k + q4k
) (

1 − q2k
)

= 2q
1

4

∞
∏

k=1

(

1 − q2k
)3

(4.85)

In this way we can express:

∞
∏

k=1

(1 − 2q2k cos 2u+ q4k) =
1

(2q
1
4 )

2
3 sin u

[

ϑ1(u, q)

ϑ
′ 1
3

1 (0, q)

]
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Taking:

u =
π

p1
(z − ζ)

and replacing in Eq. (4.84) we obtain:

2πK(x− ξ, y − η) = log |1 − e2iu| + log

∣

∣

∣

∣

∣

ϑ1(u, q)

ϑ
′ 1
3

1 (0, q)

∣

∣

∣

∣

∣

− log
∣

∣

∣
(2q

1
4 )

2
3 sin u

∣

∣

∣

=
log 2

3
+
π

6

p2

p1

− π

p1

|y − η| + log

∣

∣

∣

∣

∣

ϑ1(u, q)

ϑ
′ 1
3

1 (0, q)

∣

∣

∣

∣

∣

(4.86)

having used the fact that:

log
∣

∣1 − e2iu
∣

∣ = log |eiu| + log |2i sinu|

log
∣

∣

∣
(2q

1
4 )

2
3 sin u

∣

∣

∣
=

2

3
log 2 − π

6

p2

p1
+ log | sin u|

Combining Eq. (4.86) with Eq. (4.78) we finally obtain:

G0(x,y) = H(y − η) +K(x− ξ, y − η)

=
log 2

6π
− 1

2 p1p2
|y − η|2 +

1

2π
log

∣

∣

∣

∣

∣

ϑ1(u, q)

ϑ
′ 1
3

1 (0, q)

∣

∣

∣

∣

∣

(4.87)

An alternative notation frequently used for the Jacobi theta function is:

ϑ1(u|τ) = ϑ(u, q) q = eiπτ

adopting this choice we can write the Green function in the final form:

G0(x,y) =
log 2

6π
− 1

2 p1p2
|y − η|2 +

1

2π
log

∣

∣

∣

∣

∣

∣

ϑ1(
z−ζ
p1/π

| ip2
p1

)

ϑ
′ 1
3

1 (0| ip2
p1

)

∣

∣

∣

∣

∣

∣

(4.88)

Appendix 4.C The stress function Γs(x)

To calculate the stress function Γs(x), it is convenient to start from:

Γs(x) =

∫

d2y K(y)[G0(x,y) − 〈G0(· ,y)〉] = Γs,1(x) − Γs,2
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where we called:

Γs,1(x) =

∫

d2y K(y)G0(x,y) Γs,2 =

∫

d2y K(y) 〈G0(· ,y)〉

The calculation of these integrals can be made more straightforward by keeping the

Green function in the form (4.76). We have then:

Γs,1 = − 1

p1p2

∑

(n,m)6=(0,0)

1

λ2
n + µ2

m

∫ π

−π
dψ′ cosψ′ cosλn(ξ − ξ′)

∫ π

−π
dφ′ cosµm(φ− φ′)

The integral in φ′ is non-zero only for m = 0:
∫ π

−π
dφ′ cosµm(φ− φ′) =

∫ π

−π
dφ′ cosm(φ− φ′) = 2πδm,0 m = 0, ±1, ±2 . . .

Then we have:

Γs,1(x) = − 2π

p1p2

∑

n 6=0

λ−2
n

∫ π

−π
dψ′ cosψ′ cosλn(ξ − ξ′)

= − 2

p1

( p1

2π

)2
∫ π

−π
dψ′ cosψ′

∞
∑

n=1

cos 2πn
p1

(ξ − ξ′)

n2

Using Eq. (4.77) we can rewrite:

Γs,1(x) = −p1

12

∫ π

−π
dψ′ cosψ′

+
1

2

∫ π

−π
dψ′ cosψ′ |ξ − ξ′| − 1

2p1

∫ π

−π
dψ′ cosψ′ |ξ − ξ|2 (4.89)

The first integral is zero. Two calculate the second integral we can take

|ξ − ξ′| =







ξ − ξ′ if ξ′ < ξ → ψ′ < ψ

ξ′ − ξ if ξ′ > ξ → ψ′ > ψ

Thus:

Γs,11 =

∫ π

−π
dψ′ cosψ′ |ξ − ξ′| = ξ

∫ ψ

−ψ
dψ′ cosψ′ + 2

∫ π

ψ

dψ′ cosψ′ξ′

= ξ(ψ)
[

sinψ′
]ψ

−ψ
+ 2
[

ξ(ψ′) sinψ′ + log(r + cosψ′)
]π

ψ

= 2 log

(

r − 1

r + cosψ

)
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where the second line has been obtained by a simple integration by parts:
∫

dψ cosψ ξ = ξ sinψ −
∫

dψ
sinψ

r + cosψ
= ξ sinψ + log(r + cosψ)

To calculate the third integral in Eq. (4.89) we can expand the square and use the

fact that the function ξ is odd in ψ. Then:
∫ π

−π
dψ′ cosψ′ |ξ − ξ′|2 =

∫ π

−π
dψ′ cosψ′ξ′2

The integral on the right hand side can be now calculated by parts:

Γs,12 =

∫ π

−π
dψ′ cosψ′ ξ′2

=
[

sinψ′ ξ2
]π

−π
− 2

∫ π

−π
dψ′ sinψ′ ξ′

dξ′

dψ′

= −2

∫ 1
2
πκ

− 1

2
πκ

dξ′ sinψ′ ξ′

having considered:

ξ(π) = −ξ(−π) =

∫ π

0

dψ

r + cosψ
=

1

2
πκ

We need now to express the quantity sin φ figuring in the integral as a function of ξ.

Inverting Eq. (4.9) we obtain:

tan
ψ

2
=

1

ω
tan

ξ

κ

Then:

sinψ =
2 tan ψ

2

1 + tan2 ψ
2

=
2ω tan ξ

κ

ω2 + tan2 ξ
κ

Replacing, the integral will become:

Γs,12 = −2

∫ 1

2
πκ

− 1
2
πκ

dξ′
2ωξ′ tan ξ′

κ

ω2 + tan2 ξ′

κ

= −4ωκ2

∫ π
2

−π
2

dy
y tan y

ω2 + tan2 y

having called y = ξ/κ ∈ [−π/2, π/2]. The integrand can be simplified furtherly by

considering:

tan y

ω2 + tan2 y
=

sin y cos y

sin2 y + ω2 cos2 y
=

sin y cos y

1 + (ω2 − 1) cos2 y
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which taking:

sin y cos y =
1

2
sin 2y cos2 y =

1

2
(1 + cos 2y)

allows us to write:

Γs,12 = −4ωκ2

∫ π
2

−π
2

dy
y sin 2y

(ω2 + 1) + (ω2 − 1) cos 2y
= −ωκ2

∫ π

−π
dx

x sin x

α + β cos x

where we called x = 2π ∈ [−π, π], α = ω2 + 1 and β = ω2 − 1. The right hand side

can be now easily integrated by parts:

Γs,12 = −ωκ
2

β

[

−x log

(

1 +
β

α
cosx

)]π

−π
− ωκ2

β

∫ π

−π
dx log

(

1 +
β

α
cosx

)

=
2πωκ2

β
log

(

1 − β

α

)

− 2πωκ2

β
log





1 +
√

1 − β2

α2

2





=
2πωκ2

β
log





2(1 − β
α
)

1 +
√

1 − β2

α2





which expressing all the parameters in term of the aspect ratio r gives finally:

Γs,12 = −2πκ log

[

2(r + 1)

r +
√
r2 − 1

]

Combining Γs,11 and Γs,12 we obtain:

Γs,1 =
1

2
Γs,11 −

1

2p1

Γs,12 = log

[

2(r2 − 1)

(r + cosψ)(r +
√
r2 − 1)

]

To complete the calculation of Γs we need now to calculate:

Γs,2 =

∫

d2y 〈G(· ,y)〉K(y) (4.90)

Rather then calculate the function 〈G(· ,y)〉 and integrate it, it is more convenient

to invert the order of the two integrals and using the result we just obtained for the

Γs,1. Explicitly:

AΓs,2 =

∫

d2xK(x)

∫

d2y G0(x,y)

=

∫

d2y

∫

d2xK(x)G0(x,y) =

∫

d2y Γs,1(y)
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Now, calling:

f(r) =
2(r2 − 1)

r +
√
r2 − 1

the Γs,2 integral becomes:

AΓs,2 = log f(r)

∫

d2y −
∫

dψ′ dφ′√g′ log(r + cosφ′)

= A log f(r) − 2πR1R2

∫ π

−π
dψ′ log(r + cosφ′)

−2πR2
2

∫ π

−π
dψ′ cosψ′ log(r + cosψ′)

The first integral is of the form:
∫ π

−π
dx log(1 + a cosx) = 2π log

(

1 +
√

1 − a2

2

)

|a|2 < 1

and can thus immediately calculated by choosing a = r−1:

Γs,21 =

∫ π

−π
dψ′ log(r + cosψ′) = 2π log

(

r +
√
r2 − 1

2

)

The second integral can be related to an integral of the form:
∫ π

0

dx cosnx log(1 − 2a cosx+ a2) = −πa
n

n
|a|2 < 1

by choosing n = 1 and a = −r +
√
r2 − 1. Thus we have:

Γs,22 = 2π
(

r −
√
r2 − 1

)

Combining Γs,21 and Γs,22 we find:

Γs,2 = log f(r) − 2π

A

(

R1R2Γs,21 +R2
2Γs,22

)

= log

[

4(r2 − 1)

(r +
√
r2 − 1)2

]

− r −
√
r2 − 1

r

Merging the two main contributions Γs,1 and Γs,2 we can finally write the screening

function Γs in the form:

Γs(ψ) = log

[

r +
√
r2 − 1

2(r + cosψ)

]

+
r −

√
r2 − 1

r
(4.91)
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Appendix 4.D The function 〈G0(x, ·)〉

We proceed now to the calculation of the function 〈G0(x, · )〉 figuring in the expression

of the elastic free energy.Again it is convenient to express the Green function G0 in

the form of a series rather than in the more compact form (4.88):

A 〈G0(x, · )〉 = − 1

p1p2

∑

(n,m)6=(0,0)

1

λ2
n + λ2

m

∫ π

−π
dψ′√g′ cosλm(ξ − ξ′)

∫ π

−π
dφ′ cosµm(φ− φ′)

As in the previous section, the only non-zero contribution from the sum in m is given

by m = 0. Summing over n we have then:

A 〈G0(x, · )〉 = −π
6
R1R2 +

1

2

∫ π

−π
dψ′√g′ |ξ − ξ′| − 1

2p1

∫ π

−π
dψ′√g′ |ξ − ξ′|2

The expanding the absolute value as in the previous section, we can write the first

integral in the form:

I1 =

∫ π

−π
dψ′√g′ |ξ − ξ′|

= ξ

∫ ψ

−ψ
dψ′√g′ + 2

∫ π

ψ

dψ′√g′ ξ′

= 2R1R2ψξ + 2R2
2ξ sinψ + 2

∫ π

ψ

dψ′√g′ ξ′ (4.92)

The integral last integral can be simplified integrating by parts:

I11 =

∫ π

ψ

dψ′√g′ ξ′

= R1R2

∫ π

ψ

dψ′ ξ′ +R2
2

∫ π

ψ

dψ′ cosψ′ξ′

= R2
2 log

(

r − 1

r + cosψ

)

− R2
2ξ sinψ +R1R2

∫ π

ψ

dψ′ ξ′

The last integral can be easily calculated by expanding the ξ function in Fourier

harmonics. The conformal angle ξ is an odd function of ξ of period 2π, thus admit a
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Fourier series in the canonical form:

ξ(ψ) =

∞
∑

n=1

bn sin(nψ) (4.93)

The Fourier coefficient bn is given by:

πbn =

∫ π

−π
dψ sinnψ ξ(ψ) = −

[

ξ(ψ)

n
cosnψ

]π

−π
+

1

n

∫ π

−π
dψ

cosnψ

r + cosψ

= −κ
n

cosnπ +
1

n

∫ π

−π
dψ

cos nψ

r + cosψ

The last integral can be reconducted to the form:
∫ ψ

0

dx
cos nx

1 + a cosx
=

π√
1 − a2

(
√

1 − a2 − 1

a

)n

|a|2 < 1

by taking a = r−1. Then:
∫ π

−π
dψ

cosnψ

r + cosψ
=

2√
r2 − 1

(√
r2 − 1 − r

)n

having called α =
√
r2 − 1 − r. The Fourier coefficient bn is then given by:

bn =
κ

n
(αn − cos nπ) =

κ

n
[αn − (−1)n] (4.94)

Integrating the Fourier harmonics term by term we have:

I12 =

∫ π

ψ

dψ′ ξ(ψ′) =

∞
∑

n=1

bn

∫ π

ψ

dψ′ sinnψ′ =

∞
∑

n=1

bn
n

(cosnψ − cosnπ)

= κ

∞
∑

n=1

αn

n2
cosnψ − κ

∞
∑

n=1

(−1)n

n2
αn − κ

∞
∑

n=1

(−1)n

n2
cosnψ + κ

∞
∑

n=1

1

n2

=
1

4
κ(π2 − ψ2) − κLi2(−α) + κRe{Li2(αe

iψ)}

where Re{ · } stands for the real part. For the last step, we used:

∞
∑

n=1

(−1)n

n2
cosnx =

∞
∑

n=1

cosnπ cosnx

n2

=
1

2

∞
∑

n=1

cosn|π + x|
n2

+
1

2

∞
∑

n=1

cosn|π − x|
n2

=
1

4
x2 − 1

12
π2
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together with the notorious Euler identity:

ζ(2) =

∞
∑

n=1

1

n2
=
π2

6

and the definition of dilogarithm:

Li2(z) =
∞
∑

n=1

zn

n2

Replacing I11 and I12 in (4.92) we can write:

I1 = 2R1R2ψξ + 2R2
2 log

(

r − 1

r + cosψ

)

+
1

2
κR1R2(π

2 − ψ2)

− 2κR1R2 Li2(−α) + 2κR1R2 Re{Li2(αe
iψ)} (4.95)

To accomplish the calculation of the 〈G0(· ,x)〉 we are left with the integral:

I2 =

∫ π

−π
dψ′√g′ |ξ − ξ′|2

= R1R2

∫ π

−π
dψ′ |ξ − ξ′|2 +R2

2

∫ π

−π
dψ′ cosψ′ |ξ − ξ′|2

The second integral in I2 has already been calculated in the previous section and is:

I22 = Γs,12 = −2πκ log

[

2(r2 + 1)

r +
√
r2 − 1

]

To calculate the first integral we can write:

I21 =

∫ π

−π
dψ′ |ξ − ξ′|2 = 2πξ2 +

∫ π

−π
dψ′ ξ′2

To calculate the integral of ξ2 we can recall that, letting f(x) being a square-integrable

function with Fourier series:

f(x) =
a0

2
+

∞
∑

n=1

(an cosnx+ bn sin nx)

the Parseval’s identity requires:

1

π

∫ π

−π
dx f 2(x) =

a2
0

2
+

∞
∑

n=1

(a2
n + b2n)
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which in our case reads:

∫ π

−π
dψ′ ξ′2 = π

∞
∑

n=1

b2n = πκ2

[ ∞
∑

n=1

α2n

n2
+

∞
∑

n=1

1

n2
− 2

∞
∑

n=1

(−1)n

n2
αn

]

= πκ2

[

Li2(α
2) +

π2

6
− 2 Li2(−α)

]

= πκ2

[

2 Li2(α
2) +

π2

6

]

where for the last step we used the Euler dilogarithmic ladder:

Li2(z) + Li2(−z) =
1

2
Li2(z

2) (4.96)

Recombining the integrals I1 and I2 and we obtain finally:

〈G0(x, · )〉 = − κ

16π2

(

ψ − 2

κ
ξ

)2

− κ

8π2
Li2(α

2)

+
κ

4π2
Re{Li2(αe

iψ)} +
1

4π2r
log

[

2(r2 − 1)

(r + cosψ)(r +
√
r2 − 1)

]

(4.97)

Appendix 4.E The stress function Γ(x)

We are finally ready to combine the results of the previous two sections and write the

complete expression of the energy density Γ. Using (4.88), (4.97) in (4.47) we have:

Γ(x)

Y
=
π

3

N
∑

k=1

qkΓd(x,xk) − Γs(x) (4.98)

Calling z = ξ + iφ the defects contribution Γd to the energy is given by:

Γd(x,xk) =
κ

16π2

(

ψk −
2

κ
ξk

)2

− 1

4π2κ
(φ− φk)

2

+
1

4π2r
log (r + cosψk) −

κ

4π2
Re{Li2(αe

iψk)}

+
1

2π
log

∣

∣

∣

∣

ϑ1

(

z − zk
κ

∣

∣

∣

∣

2i

κ

)∣

∣

∣

∣

(4.99)

where all the constants figuring in (4.97) and (4.88) are canceled in virtue of the

charge neutrality condition.



Chapter 5

Conclusion and discussion

In this article we reviewed some of the most recent progresses toward understanding

the ground state properties of two-dimensional ordered phases on substrate of non-

zero Gaussian curvature. The latter represents a broad class of systems comprising

materials as different as viral capsids and carbon nanotori. The geometry of the sub-

strate give arise to novel defective structures that would be energetically prohibitive

in the ground state of conventional flat systems. Defects might appear in curved space

either because required by the topology of the underlying substrate (as in the case

of spherical crystals and nematics) or because favored by the curvature itself. The

latter has indeed the property of coupling with the topological charge of the defects

leading to an overall reduction of the elastic stress.

On the material science side, non-Euclidean systems provides a promising route

to constructing arrays of nanoparticles is via the chemical functionalization of topo-

logical defects created on the surface of the particles by coating them with an ordered

monolayer. Candidates for such coatings include triblock coplymers, gemini lipids,

metallic or semiconducting nanorods and conventional liquid crystal compounds. If

the induced order is vector-like or striped then there must necessarily be two defec-

tive regions corresponding to the bald spots exhibited by a combed sphere or the

source and sink of fluid flow confined to a sphere. Not only are the defects physically
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Figure 5.1: (Color online) (Left) Idealized drawing of a side and top view and of a rippled gold

nanoparticle showing the two polar defects that must exist to allow the alternation of concentric

rings. (Right) TEM images of a chain obtained when 11-mercaptoundecanoic acid functionalized

nanoparticles are reacted with a water phase containing divalent 1,6-diaminohexane in a two-phase

reaction. Scale bar 50 nm. From [174].

and mathematically distinguished, since the condensed matter order vanishes there,

but it also turns out that chemical processes can detect the defects and insert linker

molecules at the precise defect locations. This creates the possibility of efficiently

making functionalized nanoparticles with a precise valence and corresponding direc-

tional bonding. The nanoparticles themselves can then be linked into well-defined

two and three dimensional arrays. Control over the valence and the geometry of the

directional bonding can be achieved by varying the nature of the ordered monolayer.

This scheme has been demonstrated recently in the work of DeVries et al. [174]

in which gold nanoparticles are coated with two species of naturally phase separating

ligands (see Fig. 5.1). Phase separation on the spherical gold surface translates to a

striped arrangement of alternating ligands. Such a spherical smectic has topological

defects at the north and south pole of the nanopartcle. These may be functionalized

by attaching thiol-based linker molecules at the defects via place-exchange reactions.

This creates a divalent gold nanoparticle with directional bonds 180 degrees apart.

These in turn can be linked to create polymers and free-standing films.
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[10] J. Farges, M. F. de Féraudy, B. Raoult, and G. Torchet, J. Phys. (Paris) 36,

C2 (1975).
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